
KYBERNET IKA — VOLUME 5 7 (2 0 2 1) , NUMBER 4 , PAGES 5 6 8 – 5 9 3

SOLVING THE SENSOR COVER ENERGY PROBLEM
VIA INTEGER LINEAR PROGRAMMING

Pingke Li

This paper demonstrates that the sensor cover energy problem in wireless communication can
be transformed into a linear programming problem with max-plus linear inequality constraints.
Consequently, by a well-developed preprocessing procedure, it can be further reformulated as a
0-1 integer linear programming problem and hence tackled by the routine techniques developed
in linear and integer optimization. The performance of this two-stage solution approach is
evaluated on a set of randomly generated instances and demonstrates that it is capable of
solving large size instances of the sensor cover energy problem.

Keywords: sensor coverage problem, max-plus algebra, integer linear programming

Classification: 90C10, 15A80, 52C15

1. INTRODUCTION

An important research topic, generally termed as the coverage problem, in wireless sensor
networks is to minimize the number of sensors deployed in a network to cover all target
points in a geographical region under some particular coverage requirements. When
the energy efficiency or network lifetime is concerned as well, the deployed sensors may
be activated alternately with variable sensing ranges whenever possible. Consequently,
a set of activated sensors is to be determined along with the sensing radii in order to
minimize the energy consumption while preserving a full coverage of target points for
monitoring purposes. The sensor coverage problem of different types has been exten-
sively investigated from various aspects, see, e. g., the survey papers [12, 15, 16] and the
references therein.

By quantifying the relationship between the energy consumption of a sensor and
its sensing radius, the sensor cover energy problem has been formulated by Astorino
and Miglionico [1] simply as minimizing the total energy consumption of the sensor
network to maintain full coverage under the assumption that the network connectivity
is guaranteed by the large enough transmission range. Since the coverage constraints
involved in this direct formulation are nonconvex, an algorithm developed for minimiz-
ing the difference of two convex functions form is applied by penalizing the constraints
into the objective function. However, the algorithm for difference of convex functions

DOI: 10.14736/kyb-2021-4-0568

http://doi.org/10.14736/kyb-2021-4-0568

Solving the sensor cover energy problem via integer linear programming 569

programming, see, e. g., [7, 8], minimizes a convex approximation of the objective func-
tion iteratively and ensures only local optimality in general for the sensor cover energy
problem.

Alternatively, as demonstrated by Hoai and Tuy [6], the sensor cover energy problem
may be identified after a simple transformation as a special discrete scenario of mono-
tonic optimization and tackled by a generic branch-reduce-and-bound method, originally
developed by Tuy et al. [14], in a more efficient manner to search an optimal sensing
pattern. This solution approach may solve moderate size instances of the sensor cover
energy problem to optimality, by elaborately manipulating the geometrical structure of
the feasible domain.

This paper tackles the sensor cover energy problem from an alternative perspective,
following the insight of Hoai and Tuy [6]. By exploiting the special structure of the
involved constraints, this paper reveals an interesting connection between the sensor
cover energy problem and the max-plus linear programming problem. Consequently, a
two-stage approach is launched for searching an optimal sensing pattern of the sensor
network, which consists of a preprocessing procedure for reformulation and a routine so-
lution method for 0-1 integer linear programming. As demonstrated by the experimental
results on randomly generated instances, this two-stage solution method is computation-
ally more efficient and capable of solving large size instances of the sensor cover energy
problem.

The rest of this paper proceeds as follows. The sensor cover energy problem is formu-
lated in Sect. 2 and interpreted as a linear programming problem with max-plus linear
inequality constraints. It is reformulated into a 0-1 integer linear programming problem
in Sect. 3 by a well-developed procedure and ready to be tackled by calling an integer
programming solver. The evaluation of this two-stage solution method is reported in
Sect. 4 with some concluding comments addressed in Sect. 5.

2. SENSOR COVER ENERGY PROBLEM

Consider m target points to be monitored by a network of n omnidirectional sensors
statically deployed in a certain geographical region of interest. Assume that the positions
of target points ti ∈ Rp, i = 1, 2, . . . ,m, and sensors sj ∈ Rp, j = 1, 2, . . . , n, are known
with p typically being 2 or 3. The energy consumption of a sensor is a monotonically
non-decreasing function of its sensing radius, although its exact form depends on the
design and the technology in use of the sensor devices. Following the same setting in
[1, 6], the energy consumption per time unit of a sensor j, denoted by Ej(rj), assumes
the form

Ej(rj) = αjr
βj

j + γ, řj ≤ rj ≤ r̂j ,

where the sensing radius rj is assumed to be in the interval [řj , r̂j] and the positive
constants αj , βj , and γ are device dependent. The value of βj ranges typically in the
interval [2, 4] as indicated by Zhou et al. [17] and Bartolini et al. [2] and the parameter
γ represents the energy consumption of a sensor in the idle state.

Denote, respectively, M = {1, 2, . . . ,m} the set of target points to be covered and
N = {1, 2, . . . , n} the set of sensors in the network. The sensor cover energy problem
concerned in this context is to determine the sensing radius rj for each sensor j ∈ N

570 P. LI

such that each target point i ∈ M is covered by at least one sensor, i. e., within its
sensing range, and the total energy consumption is minimized meanwhile. It hence can
be formulated directly as

min E(r) =
∑
j∈N

Ej(rj)

s.t.
max
j∈N

{
rj − ‖sj − ti‖

}
≥ 0, ∀i ∈M

řj ≤ rj ≤ r̂j , ∀j ∈ N,

where r = (r1, r2, . . . , rn)T is the vector of sensing radii to be determined. The coverage
requirement in this formulation is also referred to as 1-coverage, which is routinely
adopted when covering a same target point by multiple sensors is not prescriptive. The
general k-coverage requirement, which means each target point should be covered by at
least k sensors, applies when fault tolerance or stronger monitoring is desired for the
sensor network.

Following the same transformation illustrated in [6], denote

xj = αjr
βj

j

and
aij = −αj‖sj − ti‖βj

for each i ∈ M and j ∈ N . The 1-coverage requirement on the sensor network may be
written equivalently as

max
j∈N

{aij + xj} ≥ 0, ∀i ∈M.

Consequently, by omitting the constant term nγ in the objective function, the sensor
cover energy problem may be formulated as

min f(x) =
∑
j∈N

xj

s.t.
max
j∈N

{aij + xj} ≥ 0, ∀i ∈M

`j ≤ xj ≤ uj , ∀j ∈ N,

where x = (x1, x2, . . . , xn)T is the vector of transformed sensing radii and `j = αj ř
βj

j

and uj = αj r̂
βj

j are the corresponding lower and upper bounds for each j ∈ N . However,
from the perspective of max-plus algebra, this is nothing but a linear programming prob-
lem with max-plus linear inequality constraints, which implies that such an optimization
problem may be routinely handled within the framework of integer and combinatorial
optimization and demands no particular solving techniques. Note that this very formu-
lation of the sensor cover energy problem is identified by Hoai and Tuy [6] as a discrete
monotonic optimization problem, but not interpreted as a max-plus linear programming
problem within the framework of max-plus algebra.

Solving the sensor cover energy problem via integer linear programming 571

3. INTEGER LINEAR PROGRAMMING REFORMULATION

For the transformed formulation of the sensor cover energy problem developed in Sec. 2,
denote, respectively, the data matrix A = (aij)m×n, the zero vector 0 = (0, 0, . . . , 0)T

and unit vector 1 = (1, 1, . . . , 1)T of compatible sizes, the lower bound vector ` =
(`1, `2, . . . , `n)T , and the upper bound vector u = (u1, u2, . . . , un)T . This optimization
problem may be presented in a matrix form as

min f(x) = 1Tx

s.t.
A⊗ x ≥ 0

` ≤ x ≤ u,

where the symbol ⊗ stands for the max-plus matrix multiplication in an analogous
manner as in conventional linear algebra, i. e., maximization as the addition operation
and addition as the multiplication operation. By a translation if necessary, it may be
further assumed that ` = 0 and is so assumed for convenience hereinafter in this section
to avoid an overload of notations.

The system of max-plus linear inequalities A⊗x ≥ 0, along with the bound restriction
0 ≤ x ≤ u, has been intensively investigated as well as its other variants in max-plus
algebra, see, e. g., the monograph by Butkovič [3]. It is straightforward that for this
particular case the solution set, denoted by S(A;u), is nonempty if and only if A⊗u ≥ 0.
Furthermore, it has been known for a long time that the solution set of such a system
of max-plus linear inequalities, whenever nonempty, may be characterized as

S(A;u) =
⋃

x̌∈Š(A;u)

{
x | x̌ ≤ x ≤ u

}
where Š(A;u) is a set consisting of finitely many minimal solutions. Such a structure is
also called a copolyblock by Tuy et al. [14] and Hoai and Tuy [6].

Since the objective function f(x) = 1Tx is simply a conventional linear function, it
suffices to minimize it over the finite set Š(A;u) in order to obtain an optimal solution
to the original sensor cover energy problem. Unfortunately, the number of minimal
solutions in Š(A;u) could be exponentially large and its complete list may require some
sophisticated enumeration techniques as illustrated by Fredman and Khachiyan [5] and
Elbassioni [4]. Nevertheless, the solution method proposed by Li and Fang [10, 11]
and Li [9] can be applied, which, originally developed for fuzzy relational equations,
handles the minimal solutions in an implicit manner and results in a 0-1 integer linear
programming problem.

For the system of max-plus linear inequalities A ⊗ x ≥ 0 with 0 ≤ x ≤ u, its
characteristic matrix Q̃ = (q̃ij)m×n, as an essentially equivalent representation, is defined
to be an interval-valued matrix as

q̃ij =

{
[(−aij) ∨ 0, uj], if aij + uj ≥ 0

∅, otherwise,

572 P. LI

where ∨ is the infix notation of maximization. The element q̃ij of Q̃ contains all the
values that the variable xj may assume to meet the ith inequality without violating the

lower and upper bound restrictions. It follows that S(A;u) is nonempty if and only if Q̃
contains at least one nonempty element in its each row. Note that all nonempty elements
in each column of Q̃ share a common right endpoint and the columns containing only
empty elements play no role. Besides, whenever the interval [0, uj] appears in Q̃, the

corresponding row can be deleted to reduce the size of Q̃. Some additional rules for
dimension reduction may be found in Li and Fang [10].

Another crucial feature of the characteristic matrix Q̃ is that a minimal solution in
Š(A;u) assume only the values specified by the lower bound vector ` = 0 and the left
endpoints of those nonempty elements in Q̃. Consequently, each variable of the vector x
may be coded by an auxiliary set of binary variables when a minimal solution in Š(A;u)
is desired to minimize the objective function f(x). Specifically, denote kj for each j ∈ N
the number of different positive values in the set{

(−aij) ∨ 0 | aij + uj ≥ 0, i ∈M
}

and list these values, in ascending order by convention, as

v̌j = (v̌j1, v̌j2, . . . , v̌jkj)T .

By this means, using an auxiliary binary vector

yj = (yj1, yj2, . . . , yjkj)T ∈ {0, 1}kj

for each j ∈ N , the variable xj is then represented as

xj =
∑
k∈Kj

v̌jkyjk

with the cardinality restriction
∑
k∈Kj

yjk ≤ 1 where Kj = {1, 2, . . . , kj}. With a slight
abuse of notations, such a representation may be written in a compact form for each
j ∈ N as xj = v̌Tj yj and 1Tyj ≤ 1 with the dimension of the vector 1 being implicitly
determined in the context. Subsequently, for each v̌j , j ∈ N , an associated binary

matrix Qj = (q
(j)
ik)m×kj is constructed as

q
(j)
ik =

{
1, if v̌jk ∈ q̃ij
0, otherwise,

by which each column in Q̃ is split according to the left endpoint values of those
nonempty elements. According to Li and Fang [10, 11] and Li [9], the system of max-plus
linear inequalities A⊗x ≥ 0 with 0 ≤ x ≤ u, may be reduced to a system of 0-1 integer
linear inequalities ∑

j∈N
Qjyj ≥ 1

1Tyj ≤ 1, ∀j ∈ N

yj ∈ {0, 1}kj , ∀j ∈ N

Solving the sensor cover energy problem via integer linear programming 573

when only the minimal solution set Š(A;u) is concerned. It consists of m+n inequalities
and a varying number of binary variables, which is determined by the specific pattern
of the characteristic matrix Q̃ and up to mn in theory.

As a result, in order to solve the concerned sensor cover energy problem, it suffices
to call a well-developed integer programming solver after the introduced preprocessing
procedure has been carried out to solve to optimality the following 0-1 integer linear
programming problem

min f(x) =
∑
j∈N

v̌Tj yj

s.t. ∑
j∈N

Qjyj ≥ 1

1Tyj ≤ 1, ∀j ∈ N

yj ∈ {0, 1}kj , ∀j ∈ N

which can be viewed as a set covering problem with some side cardinality constraints
and hence is in general an NP-hard problem. An optimal sensing pattern to the original
sensor cover energy problem can be constructed accordingly once an optimal solution to
the resulted 0-1 integer linear programming problem has been obtained.

4. COMPUTATIONAL EXPERIMENTS

The proposed two-stage solution method for the sensor cover energy problem is eval-
uated in this section on some test instances randomly generated by the similar rules
used in Astorino and Miglionico [1] and Hoai and Tuy [6] for the comparison purpose.
Specifically, the target points to be monitored are uniformly distributed over a 100×100
area. The sensors are also randomly distributed over the same area with a maximum
sensing radius r̂j = 30 and a minimum sensing radius řj = 0 for each sensor j ∈ N .
The parameters related to the energy consumption are set, respectively, as αj = 1 and
βj = 2 for each sensor j ∈ N while the idle-state energy cost γ is not specified which
plays no role in determining the optimal sensing pattern.

For the setting of the number m of target points and the number n of sensors, two
scenarios are designed with m = 1

5n for the nondense case and m = 2n for the dense
case.

As an illustration, Figure 1 shows an optimal sensing pattern for 5 target points with
25 sensors provided by the proposed two-stage solution method. It is intuitive that in
such a nondense case a target point is very likely to be covered by its nearest sensor,
which implies that an instance of such type is somewhat easier to solve.

Besides, Figure 2 illustrates an optimal sensing pattern for 50 target points with 25
sensors, where a target point is usually covered not by its nearest sensor but more or less
in a clustering manner together with the target points nearby. Such a clustering feature
leads to multiple options when determining the sensing radius for an activated sensor
and eventually results in a possibly very large size instance of the 0-1 integer linear
programming problem. However, an active sensor may cover, under this particular
numerical setting, more than 25% of the whole area if functioning with its maximum

574 P. LI

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 5 targets and 25 sensors

Target point Active sensor Inactive sensor

Fig. 1. An optimal sensing pattern for 5 target points with 25

sensors (a nondense case).

sensing radius, which implies that it would cover quite a few target points even in a
moderately dense case. Nevertheless, the optimal sensing patten in a dense case still
prefers, to some extent, a combination of multiple active sensors each with a small or
medium radius to a single one with a large radius, since the energy consumption per time
unit is in a quadratic form of the sensing radius. This phenomenon has been witnessed in
the numerical examples presented by Astorino and Miglionico [1] and Hoai and Tuy [6]
and confirmed as well by the randomly generated instances illustrated in the appendices
of this article.

The numerical performance of this two-stage solution method is hence tested on
n = 125, 250, and 500, for both the nondense and dense cases, each with 5 randomly
generated instances. These instances are of much larger sizes compared with those tested
in Astorino and Miglionico [1] and Hoai and Tuy [6]. All the instances are run in Matlab
R2018b, Win10 64-bit on a laptop with 16G RAM and Intel core i7 2.60GHz. Once an
instance has been reformulated into a 0-1 integer linear programming problem, it is
tackled by directly calling the solver intlinprog from Matlab Optimization Toolbox
without additional preprocessing procedure for dimension reduction.

The computational results are documented in Table 1 where the fourth column in-

Solving the sensor cover energy problem via integer linear programming 575

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 50 targets and 25 sensors

Target point Active sensor Inactive sensor

Fig. 2. An optimal sensing pattern for 50 target points with 25

sensors (a dense case).

dexed by ‘size’ records for each test instance the number of constraints and the number
of binary variables in the resulted 0-1 integer linear programming problem. By this
two-stage solution method, the computational results demonstrate that the sensor cover
energy problem can be solved to optimality in a reasonable time on the dense case of
instances with up to 500 sensors and 1000 target points. Moreover, it seems that the
resulted 0-1 integer linear programming problem possesses an integer-friendly feature,
an emperical phenomenon observed by ReVelle [13] on some types of location-allocation
programming problems, by which it means that the corresponding linear programming
relaxation often offers a very tight lower bound or even admits an all-integer optimal
solution.

Under this particular setting of computational experiments, the proposed two-stage
solution method fails to return an optimal solution within a time limit of two hours
running the solver intlinprog for the dense case of instances with 750 sensors and 1500
target points, which may induce more than 200 thousand binary variables since an active
sensor in such a case covers possibly several hundred target points when functioning with
its maximum sensing radius. However, an early termination of the solving procedure in
the solver intlinprog may still provide, thanks to the integer-friendly feature, a near
optimal solution according to the lower bound information obtained by solving its linear
programming relaxation.

576 P. LI

#Sensors #Targets Instance Size Objective Valuea Timeb (s) Illustrationc

1 150×614 727 0.05 Fig. A1-1
2 150×615 522 0.05 Fig. A1-2

125 25 3 150×647 696 0.05 Fig. A1-3
4 150×716 549 0.05 Fig. A1-4
5 150×619 475 0.05 Fig. A1-5

1 375×6373 2459 1.6 Fig. B1-1
2 375×6546 2492 0.9 Fig. B1-2

125 250 3 375×6780 2325 0.9 Fig. B1-3
4 375×6592 2439 0.9 Fig. B1-4
5 375×6766 2273 0.9 Fig. B1-5

1 300×2888 596 0.5 Fig. A2-1
2 300×2806 505 0.4 Fig. A2-2

250 50 3 300×2633 517 0.4 Fig. A2-3
4 300×2411 564 0.4 Fig. A2-4
5 300×2759 649 0.4 Fig. A2-5

1 750×26844 2454 20.5 Fig. B2-1
2 750×26112 2381 18.5 Fig. B2-2

250 500 3 750×26860 2415 16.2 Fig. B2-3
4 750×27186 2480 18.9 Fig. B2-4
5 750×26535 2368 18.0 Fig. B2-5

1 600×10868 457 6.1 Fig. A3-1
2 600×10879 507 6.0 Fig. A3-2

500 100 3 600×11746 607 6.5 Fig. A3-3
4 600×10976 677 6.2 Fig. A3-4
5 600×10881 653 6.2 Fig. A3-5

1 1500×108464 2231 304.6 Fig. B3-1
2 1500×108453 2310 510.4 Fig. B3-2

500 1000 3 1500×108515 2317 312.6 Fig. B3-3
4 1500×107787 2283 297.0 Fig. B3-4
5 1500×107084 2298 307.5 Fig. B3-5

a The obtained optimal objective values are rounded up to integers for succinctness.
b It includes the time for reformulating, calling the solver intlinprog from Matlab Optimization
Toolbox, and constructing the sensing radii to the original problem.

c The optimal sensing patterns are illustrated in the appendices.

Tab. 1. Computational results of the randomly generated instances.

5. CONCLUSIONS

Taking advantage of the essential discrete features of max-plus linear inequalities, the
sensor cover energy problem concerned in this paper is reformulated into a 0-1 inte-
ger linear programming problem, which may be viewed as a set covering problem with
some side cardinality constraints. Subsequently, demanding no particular solving tech-
niques, it may be solved to optimality, even for large size instances, by directly calling

Solving the sensor cover energy problem via integer linear programming 577

an off-the-shelf integer programming solver. Although such a reformulation approach
may substantially increase the problem size as illustrated by the computational exper-
iments on randomly generated instances, the resulted 0-1 integer linear programming
problem behaves integer-friendly in the sense of ReVelle [13] that the corresponding lin-
ear programming relaxation often provides a very tight lower bound or even admits an
all-integer optimal solution. This proposed two-stage solution method is hence capable
of handling the sensor cover energy problem in a computationally more efficient manner.

APPENDIX A: ILLUSTRATIONS OF THE NONDENSE INSTANCES

Figure A1-1 to Figure A3-5 illustrate the optimal sensing patterns for the randomly
generated nondense instances documented in Table 1, where the number of sensors
n = 125, 250, and 500, respectively, and the number of target points m = 1

5n, i.e.,
m = 25, 50, and 100, correspondingly.

APPENDIX B: ILLUSTRATIONS OF THE DENSE INSTANCES

Figure B1-1 to Figure B3-5 illustrate the optimal sensing patterns for the randomly
generated dense instances documented in Table 1, where the number of sensors n = 125,
250, and 500, respectively, and the number of target points m = 2n, i. e., m = 250, 500,
and 1000, correspondingly.

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 25 targets and 125 sensors

Target point Active sensor Inactive sensor

Fig. A1-1. Instance No. 1 for 25 target points with 125 sensors.

578 P. LI

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 25 targets and 125 sensors

Target point Active sensor Inactive sensor

Fig. A1-2. Instance No. 2 for 25 target points with 125 sensors.

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 25 targets and 125 sensors

Target point Active sensor Inactive sensor

Fig. A1-3. Instance No. 3 for 25 target points with 125 sensors.

Solving the sensor cover energy problem via integer linear programming 579

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 25 targets and 125 sensors

Target point Active sensor Inactive sensor

Fig. A1-4. Instance No. 4 for 25 target points with 125 sensors.

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 25 targets and 125 sensors

Target point Active sensor Inactive sensor

Fig. A1-5. Instance No. 5 for 25 target points with 125 sensors.

580 P. LI

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 50 targets and 250 sensors

Target point Active sensor Inactive sensor

Fig. A2-1. Instance No. 1 for 50 target points with 250 sensors.

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 50 targets and 250 sensors

Target point Active sensor Inactive sensor

Fig. A2-2. Instance No. 2 for 50 target points with 250 sensors.

Solving the sensor cover energy problem via integer linear programming 581

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 50 targets and 250 sensors

Target point Active sensor Inactive sensor

Fig. A2-3. Instance No. 3 for 50 target points with 250 sensors.

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 50 targets and 250 sensors

Target point Active sensor Inactive sensor

Fig. A2-4. Instance No. 4 for 50 target points with 250 sensors.

582 P. LI

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 50 targets and 250 sensors

Target point Active sensor Inactive sensor

Fig. A2-5. Instance No. 5 for 50 target points with 250 sensors.

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 100 targets and 500 sensors

Target point Active sensor Inactive sensor

Fig. A3-1. Instance No. 1 for 100 target points with 500 sensors.

Solving the sensor cover energy problem via integer linear programming 583

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 100 targets and 500 sensors

Target point Active sensor Inactive sensor

Fig. A3-2. Instance No. 2 for 100 target points with 500 sensors.

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 100 targets and 500 sensors

Target point Active sensor Inactive sensor

Fig. A3-3. Instance No. 3 for 100 target points with 500 sensors.

584 P. LI

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 100 targets and 500 sensors

Target point Active sensor Inactive sensor

Fig. A3-4. Instance No. 4 for 100 target points with 500 sensors.

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 100 targets and 500 sensors

Target point Active sensor Inactive sensor

Fig. A3-5. Instance No. 5 for 100 target points with 500 sensors.

Solving the sensor cover energy problem via integer linear programming 585

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 250 targets and 125 sensors

Target point Active sensor Inactive sensor

Fig. B1-1. Instance No. 1 for 250 target points with 125 sensors.

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 250 targets and 125 sensors

Target point Active sensor Inactive sensor

Fig. B1-2. Instance No. 2 for 250 target points with 125 sensors.

586 P. LI

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 250 targets and 125 sensors

Target point Active sensor Inactive sensor

Fig. B1-3. Instance No. 3 for 250 target points with 125 sensors.

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 250 targets and 125 sensors

Target point Active sensor Inactive sensor

Fig. B1-4. Instance No. 4 for 250 target points with 125 sensors.

Solving the sensor cover energy problem via integer linear programming 587

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 250 targets and 125 sensors

Target point Active sensor Inactive sensor

Fig. B1-5. Instance No. 5 for 250 target points with 125 sensors.

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 500 targets and 250 sensors

Target point Active sensor Inactive sensor

Fig. B2-1. Instance No. 1 for 500 target points with 250 sensors.

588 P. LI

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 500 targets and 250 sensors

Target point Active sensor Inactive sensor

Fig. B2-2. Instance No. 2 for 500 target points with 250 sensors.

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 500 targets and 250 sensors

Target point Active sensor Inactive sensor

Fig. B2-3. Instance No. 3 for 500 target points with 250 sensors

Solving the sensor cover energy problem via integer linear programming 589

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 500 targets and 250 sensors

Target point Active sensor Inactive sensor

Fig. B2-4. Instance No. 4 for 500 target points with 250 sensors.

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 500 targets and 250 sensors

Target point Active sensor Inactive sensor

Fig. B2-5. Instance No. 5 for 500 target points with 250 sensors.

590 P. LI

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 1000 targets and 500 sensors

Target point Active sensor Inactive sensor

Fig. B3-1. Instance No. 1 for 1000 target points with 500 sensors.

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 1000 targets and 500 sensors

Target point Active sensor Inactive sensor

Fig. B3-2. Instance No. 2 for 1000 target points with 500 sensors.

Solving the sensor cover energy problem via integer linear programming 591

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 1000 targets and 500 sensors

Target point Active sensor Inactive sensor

Fig. B3-3. Instance No. 3 for 1000 target points with 500 sensors.

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 1000 targets and 500 sensors

Target point Active sensor Inactive sensor

Fig. B3-4. Instance No. 4 for 1000 target points with 500 sensors.

592 P. LI

-20 0 20 40 60 80 100 120
-20

0

20

40

60

80

100

120
Case: 1000 targets and 500 sensors

Target point Active sensor Inactive sensor

Fig. B3-5. Instance No. 5 for 1000 target points with 500 sensors.

(Received December 7, 2019)

R E F E R E N C E S

[1] A. Astorino and G. Miglionico: Optimizing sensor cover energy via DC programming.
Optim. Lett. 10 (2016), 2, 355–368. DOI:10.14257/ijsh.2016.10.6.35

[2] N. Bartolini, T. Calamoneri, T. La Porta, C. Petrioli, and S. Silvestri: Sensor activation
and radius adaptation (SARA) in heterogeneous sensor networks. ACM Trans. Sensor
Netw. 8 (2012), 3, Article 24.

[3] P. Butkovič: Max-linear Systems: Theory and Algorithms. Springer, Berlin 2010.

[4] K. M. Elbassioni: A note on systems with max-min and max-product constraints. Fuzzy
Sets Syst. 159 (2008), 2272–2277. DOI:10.1016/j.fss.2008.02.020

[5] M. L. Fredman and L. Khachiyan: On the complexity of dualization of monotone disjunc-
tive normal forms. J. Algorithms 21 (1996), 618–628. DOI:10.1006/jagm.1996.0062

[6] P. T. Hoai and H. Tuy: Monotonic optimization for sensor cover energy problem. Optim.
Lett. 12 (2018), 1569–1587. DOI:10.1007/s11590-017-1219-5

[7] H. A. Le Thi and D. T. Pham: The DC (difference of convex functions) programming
and DCA revisited with DC models of real world nonconvex optimization problems. Ann.
Oper. Res. 133 (2005), 23–46. DOI:10.1007/s10479-004-5022-1

https://doi.org/10.14257/ijsh.2016.10.6.35
https://doi.org/10.1016/j.fss.2008.02.020
https://doi.org/10.1006/jagm.1996.0062
https://doi.org/10.1007/s11590-017-1219-5
https://doi.org/10.1007/s10479-004-5022-1

Solving the sensor cover energy problem via integer linear programming 593

[8] H. A. Le Thi and D. T. Pham: DC programming and DCA: thirty years of developments.
Math. Program., Ser. B 169 (2018), 5–68. DOI:10.1007/s10107-018-1235-y

[9] P. Li: Fuzzy Relational Equations: Resolution and Optimization. Ph.D. Dissertation,
North Carolina State University 2009. DOI:10.1002/ss.328

[10] P. Li and S.-C. Fang: On the resolution and optimization of a system of fuzzy rela-
tional equations with sup-T composition. Fuzzy Optim. Decis. Making 7 (2008), 169–214.
DOI:10.1007/s10700-008-9029-y

[11] P. Li and S.-C. Fang: Latticized linear optimization on the unit interval. IEEE Trans.
Fuzzy Syst. 16 (2009), 6, 1353–1365.

[12] R. Priyadarshi, B. Gupta, and A. Anurag: Deployment techniques in wireless sensor
networks: a survey, classification, challenges, and future research issues. J. Supercomput.
76 (2020), 7333–7373. DOI:10.1007/s11227-020-03166-5

[13] C. S. ReVelle: Facility siting and integer-friendly programming. Eur. J. Oper. Res. 65
(1993), 2, 147–158. DOI:10.1016/0377-2217(93)90329-L

[14] H. Tuy, M. Minoux, and N. T. H. Phuong: Discrete monotonic optimization with
application to a discrete location problem. SIAM J. Optim. 17 (2006), 78–97.
DOI:10.1137/04060932X

[15] B. Wang: Coverage problems in sensor networks: A survey. ACM Comput. Surv. 43
(2011), 4, Article 32.

[16] Y. Wang, S. Wu, Z. Chen, X. Gao, and G. Chen: Coverage problem with uncertain
properties in wireless sensor networks: A survey. Comput. Netw. 123 (2017), 200–232.
DOI:10.1016/j.comnet.2017.05.008

[17] Z. Zhou, S.R. Das, and H. Gupta: Variable radii connected sensor cover in sensor networks.
ACM Trans. Sensor Netw. 5 (2009), 1, Article 8.

Pingke Li, Department of Industrial Engineering, Tsinghua University, Beijing, 100084.
P.R. China.

e-mail: pkli@tsinghua.edu.cn

https://doi.org/10.1007/s10107-018-1235-y
https://doi.org/10.1002/ss.328
https://doi.org/10.1007/s10700-008-9029-y
https://doi.org/10.1007/s11227-020-03166-5
https://doi.org/10.1016/0377-2217(93)90329-L
https://doi.org/10.1137/04060932X
https://doi.org/10.1016/j.comnet.2017.05.008

	Introduction
	Sensor cover energy problem
	Integer linear programming reformulation
	Computational experiments
	Conclusions

