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AN ALGORITHM FOR HYBRID REGULARIZERS BASED
IMAGE RESTORATION WITH POISSON NOISE

Cong Thang Pham and Thi Thu Thao Tran

In this paper, a hybrid regularizers model for Poissonian image restoration is introduced.
We study existence and uniqueness of minimizer for this model. To solve the resulting mini-
mization problem, we employ the alternating minimization method with rigorous convergence
guarantee. Numerical results demonstrate the efficiency and stability of the proposed method
for suppressing Poisson noise.
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1. INTRODUCTION

The restoration of clean images from observations is a fundamental task in the image
processing and computer vision. The challenging task for image denoising is to remove
noise and to preserve fine details [26]. Image restoration is often formulated as the
problem of reconstructing the clean image z with the size of M ×N damaged by some
noise η, from the observed image f = f(x) with x = (x1;x2) ∈ Ω,Ω ⊆ R2 being an open
bounded domain. In recent years, many methods image denoising have been proposed
for Gaussian white noise. However, in photon-counting devices, such as radiography,
astronomical imaging, electronic microscopy [2, 8, 11, 31], images may be corrupted by
Poisson noise. Poisson noise is not additive, and it is image pixel-intensity dependent,
i. e. bright pixels are statistically more corrupted than dark pixels [5]. The restoration
models and methods proposed for Gaussian white noise are not effective in removing
Poisson noise [27].

For many years, many variational methods have been proposed to handle the restora-
tion problem with Poisson noise. One of variational models for Poissonian image recon-
struction is the one based on the Total Variation (TV) norm as regularization term
[15]:

z∗ = arg min
z∈BV (Ω)

∫
Ω

|∇z|dx+ β

∫
Ω

(z − f log z) dx, (1)
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where β > 0 is a regularization parameter, z must be positive in Ω,
∫

Ω
|∇z|dx stands

for the total variation of z, the operator |∇z| is defined later (cf. eq. 8), and BV is the
space of functions with bounded variation.

In case of the blur effect, authors in [20, 33] studied a penalized likelihood approach
with TV penalty for Poissonian image denoising and deblurring as follows:

z∗ = arg min
z∈BV (Ω),logKz∈L1(Ω)

∫
Ω

|∇z|dx+ β

∫
Ω

(Kz − f logKz) dx, (2)

where K being a nonnegative linear compact operator; β > 0 is a regularization param-
eter, z must be positive in Ω.

In recent years, many effective numerical algorithms have proposed for solving prob-
lem 2, for instance, EM–TV algorithm [32, 34], split Bregman iteration [6, 33], alternat-
ing minimization method [18, 20, 21, 36, 37], Liu and Huang in [19] proposed another
new total bounded variation-based Poissonian images restoration model as follows:

z∗ = arg min
z∈BV (Ω)

∫
Ω

|∇z|dx+
λ

2
‖z‖22 + β

∫
Ω

(Kz − f logKz) dx, (3)

where β > 0 is a regularization parameter, z must be positive in Ω. The authors
extended split Bregman iteration to obtain the optimal solution recursively.

The model 3 performs very well for preserving edges while removing noise. However,
it often causes undesired staircase effects in smooth regions. To overcome the stair-
case effects, some high-order models have been introduced for restoring blurred images
corrupted by Poisson noise. The authors in [35] replaced the TV term in 3 with second-
order TV as ∇2z (cf. Eq. 9) and employed a split Bregman algorithm to solve their
model. Authors in [13] proposed the hybrid higher-order TV model to restore images
corrupted by blur and Poisson noise as follows:

z∗ = arg min
z∈S(Ω)

(∫
Ω

γ |∇z|dx+

∫
Ω

(1− γ) |∇2z|dx+ β

∫
Ω

(Kz − f logKz) dx

)
. (4)

The authors employed a gradient descent method for computing the minimizer of
the model 4. To speed the computation, the same authors converted this optimiza-
tion model 4 to a constrained problem by variable splitting and addressed it with the
alternating direction method in [14].

Inspired by models 3, and 4, we introduce an adaptive TV based optimization problem
as follows:

z∗ = arg min
z∈S(Ω)

(∫
Ω

γ |∇z|dx+

∫
Ω

α |∇2z|dx+
λ

2
‖z‖22 + β

∫
Ω

(Kz − f logKz) dx

)
, (5)

where λ, β - positive regularization parameters, S(Ω) = {z ∈ BV (Ω)∩BV 2(Ω), z > 0},
α = 1− γ and γ ∈ (0, 1] are the weighted parameter.

In this paper, we study an effective method for image restoration corrupted by Poisson
noise. We can emphasize that the proposed model is general case of the above mentioned
models in [19, 13, 14]. We can emphasize that the proposed model 5 is general case of
the models mentioned above. Like model 3, the proposed model 5 contains the quadratic
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regularization term λ
2 ‖z‖

2
2 which can be guarantee uniqueness of the solution and the

convergence of the proposed algorithm. Like model 4, the proposed model 5 contains
a combination of TV and higher order TV as regularization terms. It allows to remove
the noise efficiently and preserve the image details, and avoid staircasing artifacts in the
restored images.

For our model, we study existence and uniqueness of its solution. We employ the
alternating minimization method to compute the resulting minimization problem by
introducing new auxiliary variables. The majorization-minimization method is used for
solving the subproblems. We also study the convergence of our proposed algorithm.
The experimental results show that our algorithm obtains the high efficiency for Poisson
noise removal when compared with the well-known methods.

Our paper is organized as follows. In section 2, the proposed method is presented.
In section 3, we perform experiments to show the efficiency of our proposed algorithm.
Finally, the conclusions are given in section 4.

2. THE PROPOSED METHOD

Definitions and notations of the spaces BV and BV 2 space can be found in [1, 7, 9, 16,
17, 24]. The existence and uniqueness of the minimizer for the proposed model 5 are
established by Theorem 1.

Theorem 1. Assume that f is a positive bounded function and K is injective, then
the problem 5 is strictly convex and the problem 5 for z ∈ BV (Ω) ∩BV 2(Ω) such that
log z ∈ L1(Ω) has a unique minimizer.

The proof follows reasoning similar to the proof of [13, 19, 35], thus omitted.

In this section, we derive the numerical method for problem 5 in detail. We introduce
three new variables (d, g, q) and rewrite 5 in the constrained optimization problem as
follows:

min
z,d,g,q

(
γ‖d‖1 + α‖g‖1 +

λ

2
‖z‖22 + β〈1, q − f log q〉

)
(6)

s.t. d = ∇z, g = ∇2z, q = Kz.

The augmented Lagrangian functional for the constrained optimization problem 6 is
defined as:

L(z, d, g, q, ρ1, ρ2, ρ3) =
(
γ‖d‖1 + α‖g‖1 +

λ

2
‖z‖22 + β〈1, q − f log q〉 (7)

− 〈ρ1, d−∇z〉+
η1

2
‖d−∇z‖22 − 〈ρ2, g −∇2z〉+

η2

2
‖g −∇2z‖22

− 〈ρ3, q −Kz〉+
η3

2
‖q −Kz‖22

)
,

where η1, η2, η3 - positive parameters; ρ1, ρ2, ρ3 - with Lagrangian multipliers.
The discrete gradient ∇z and the second-order derivatives ∇2z of an image z for the

pixel location (i, j) in z (i = 1..M ; j = 1..N) are defined like [28, 29, 30]:

∇xzi,j = zi+1,j − zi,j , ∇yzi,j = zi,j+1 − zi,j ,
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∇zi,j = (∇xzi,j ,∇yzi,j), |∇zi,j | =
√

(∇xzi,j)2 + (∇yzi,j)2, (8)

∇xxzi,j = zi+1,j − 2zi,j + zi−1,j , ∇yyzi,j = zi,j+1 − 2zi,j + zi,j−1,

∇xyzi,j = ∇yxzi,j = zi,j − zi,j−1 − zi−1,j + zi−1,j−1,

∣∣∇2z
∣∣ =

√
(∇xxzi,j)2 + (∇xyzi,j)2 + (∇yxzi,j)2 + (∇yyzi,j)2. (9)

Then, using the alternating minimization method to solve the problem 7 can be
expressed as follows:

z(k+1) = arg minz

(
λ
2 ‖z‖

2
2 − 〈ρ

(k)
1 , d(k) −∇z〉+ η1

2 ‖d
(k) −∇z‖22−

〈ρ(k)
2 , g(k) −∇2z〉+ η2

2 ‖g
(k) −∇2z‖22 − 〈ρ

(k)
3 , q(k) −Kz〉+ η3

2 ‖q
(k) −Kz‖22

)
,

d(k+1) = arg mind

(
γ‖d‖1 − 〈ρ1, d−∇z(k+1)〉+ η1

2 ‖d−∇z
(k+1)‖22

)
,

g(k+1) = arg ming

(
α‖g‖1 − 〈ρ(k)

2 , g −∇2z(k+1)〉+ η2
2 ‖g −∇

2z(k+1)‖22
)
,

q(k+1) = arg minq

(
β〈1, q − f log q〉 − 〈ρ(k)

3 , q −Kz(k+1)〉+ η3
2 ‖q −Kz

(k+1)‖22
)
,

(10)

with update for ρ
(k+1)
1 , ρ

(k+1)
2 , ρ

(k+1)
3 :

ρ
(k+1)
1 = ρ

(k)
1 + η1(∇z(k+1) − d(k+1)),

ρ
(k+1)
2 = ρ

(k)
2 + η2(∇2z(k+1) − g(k+1)),

ρ
(k+1)
3 = ρ

(k)
3 + η3(Kz(k+1) − q(k+1)).

(11)

— The z subproblem in 10 is given by:

z(k+1) = arg min
z

(λ
2
‖z‖22 − 〈ρ

(k)
1 , d(k) −∇z〉+

η1

2
‖d(k) −∇z‖22

− 〈ρ(k)
2 , g(k) −∇2z〉+

η2

2
‖g(k) −∇2z‖22 − 〈ρ

(k)
3 , q(k) −Kz〉+

η3

2
‖q(k) −Kz‖22

)
= arg min

z

(
λ

2
‖z‖22 +

η1

2
‖d(k) −∇z − ρ

(k)
1

η1
‖22 +

η2

2
‖g(k) −∇2z − ρ

(k)
2

η2
‖22

+
η3

2
‖q(k) −Kz − ρ

(k)
3

η3
‖22
)
.

Thus, we get:

λz + η1∇T
(
∇z +

ρ
(k)
1

η1
− d(k)) + η2∇2T (∇2z +

ρ
(k)
2

η2
− g(k)

)
+ η3K

T
(
Kz +

ρ
(k)
3

η3
− q(k)

)
= 0. (12)
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We can rewrite the equation 12 as:(
λ+ η1∇T∇+ η2∇2T∇2 + η3K

TK
)
z(k+1)

= η1∇T
(
d(k) − ρ

(k)
1

η1

)
+ η2∇2T

(
g(k) − ρ

(k)
2

η2

)
+ η3K

T
(
q(k) − ρ

(k)
3

η3

)
. (13)

In system 13, we can note that KKT ,∇∇T ,∇2∇2T are all block circulant under
the periodic boundary condition, so that they can be diagonalized by by fast Fourier
transform (FFT). Hence, z(k+1) can be calculated by FFT and inverse FFT efficiently:

z(k+1) = F−1
(F(η1∇T (d(k) − ρ

(k)
1

η1
) + η2∇2T (g(k) − ρ

(k)
2

η2
) + η3K

T (q(k) − ρ
(k)
3

η3
)
)

λ+ η1F
(
∇T∇

)
+ η2F

(
∇2T∇2

)
+ η3F

(
KTK

) )
,

(14)

where F and F−1 are the forward and inverse Fourier transform operators.
— The d subproblem is given by:

d(k+1) = arg min
d

(
γ‖d‖1 − 〈ρ1, d−∇z(k+1)〉+

η1

2
‖d−∇z(k+1)‖22

)
= arg min

d

(
γ‖d‖1 +

η1

2
‖d−∇z(k+1) − ρ

(k)
1

η1
‖22
)
.

The solution of the d subproblem can readily be obtained by applying the soft thresh-
olding operator [23]:

d(k+1) =
∇z(k+1) +

ρ
(k)
1

η1∣∣∣∣∇z(k+1) +
ρ
(k)
1

η1

∣∣∣∣ ·max

(∣∣∣∣∣∇z(k+1) +
ρ

(k)
1

η1

∣∣∣∣∣− γ

η1
, 0

)
. (15)

— The g subproblem is given by:

g(k+1) = arg min
g

(
α‖g‖1 − 〈ρ(k)

2 , g −∇2z(k+1)〉+
η2

2
‖g −∇2z(k+1)‖22

)
= arg min

g

(
α‖g‖1 +

η2

2
‖g −∇2z(k+1) − ρ

(k)
2

η2
‖22
)
.

The solution of the g subproblem can be obtained by applying the soft thresholding
operator too:

g(k+1) =
∇2z(k+1) +

ρ
(k)
2

η2∣∣∣∣∇2z(k+1) +
ρ
(k)
2

η2

∣∣∣∣ ·max

(∣∣∣∣∣∇2z(k+1) +
ρ

(k)
2

η2

∣∣∣∣∣− α

η2
, 0

)
. (16)
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— The q subproblem is given by:

q(k+1) = arg min
q

(
β〈1, q − f log q〉 − 〈ρ(k)

3 , q −Kz(k+1)〉+
η3

2
‖q −Kz(k+1)‖22

)
= arg min

q

(
β〈1, q − f log q〉+

η3

2
‖q −Kz(k+1) − ρ

(k)
3

η3
‖22
)
.

Therefore, we get:

β(1− f

q
) + η3(q −Kz(k+1))− ρ(k)

3 = 0.

This equation can be rewritten as follows:

η3q
2 − q(η3Kz

(k+1) + ρ
(k)
3 − β)− βf = 0.

The solution of q(k+1) is the positive solution given by:

q(k+1) =
(η3Kz

(k+1) + ρ
(k)
3 − β) +

√
(η3Kz(k+1) + ρ

(k)
3 − β)2 + 4η3βf

2η3
. (17)

The complete method is summarized in Algorithm 1.

Algorithm 1: Alternating minimization method for for solving the model 5

1. Initialize: z(0) = q(0) = f ; d(0) = g(0) = 0; k = 1
2. while Stopping condition is not satisfied do
3. Compute z(k+1) according to 14
4. Compute d(k+1) according to 15
5. Compute g(k+1) according to 16
6. Compute q(k+1) according to 17

7. Update ρ
(k+1)
1 , ρ

(k+1)
2 , ρ

(k+1)
3 by 11

10. k = k + 1
11. endwhile
12. return z

We need a stopping criterion for the iteration: we end the loop if the maximum
number of allowed outer iterations N has been carried out (to guarantee an upper bound
on running time) or the following condition is satisfied for some prescribed tolerance ς:

ERR =
‖z(k) − z(k−1)‖2
‖z(k)‖2

< ς, (18)

where ς is a small positive parameter. For our experiments, we set tolerance in 18
ς = 0.0001 and N = 200.

Due to the convex property of the proposed model (Theorem 1), the convergence of
Algorithm 1 follows from the convergence analysis for the TV-based alternating mini-
mization method [10]. In this paper, we do not repeat the lengthy analysis. However,
following the Refs. [12, 19, 25, 35], we have convergence theorem (Theorem 2) for the
proposed method.
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Theorem 2. Let {z(k), d(k), g(k), q(k), ρ
(k)
1 , ρ

(k)
2 , ρ

(k)
3 } be the sequence generated by the

given Algorithm 1 with any initial guess {z(0), d(0), g(0), q(0), ρ
(0)
1 , ρ

(0)
2 , ρ

(0)
3 } converges

to {z∗, d∗, g∗, q∗, ρ∗1, ρ∗2, ρ∗3}, where z∗ is unique minimizer of the problem 5, and this
implies lim

k→∞
‖z(k)‖2 = z∗.

We note that similar convergence theories of the TV-based alternating minimization
method can be found in [3, 22, 36, 38].

3. NUMERICAL EXPERIMENTS

In this section, we present some numerical results to illustrate the performance of the
proposed model for poisson noise removal. We compare our results with images ob-
tained by other well known approaches, as the total bounded variation regularization
model (TBV) [35] and the hybrid higher-order TV model (HOTV)[14]. Additionally,
the compared methods are implemented by the state-of-the-art alternating minimization
method. The test images are shown in Figure 1.

(a) Parrot (b) Lake (c)  Airplane

(d) Abdomen (e) Head (f) Cameraman

(c) Woman

(f) Boat

Fig. 1. Test images.

In our numerical implementation, for a fair comparison, all images are processed
with the equivalent parameters λ = 0.001, η1 = 1.2, η2 = 0.1 and η3 = 1. The weighted
parameter γ is determined empirically γ = 0.9 for simplicity and for saving CPU time
(see [14] for more details). In each of our experiments, the parameter β is chosen to
keep the poise between noise removal and detail preservation capabilities. For a fair
comparison, the regularization parameter β depending on concrete experiment is the
same value for all compared methods. All experiments were carried out in Windows 10
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and Matlab running on a desktop equipped with an Intel Core−i5, 2.4 GHz and 8 GB
of RAM.

The quality of the restoration results by the two different methods is compared quan-
titatively by using the peak signal-to-noise ratio (PSNR):

PSNR = 10 log10

(
2552 ·MN

‖u∗ − u‖22

)
,

where u, u∗ are the original image, the reconstructed or noisy image accordingly; M and
N are the number of image pixels in rows and columns. We also use very popular measure
called SSIM. The SSIM measure compares local patterns of pixel intensities normalized
for luminance and contrast, and allows us to get more consistent with human visual
characteristics [4].

3.1. Image denoising

Our method can perform simultaneously deblurring and denoising, in this section we
focus only on the denoising case. Our aim is to recover the original image z with the
observed image f . Poisson noise is data-dependent noise, the noise level of observed
images depends on the pixel intensity. To generate the noisy images, we first scaled the
orginal image u by u = M ·(u/umax), where umax is maximum pixel intensity of image u,
M is a specified maximum intensity. Then, we use the Matlab routine f = poissrnd(u).

Optimal selection of the regularization parameter β plays important role in order to
achieve an effective restoration results. In order to do this, the regularization parameter
β varies from 1 to 50 by steps of 1. We plot the restored PSNR values for compared
methods against different values of β. In Figures 2 and 3, we show the PSNR values
as a function of regularization parameter β and for the test images. The regularization
parameters β for the best for image restoration are summarized in Table 1.

Image Parrot Lake Airplane Woman Abdomen Head Boat Cameraman
Method M = 120
TBV 10 22 21 19 12 14 19 12

HOTV 12 27 24 21 16 16 21 18
Ours 12 20 17 20 14 15 19 14

- M = 60
TBV 10 13 12 12 8 9 11 10

HOTV 11 15 11 13 10 11 12 9
Ours 10 12 11 12 7 10 12 10

Tab. 1. The optimal regularization parameter β used for image

denoising.

In Figure 4, we present the evolution of ERR (18) as a function of the number
of iterations for the compared methods. From this figure, we can see that the error
decreases monotonically with iterations. It confirms the convergence behaviour of the
compared methods.

We show the denoising results of compared methods in Figures 5, 6 for noise level
M = 120 and in Figures 7, 8 for noise level M = 60, respectively. In these Figures, the
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(a) Parrot (b) Lake (c) Airplane

(d) Woman (e) Abdomen (f) Head 

(g) Boat (h) Cameraman 

Fig. 2. Plots of the PSNR values versus the values β of the compared

methods with noise level M = 120.

first columns (a) represent the noisy images, and in the others (b) – (d) separately, we
show respectively the reconstructions given by the TBV, the HOTV and our model with
their optimal values β from Table 1.

For a better visual comparison, we have enlarged some details of the restored images
in Figures 9, 10, 11, and 12 (the first columns include details of the original images). It
can be seen that our method gives even better visual quality than other methods.

An important factor to measure the effectiveness of the denoising methods is run
time. Table 2 shows the number of iterations and the computational time (in seconds)
of the compared methods. We see from the Table 2 that the computation time of the
restored images using compared methods is about the same. Furthermore, our proposed
method needs less iteration to converge (see Figure 4 for more details).

For the comparison of the performance quantitatively, the measures of PSNR and
SSIM values are presented in Table 3 and Table 4. The better restored results are shown
in bold. Visually, it can be seen that the reconstruction results of the HOTV model and
the TBV model are about the same, and that our model reaches better visual quality and
higher PSNR and SSIM values. From figures and tables, we observe that the proposed
method is convergent and gets better results than the other methods.
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(a) Parrot (b) Lake (c) Airplane

(d) Woman (e) Abdomen (f) Head 

(g) Boat (h) Cameraman 
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Fig. 3. Plots of the PSNR values versus the values β of the compared

methods with noise level M = 60.
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Fig. 4. Plots of the error values (ERR) versus iterations of the

TV-based methods for image denoising: first row with noise level

M = 120 and second row with noise level M = 60.
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(a) (b) (c) (d)

Fig. 5. Recovered images of different approaches for image denoising:

a) noisy images f (M = 120 ); b) restored images by TBV approach;

c) restored images by HOTV; d) restored images by our approach.



An algorithm for hybrid regularizers based image restoration with Poisson noise 457

(a) (b) (c) (d)

Fig. 6. Recovered images of different approaches for image denoising:

a) noisy images f (M = 120 ); b) restored images by TBV approach;

c) restored images by HOTV; d) restored images by our approach.
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- - M = 120 M = 60
Image Method Time (s) Niter Time (s) Niter

Parrot
TBV 1.4791 48 1.0469 33

HOTV 1.7941 47 1.3154 33
Ours 1.1254 26 1.2431 28

Airplane
TBV 1.1800 34 0.9899 30

HOTV 1.3705 35 1.3350 34
Ours 1.0741 23 0.9027 22

Head
TBV 1.1991 40 1.1231 31

HOTV 1.5484 40 1.2630 32
Ours 1.4874 33 1.2122 28

Cameraman
TBV 1.1285 36 1.0097 27

HOTV 1.3330 34 1.2837 30
Ours 1.2604 30 1.2675 29

Tab. 2. Number of iterations and computational time of the

compared methods with the optimal regularization parameter β for

image denoising.

- PSNR SSIM
Image Noisy TVB HOTV Ours Noisy BTV HOTV Ours
Parrot 23.8125 28.9104 28.9778 29.1529 0.5595 0.8635 0.8691 0.8752
Lake 23.7758 27.6553 27.7421 27.9870 0.6674 0.8580 0.8597 0.8650

Airplane 22.3585 28.0902 28.1409 28.4961 0.4879 0.8395 0.8385 0.8469
Woman 23.5320 28.0932 28.0101 28.3464 0.5661 0.7874 0.7898 0.7917

Abdomen 24.9110 28.2026 28.1472 28.3992 0.6826 0.7775 0.7833 0.8148
Head 25.3020 30.3857 30.4897 30.6680 0.6774 0.8405 0.8465 0.8613
Boat 23.5185 28.7211 28.6510 28.9092 0.5823 0.8114 0.8170 0.8210

Cameraman 24.1415 31.1729 31.1552 31.5856 0.5166 0.8749 0.8775 0.8908

Average 23.9190 28.9040 28.9143 29.1931 0.5925 0.8316 0.8352 0.8458

Tab. 3. PSNR values and SSIM measures for noisy images and

recovered images with noise level M = 120.

- PSNR SSIM
Image Noisy TVB HOTV Ours Noisy BTV HOTV Ours
Parrot 21.0946 27.0547 27.2575 27.4210 0.4446 0.8266 0.8327 0.8394
Lake 20.7841 25.6388 25.7850 26.1877 0.5748 0.8104 0.8124 0.8140

Airplane 19.2891 26.1889 26.2167 26.4691 0.3955 0.7998 0.8013 0.8056
Woman 20.4297 26.4447 26.5398 26.6929 0.4335 0.7320 0.7328 0.7350

Abdomen 22.6599 27.0352 27.1209 27.3885 0.4836 0.6271 0.6374 0.6744
Head 22.3923 28.4348 28.5062 28.6983 0.5230 0.7420 0.7518 0.7728
Boat 20.4660 26.9786 26.9999 27.3516 0.4562 0.7496 0.7567 0.7616

Cameraman 21.0700 29.4209 29.5184 29.6877 0.4083 0.8402 0.8484 0.8622

Average 21.0232 27.1496 27.2431 27.4871 0.4649 0.7660 0.7717 0.7831

Tab. 4. PSNR values and SSIM measures for noisy images and

recovered images with noise level M = 60.
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(a) (b) (c) (d)

Fig. 7. Recovered images of different approaches for image denoising:

a) noisy images f (M = 60 ); b) restored images by TBV approach;

c) restored images by HOTV; d) restored images by our approach.
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(a) (b) (c) (d)

Fig. 8. Recovered images of different approaches for image denoising:

a) noisy images f (M = 60 ); b) restored images by TBV approach;

c) restored images by HOTV; d) restored images by our approach.

3.2. Image deblurring and denoising

In this section, we consider blurred images corrupted by Poisson noise. The blurry and
noisy images are simulated as follows. The degraded images are obtained by performing
the blurring operation with a window size (9 × 9) and standard deviation 1. After
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(a) (b) (c) (d) (e)

Fig. 9. The zoom-in part of the recovered image in Figure 5:

a) details of original images; b) details of noisy images f (M = 120 );

c) details of restored images by TBV; d) details of restored images by

HOTV; e) details of restored images by our approach.

the blurring operation, we corrupt the images by adding Poisson noise with M = 60.
Similarityly, the regularization parameter β varies from 1 to 50 by steps of 1. We plot the
restored PSNR values for compared methods against different values of β (see Figure 14).
The optimal values of the regularization parameters β are summarized in Table 5. In
Table 6 shows the number of iterations and the computational time (in seconds) of
the compared methods. In Figure 13, the evolution of ERR (18) as a function of the
number of iterations for the compared methods. In Figures 15(a) and 16(a), we present
the blurry and noisy images. In the others Figures 15(b) – 15(d) and 16(b) – 16(d), we
show respectively the reconstructions given by the TBV, the HOTV and our model with
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(a) (b) (c) (d) (e)

Fig. 10. The zoom-in part of the recovered image in Figure 6:

a) details of original images; b) details of noisy images f (M = 120 );

c) details of restored images by TBV; d) details of restored images by

HOTV; e) details of restored images by our approach.

values of parameter β form Table 5, while in Figures 17 and 18 we have enlarged some
details of restored images. We report the PSNR and SSIM values in Table 7.

In fact, the TBV model and the HOTV model allow good results for restoring the
blurred images corrupted by Poisson noise. However, particularly, from Figures 14 – 18,
we know that our proposed method has better visual quality than other methods, and
from the Table 7, we know that our proposed method gets better results than other
relative methods in the vast majority of cases. The numerical simulations show again
that the superiority of the reconstruction quality by our proposed method for Poissonian
image reconstruction.
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(a) (b) (c) (d) (e)

Fig. 11. The zoom-in part of the recovered image in Figure 7:

a) details of original images; b) details of noisy images f (M = 60 );

c) details of restored images by TBV; d) details of restored images by

HOTV; e) details of restored images by our approach.

Image Parrot Lake Airplane Woman Abdomen Head Boat Cameraman
TBV 15 23 17 1 5 8 19 16

HOTV 20 29 26 15 9 13 22 21
Ours 11 23 17 23 11 16 19 15

Tab. 5. The optimal regulization parameter β used for image

deblurring and denoising.
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(a) (b) (c) (d) (e)

Fig. 12. The zoom-in part of the recovered image in Figure 8:

a) details of original images; b) details of noisy images f (M = 60);

c) details of restored images by TBV; d) details of restored images by

HOTV; e) details of restored images by our approach.

4. CONCLUSION

In this paper, we propose an adaptive variational model for deblurring and denoising of
blurred images corrupted by Poisson noise. We also study the existence and the unique-
ness of a solution to our proposed model. Then, applying the alternating minimization
method, we solved our convex minimization problem with a convergence guarantee. The
restored images show the efficiency and the capability of the proposed model, compar-
ing to the total variation regularized based state-of-the-art techniques for deblurring and
denoising of blurred images corrupted by Poisson noise.
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(d) Cameraman

Fig. 13. Plots of the error values (ERR) versus iterations of the

TV-based methods for image deblurring and denoising: the blurred

images with noise level M = 60.

Image Method Time (s) Niter

Parrot
TBV 2.4848 79

HOTV 2.5355 65
Ours 2.4745 52

Airplane
TBV 1.5325 48

HOTV 1.7282 44
Ours 1.4801 32

Head
TBV 1.9029 61

HOTV 2.4812 64
Ours 1.8668 56

Cameraman
TBV 1.6294 52

HOTV 1.5911 40
Ours 1.3884 35

Tab. 6. Number of iterations and computational time of the

compared methods with the optimal regularization parameter β for

image deblurring and denoising.

- PSNR SSIM
Image Noisy TVB HOTV Ours Noisy BTV HOTV Ours
Parrot 18.9447 21.5582 21.6389 21.7744 0.3692 0.7131 0.7195 0.7265
Lake 18.4078 21.3214 21.3762 21.5492 0.4097 0.6870 0.6878 0.6929

Airplane 16.4115 19.6087 19.4353 20.3515 0.2878 0.7253 0.7254 0.7312
Woman 14.4940 16.4635 16.0275 16.7454 0.2775 0.6287 0.6388 0.6450

Abdomen 20.1841 22.4324 22.2319 22.6210 0.4055 0.5712 0.5765 0.6455
Head 19.1146 21.7625 21.7537 21.8819 0.4440 0.6896 0.7057 0.7311
Boat 18.7125 22.5173 22.5107 22.6898 0.3372 0.6628 0.6735 0.6789

Cameraman 20.0055 26.1418 26.1915 26.4561 0.3497 0.8067 0.8104 0.8173

Average 18.2843 21.4757 21.3957 21.7587 0.3601 0.6856 0.6922 0.7086

Tab. 7. PSNR values and SSIM measures for blurred and noisy

images, and recovered images with M = 60.
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Fig. 14. Plots of the PSNR values versus the values β of the

compared methods for image deblurring and denoising: the blurred

images with noise level M = 60.
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(a) (b) (c) (d)

Fig. 15. Recovered images of different approaches for deblurring and

denoising:

a) blurred and noisy images with M = 60; b) restored images by TBV

approach;

c) restored images by HOTV; d) restored images by our approach.



An algorithm for hybrid regularizers based image restoration with Poisson noise 471

(a) (b) (c) (d)

Fig. 16. Recovered images of different approaches for deblurring and

denoising:

a) blurred and noisy images with M = 60; b) restored images by TBV

approach;

c) restored images by HOTV; d) restored images by our approach.
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(a) (b) (c) (d) (e)

Fig. 17. The zoom-in part of the recovered image in Figure 15:

a) details of original images; b) details of noisy images f (M = 60);

c) details of restored images by TBV; d) details of restored images by

HOTV; e) details of restored images by our approach.
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(a) (b) (c) (d) (e)

Fig. 18. The zoom-in part of the recovered image in Figure 16:

a) details of original images; b) details of noisy images f (M = 60);

c) details of restored images by TBV; d) details of restored images by

HOTV; e) details of restored images by our approach.
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