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COMPOSITIONS OF TERNARY RELATIONS

Norelhouda Bakri, Lemnaouar Zedam and Bernard De Baets

In this paper, we introduce six basic types of composition of ternary relations, four of which
are associative. These compositions are based on two types of composition of a ternary relation
with a binary relation recently introduced by Zedam et al. We study the properties of these
compositions, in particular the link with the usual composition of binary relations through the
use of the operations of projection and cylindrical extension.
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1. INTRODUCTION

By far the most important operation on binary relations is the composition of relations,
dating back to the nineteenth century (see, e. g., [25]). In the twentieth century, Ban-
dler and Kohout [2] introduced two additional relational compositions, arising from the
substitution of the underlying existential quantifier by the universal quantifier. Some
decades earlier, already in his seminal work on fuzzy sets [37], Zadeh realized that also
crisp relations (allowing to model relationship and non-relationship only) lacked expres-
sivity, giving rise to the study of fuzzy relations. Goguen further generalized fuzzy
relations to the lattice-theoretical framework [18]. This notion of a fuzzy relation spread
very quickly and it is thus not surprising that Bandler and Kohout presented fuzzy ver-
sions of their relational compositions in tandem with the crisp versions. Some further
modifications were suggested by De Baets and Kerre [10]. More recently, Štěpnička and
Holčapek [35] revisited the fuzzy relational compositions by employing more general
fuzzy quantifiers than the existential and universal ones. Noteworthy is also the recent
work on fuzzy relations in the context of fuzzy class theory [5, 6].

In addition to the role of relational compositions in the study and characterization
of various properties of binary crisp or fuzzy relations [13, 16, 36], they also appear in
many branches of mathematics, for instance in the study of fuzzy relational equations [11,
12], formal concept analysis [7, 17] and relation algebras (e. g., in temporal and spatial
reasoning [15]). Compositions of crisp and fuzzy relations also appear in applications,
for instance, in medical diagnosis [3], fuzzy inference systems [33, 34] and relational
databases [28].
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Surprisingly, in contrast to binary relations, ternary and, more generally, n-ary rela-
tions, have received far less attention. However, in recent years, the interest in ternary
relations is on the rise, for instance in the theory of dependence spaces [24] and (fuzzy)
triadic formal concept analysis [8, 19, 22]. From a theoretical point of view, ternary
relations have been studied in algebra (e. g., in group theory [9]), order theory (e. g., in
the study of cyclic orders [23]) and logic (e. g., in the Routley–Meyer semantics of rel-
evant logic [4, 14]). Recently, betweenness relations, a specific type of ternary relation,
also came to play a pivotal role in models for decision making [27] and aggregation [26].
Other applications can be found in computational biology (e. g., modelling of phyloge-
nies [32]), qualitative spatial reasoning [20] and string matching [21]. Also, there are
many different uses of ternary relations in the field of information modelling (e. g., in the
Resource Description Framework (RDF) [30], entity-relationship or class diagrams [1]
and the Ternary Relations Model [29]).

Motivated by the usefulness of relational compositions of binary relations and the
importance of ternary relations, in this paper we introduce several types of composition
of ternary relations. More specifically, we introduce six types of composition of ternary
relations based on the composition of a ternary relation with a binary relation introduced
by Zedam et al. [38], and investigate their properties. This paper is organized as follows.
In Section 2, we recall the necessary basic concepts and properties of binary relations
and ternary relations. In Section 3, we introduce six types of composition of ternary
relations and, in Section 4, we investigate the properties of these compositions. We study
the interaction of the compositions with the basic set operations and permutations in
Section 5, and with the binary projections and cylindrical extensions in Section 6. In
Section 7, we study the compositions in the context of traces of ternary relations. Finally,
we present some concluding remarks in Section 8.

2. PRELIMINARIES

In this section, we recall some basic notions on binary and ternary relations that will be
needed throughout this paper.

2.1. Binary relations

A binary relation R on a set X is a subset of X2. Inclusion, intersection and union of
binary relations on X are defined through the corresponding notions for subsets of X2.
For a given binary relation R on X, we denote the transpose of R by Rt, i. e., for any
x, y ∈ X, (x, y) ∈ Rt means that (y, x) ∈ R. The composition of two relations R1 and
R2 on X is the relation R1 ◦R2 on X defined as

R1 ◦R2 = {(x, z) ∈ X2 | (∃y ∈ X)((x, y) ∈ R1 ∧ (y, z) ∈ R2)} .

For more details on binary relations, we refer to [31].

2.2. Ternary relations

A ternary relation T on a set X is a subset of X3. Three special ternary relations on
X are the empty relation ∅, the ternary identity relation IX3 = {(x, x, x) | x ∈ X}
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and the universal ternary relation X3. Here, we recall the ternary relations obtained by
permutation. A permutation σ of a 3-element set U = {u, v, w} is a bijection from U to
itself. We use the shorthand notation σ(u, v, w) instead of (σ(u), σ(v), σ(w)). The six
permutations of U are given by:

σ0(u, v, w) = (u, v, w), σ1(u, v, w) = (u,w, v), σ2(u, v, w) = (v, u, w) ,

σ3(u, v, w) = (v, w, u), σ4(u, v, w) = (w, u, v), σ5(u, v, w) = (w, v, u) .

For a ternary relation T on X and any of the above six permutations σ, the ternary
relation Tσ is defined as in [38]:

Tσ = {σ(x, y, z) ∈ X3 | (x, y, z) ∈ T} .

Note that

Tσ = {(x, y, z) ∈ X3 | σ−1(x, y, z) ∈ T} ,

with σ−1i = σi for any i ∈ {0, 1, 2, 5} and σ−13 = σ4. It is clear that Tσ0 = T and
Tσ5 = T t.

Definition 2.1. (Zedam et al. [38]) Let T be a ternary relation on a set X.

(i) The right-converse of T is the ternary relation Ta on X defined as Ta = Tσ1 ;

(ii) The left-converse of T is the ternary relation T` on X defined as T` = Tσ2 ;

(iii) The right-rotation of T is the ternary relation T+ on X defined as T+ = Tσ3 ;

(iv) The left-rotation of T is the ternary relation T− on X defined as T− = Tσ4 .

The following properties are straightforward, but will be useful further on.

Remark 2.1. For any family of ternary relations (Ti)i∈I on a set X, the following
equalities hold: (

∪
i∈I
Ti

)σj

= ∪
i∈I
T
σj

i and

(
∩
i∈I
Ti

)σj

= ∩
i∈I
T
σj

i ,

for any j ∈ {0, . . . , 5} .

For more details on ternary relations, we refer to [9, 24, 38].

3. COMPOSITIONS OF TERNARY RELATIONS

In the theory of binary relations, a major role is played by the composition of relations,
as it is the most important operation that allows to combine relations. In this section,
based on the compositions of a ternary relation with a binary relation introduced by
Zedam et al. [38], we introduce several types of composition of ternary relations and
investigate their properties. First, we recall the definition of the binary projections of
a ternary relation.
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3.1. Binary projections of a ternary relation

In this subsection, we recall the definition and some properties of the binary projections
of a ternary relation.

Definition 3.1. (Zedam et al. [38]) Let T be a ternary relation on a set X.

(i) The left projection of T is the binary relation P`(T ) on X defined as

P`(T ) = {(x, y) ∈ X2 | (∃z ∈ X)((z, x, y) ∈ T )} ;

(ii) The middle projection of T is the binary relation Pm(T ) on X defined as

Pm(T ) = {(x, y) ∈ X2 | (∃z ∈ X)((x, z, y) ∈ T )} ;

(iii) The right projection of T is the binary relation Pr(T ) on X defined as

Pr(T ) = {(x, y) ∈ X2 | (∃z ∈ X)((x, y, z) ∈ T )} .

For a ternary relation T , we write P (T ) = P`(T ) ∪ Pm(T ) ∪ Pr(T ).

The following proposition shows the interaction of the projections of a ternary relation
with the inclusion and basic set-theoretical operations.

Proposition 3.1. Let T1 and T2 be two ternary relations on a set X. For any λ ∈
{`,m, r}, the following statements hold:

(i) If T1 ⊆ T2, then Pλ(T1) ⊆ Pλ(T2);

(ii) Pλ(T1 ∩ T2) ⊆ Pλ(T1) ∩ Pλ(T2);

(iii) Pλ(T1 ∪ T2) = Pλ(T1) ∪ Pλ(T2).

P r o o f . We only give the proof for the case λ = `, as the other cases can be proved
analogously.

(i) Suppose that T1 ⊆ T2 and let (x, y) ∈ P`(T1). Then there exists z ∈ X such that
(z, x, y) ∈ T1. This implies that (z, x, y) ∈ T2. Hence, (x, y) ∈ P`(T2). Thus,
P`(T1) ⊆ P`(T2).

(ii) Let (x, y) ∈ P`(T1 ∩ T2). Then there exists z ∈ X such that (z, x, y) ∈ T1 ∩ T2.
This implies that (z, x, y) ∈ T1 and (z, x, y) ∈ T2. Hence, (x, y) ∈ P`(T1)∩ P`(T2).
Thus, P`(T1 ∩ T2) ⊆ P`(T1) ∩ P`(T2).

(iii) We easily verify that

P`(T1 ∪ T2) = {(x, y) ∈ X2 | (∃z ∈ X)((z, x, y) ∈ T1 ∪ T2)}
= {(x, y) ∈ X2 | (∃z ∈ X)((z, x, y) ∈ T1 ∨ (z, x, y) ∈ T2)}
= P`(T1) ∪ P`(T2) .

�
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The following proposition shows the interaction of P (T ) with the inclusion and basic
set-theoretical operations.

Proposition 3.2. Let T1 and T2 be two ternary relations on a set X. The following
statements hold:

(i) If T1 ⊆ T2, then P (T1) ⊆ P (T2);

(ii) P (T1 ∩ T2) ⊆ P (T1) ∩ P (T2);

(iii) P (T1 ∪ T2) = P (T1) ∪ P (T2).

P r o o f .

(i) Suppose that T1 ⊆ T2, Proposition 3.1 then guarantees that P`(T1) ∪ Pm(T1) ∪
Pr(T1) ⊆ P`(T2) ∪ Pm(T2) ∪ Pr(T2). Thus, P (T1) ⊆ P (T2).

(ii) From Proposition 3.1, it follows that

P (T1 ∩ T2) = P`(T1 ∩ T2) ∪ Pm(T1 ∩ T2) ∪ Pr(T1 ∩ T2)

⊆ (P`(T1) ∩ P`(T2)) ∪ (Pm(T1) ∩ Pm(T2)) ∪ (Pr(T1) ∩ Pr(T2)) .

The distributivity of ∩ and ∪ guarantees that

P (T1 ∩ T2) ⊆ (P`(T1) ∪ Pm(T1) ∪ Pr(T1)) ∩ (P`(T2) ∪ Pm(T2) ∪ Pr(T2))

= P (T1) ∩ P (T2) .

(iii) Also, from Proposition 3.1, we easily verify that

P (T1 ∪ T2) = P`(T1 ∪ T2) ∪ Pm(T1 ∪ T2) ∪ Pr(T1 ∪ T2)

= (P`(T1) ∪ P`(T2)) ∪ (Pm(T1) ∪ Pm(T2)) ∪ (Pr(T1) ∪ Pr(T2))

= (P`(T1) ∪ Pm(T1) ∪ Pr(T1)) ∪ (P`(T2) ∪ Pm(T2) ∪ Pr(T2))

= P (T1) ∪ P (T2) .

�

3.2. Compositions of ternary relations

In this subsection, we introduce six types of composition of ternary relations. First
we recall the definition of two types of composition of a ternary relation with a binary
relation introduced in [38].

Definition 3.2. (Zedam et al. [38]) Let T be a ternary relation and R be a binary
relation on X.

(i) The n-composition of T and R is the ternary relation T nR on X defined as

T nR = {(x, y, z) ∈ X3 | (∃t ∈ X)((x, y, t) ∈ T ∧ (t, z) ∈ R)} ;
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(ii) The o-composition of R and T is the ternary relation Ro T on X defined as

Ro T = {(x, y, z) ∈ X3 | (∃t ∈ X)((x, t) ∈ R ∧ (t, y, z) ∈ T )} .

Based on the above compositions of a ternary relation with a binary relation, we
introduce six types of composition of ternary relations through the use of the binary
projections.

Definition 3.3. Let T and S be two ternary relations on a set X. The ◦i-compositions
of T and S, with i ∈ {1, . . . , 6}, are defined as

(i) T ◦1 S := T n P`(S) = {(x, y, z) ∈ X3 | (∃t, s ∈ X)((x, y, t) ∈ T ∧ (s, t, z) ∈ S)};

(ii) T ◦2 S := T n Pm(S) = {(x, y, z) ∈ X3 | (∃t, s ∈ X)((x, y, t) ∈ T ∧ (t, s, z) ∈ S)};

(iii) T ◦3 S := T n Pr(S) = {(x, y, z) ∈ X3 | (∃t, s ∈ X)((x, y, t) ∈ T ∧ (t, z, s) ∈ S)};

(iv) T ◦4 S := P`(T ) o S = {(x, y, z) ∈ X3 | (∃t, s ∈ X)((s, x, t) ∈ T ∧ (t, y, z) ∈ S)};

(v) T ◦5 S := Pm(T ) o S = {(x, y, z) ∈ X3 | (∃t, s ∈ X)((x, s, t) ∈ T ∧ (t, y, z) ∈ S)};

(vi) T ◦6 S := Pr(T ) o S = {(x, y, z) ∈ X3 | (∃t, s ∈ X)((x, s, t) ∈ T ∧ (s, y, z) ∈ S)}.

Next, we introduce a composition that is composed of all of the above six composi-
tions.

Definition 3.4. Let T and S be two ternary relations on a set X. The ◦-composition
of T and S is defined as

T ◦ S = (T n P (S)) ∪ (P (T ) o S) .

Clearly, it holds that T ◦ S =
⋃6
i=1 T ◦i S.

The following example shows that the compositions introduced are different.

Example 3.1. Let T and S be the ternary relations on X = {x1, x2, x3, x4} given by:

T = {(x1, x1, x2), (x1, x2, x3)} ,
S = {(x1, x1, x1), (x2, x4, x1), (x3, x2, x2)} .

One easily verifies that

T ◦1 S = {(x1, x1, x2)} ,
T ◦2 S = {(x1, x1, x1), (x1, x2, x2)} ,
T ◦3 S = {(x1, x1, x4), (x1, x2, x2)} ,
T ◦4 S = {(x1, x4, x1), (x2, x2, x2)} ,
T ◦5 S = {(x1, x4, x1), (x1, x2, x2)} ,
T ◦6 S = {(x1, x1, x1), (x1, x4, x1)} ,

and

T ◦ S = {(x1, x4, x1), (x2, x2, x2), (x1, x2, x2), (x1, x1, x1), (x1, x1, x2), (x1, x1, x4)} .
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4. PROPERTIES OF THE COMPOSITIONS OF TERNARY RELATIONS

In this section, we investigate some properties of the compositions of ternary relations.
First of all, we show that four of these compositions are associative.

Proposition 4.1. The compositions ◦i , with i ∈ {1, 2, 5, 6}, are associative, i. e., for
any ternary relations T1, T2 and T3 on a set X, it holds that

(T1 ◦i T2) ◦i T3 = T1 ◦i (T2 ◦i T3) .

P r o o f . We only give the proof for the case i = 1, as the other cases can be proved
analogously.

(T1 ◦1 T2) ◦1 T3 = {(x, y, z) ∈ X3 | (∃t, s ∈ X)((x, y, t) ∈ T1 ◦1 T2 ∧ (s, t, z) ∈ T3)}
= {(x, y, z) ∈ X3 | (∃t, s,m, n ∈ X)((x, y,m) ∈ T1 ∧ (n,m, t) ∈ T2 ∧ (s, t, z) ∈ T3)}
= {(x, y, z) ∈ X3 | (∃m,n ∈ X)((x, y,m) ∈ T1 ∧ (n,m, z) ∈ T2 ◦1 T3)}
= {(x, y, z) ∈ X3 | (x, y, z) ∈ T1 ◦1 (T2 ◦1 T3)}
= T1 ◦1 (T2 ◦1 T3) .

�

In the following example, we show that the compositions ◦3 and ◦4 are not associative.

Example 4.1. Let T1, T2 and T3 be the ternary relations on X = {x1, x2, x3, x4} given
by:

T1 = {(x1, x1, x2), (x1, x2, x3)} ,
T2 = {(x1, x1, x1), (x2, x4, x1), (x3, x2, x2)} ,
T3 = {(x1, x1, x1), (x4, x4, x2), (x2, x3, x1)} .

One easily verifies that

(T1 ◦3 T2) ◦3 T3 = {(x1, x1, x4), (x1, x2, x3)} ,
T1 ◦3 (T2 ◦3 T3) = {(x1, x1, x4), (x1, x2, x2)} ,
(T1 ◦4 T2) ◦4 T3 = {(x4, x1, x1), (x2, x3, x1)} ,
T1 ◦4 (T2 ◦4 T3) = {(x1, x3, x1)} .

It is clear that

(T1 ◦3 T2) ◦3 T3 6= T1 ◦3 (T2 ◦3 T3) and (T1 ◦4 T2) ◦4 T3 6= T1 ◦4 (T2 ◦4 T3) .

Obviously, since ◦3 and ◦4 are not associative, the composition ◦ is not associative as
well.

The following proposition shows that the ternary identity relation IX3 is a right
neutral element of three of the compositions of ternary relations, while it is a left neutral
element of the other compositions. The proof is straightforward.
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Proposition 4.2. Let T be a ternary relation on a set X. It holds that

(i) T ◦i IX3 = T , for any i ∈ {1, 2, 3};

(ii) IX3 ◦i T = T , for any i ∈ {4, 5, 6}.

Next, we give a counterexample showing that IX3 is not a left (resp. right) neutral
element of the ◦i-composition, for any i ∈ {1, 2, 3} (resp. for any i ∈ {4, 5, 6}).

Example 4.2. Let T be the ternary relation on X = {x1, x2, x3, x4} given by:

T = {(x1, x1, x2), (x1, x2, x3)} .

One easily verifies that

IX3 ◦1 T = {(x1, x1, x2), (x2, x2, x3)} ,
IX3 ◦2 T = {(x1, x1, x2), (x1, x1, x3)} ,
IX3 ◦3 T = {(x1, x1, x1), (x1, x1, x2)} ,
T ◦4 IX3 = {(x1, x2, x2), (x2, x3, x3)} ,
T ◦5 IX3 = {(x1, x2, x2), (x1, x3, x3)} ,
T ◦6 IX3 = {(x1, x1, x1), (x1, x2, x2)} .

It is clear that

IX3 ◦1 T 6= T, IX3 ◦2 T 6= T and IX3 ◦3 T 6= T ,

T ◦4 IX3 6= T, T ◦5 IX3 6= T and T ◦6 IX3 6= T ,

and

IX3 ◦ T 6= T ◦ IX3 6= T .

In the following proposition, we show that the empty relation ∅ is an absorbing
element of the compositions of ternary relations. The proof is straightforward.

Proposition 4.3. Let T be a ternary relation on a set X. It holds that

T ◦i ∅ = ∅ ◦i T = ∅ ,

for any i ∈ {1, . . . , 6}, and hence also T ◦ ∅ = ∅ ◦ T = ∅.

5. INTERACTION OF THE COMPOSITIONS WITH THE BASIC SET
OPERATIONS AND PERMUTATIONS

In this section, we study the interaction of the compositions of ternary relations with
the basic set operations and permutations.
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5.1. Interaction of the compositions with inclusion and basic set operations

The following proposition shows the interaction of the ◦i-compositions with inclusion
and set-theoretical operations, for any i ∈ {1, . . . , 6}.

Proposition 5.1. Let T1, T2, S1, S2 and S be ternary relations on a set X. For any
i ∈ {1, . . . , 6}, the following statements hold:

(i) If T1 ⊆ T2 and S1 ⊆ S2, then T1 ◦i S1 ⊆ T2 ◦i S2;

(ii) (T1 ∩ T2) ◦i S = (T1 ◦i S) ∩ (T2 ◦i S) and S ◦i (T1 ∩ T2) = (S ◦i T1) ∩ (S ◦i T2);

(iii) (T1 ∪ T2) ◦i S = (T1 ◦i S) ∪ (T2 ◦i S) and S ◦i (T1 ∪ T2) = (S ◦i T1) ∪ (S ◦i T2).

P r o o f . We only give the proof for the ◦1-composition and property (i) as the other
results are analogous. Suppose that T1 ⊆ T2 and S1 ⊆ S2. Let (x, y, z) ∈ T1 ◦1 S1, then
it holds that (x, y, z) ∈ T1 n P`(S1). Then there exists t ∈ X such that (x, y, t) ∈ T1
and (t, z) ∈ P`(S1). Since T1 ⊆ T2 and S1 ⊆ S2, it follows that (x, y, z) ∈ T2 n P`(S2).
Hence, (x, y, z) ∈ T2 ◦1 S2. Thus, T1 ◦1 S1 ⊆ T2 ◦1 S2. �

The following proposition shows the interaction of the ◦-composition with inclusion
and set-theoretical operations.

Proposition 5.2. Let T1, T2, S1, S2 and S be ternary relations on a set X. The
following statements hold:

(i) If T1 ⊆ T2 and S1 ⊆ S2, then T1 ◦ S1 ⊆ T2 ◦ S2;

(ii) (T1 ∩ T2) ◦ S ⊆ (T1 ◦ S) ∩ (T2 ◦ S);

(iii) (T1 ∪ T2) ◦ S ⊆ (T1 ◦ S) ∪ (T2 ◦ S).

P r o o f .

(i) Suppose that T1 ⊆ T2 and S1 ⊆ S2. Let (x, y, z) ∈ T1 ◦ S1, then it holds that

(x, y, z) ∈
⋃6
i=1 T1 ◦i S1. Then there exists j ∈ {1, . . . , 6} such that (x, y, z) ∈

T1◦jS1. Since T1 ⊆ T2 and S1 ⊆ S2, it follows from Proposition 5.1 that T1◦jS1 ⊆
T2 ◦j S2. Hence, (x, y, z) ∈ T2 ◦j S2. Thus, (x, y, z) ∈ T2 ◦ S2.

(ii) Let (x, y, z) ∈ (T1∩T2)◦S. It holds that (x, y, z) ∈
⋃6
i=1(T1∩T2)◦i S. Then there

exists j ∈ {1, . . . , 6} such that (x, y, z) ∈ (T1 ∩ T2) ◦j S. From Proposition 5.1, it

follows that (x, y, z) ∈ (T1 ◦j S)∩ (T2 ◦j S), and, hence, (x, y, z) ∈
⋃6
i=1 T1 ◦i S and

(x, y, z) ∈
⋃6
i=1 T2 ◦i S. Hence, (x, y, z) ∈ (T1 ◦S)∩ (T2 ◦S). Thus, (T1 ∩T2) ◦S ⊆

(T1 ◦ S) ∩ (T2 ◦ S).

(iii) The proof is analogous to that of (ii).

�

The following example shows that the equality in properties (ii) and (iii) of Proposi-
tion 5.2 does not hold in general.
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Example 5.1. Let T1, T2 and T3 be the ternary relations on X = {x1, x2, x3, x4} given
by:

T1 = {(x1, x1, x2), (x1, x2, x3)} ,
T2 = {(x1, x1, x1), (x2, x4, x1), (x3, x2, x2)} ,
T3 = {(x1, x1, x2), (x4, x4, x2), (x2, x3, x1)} .

One easily verifies that

(T1 ∩ T3) ◦ T2 = {(x1, x1, x1), (x1, x1, x2), (x1, x4, x1), (x1, x1, x4)} ,
(T1 ◦ T2) ∩ (T3 ◦ T2) = {(x1, x1, x1), (x1, x1, x2), (x1, x4, x1), (x1, x1, x4), (x2, x2, x2)} .

It is clear that (T1 ∩ T3) ◦ T2 6= (T1 ◦ T2) ∩ (T3 ◦ T2).

5.2. Interaction of the compositions with the permutations

In this subsection, we investigate the interaction of the compositions with the permuta-
tions.

Proposition 5.3. Let T and S be two ternary relations on a set X. The following
equalities hold:

(i) (T ◦i S)a = T ◦i Sa, for any i ∈ {4, 5, 6};

(ii) (T ◦i S)` = T` ◦i S, for any i ∈ {1, 2, 3};

(iii) (T ◦i S)+ = (St ◦7−i T t)`, for any i ∈ {1, . . . , 6};

(iv) (T ◦i S)− = (St ◦7−i T t)a, for any i ∈ {1, . . . , 6};

(v) (T ◦i S)t = St ◦7−i T t, for any i ∈ {1, . . . , 6}.

P r o o f .

(i) We only prove that (T ◦4 S)a = T ◦4 Sa, as the other cases can be proved analo-
gously.

(T ◦4 S)a =
{

(x, y, z) ∈ X3 | (x, z, y) ∈ T ◦4 S
}

=
{

(x, y, z) ∈ X3 | (x, z, y) ∈ P`(T ) o S
}

=
{

(x, y, z) ∈ X3 | (∃t ∈ X)((x, t) ∈ P`(T ) ∧ (t, z, y) ∈ S)
}

=
{

(x, y, z) ∈ X3 | (∃t ∈ X)((x, t) ∈ P`(T ) ∧ (t, y, z) ∈ Sa)
}

=
{

(x, y, z) ∈ X3 | (x, y, z) ∈ P`(T ) o Sa
}

= T ◦4 Sa .
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(ii) We only prove that (T ◦1 S)` = T` ◦1 S, as the other cases can be proved analo-
gously.

(T ◦1 S)` =
{

(x, y, z) ∈ X3 | (y, x, z) ∈ T ◦1 S
}

=
{

(x, y, z) ∈ X3 | (y, x, z) ∈ T n P`(S)
}

=
{

(x, y, z) ∈ X3 | (∃t ∈ X)((y, x, t) ∈ T ∧ (t, z) ∈ P`(S))
}

=
{

(x, y, z) ∈ X3 | (∃t ∈ X)((x, y, t) ∈ T` ∧ (t, z) ∈ P`(S))
}

=
{

(x, y, z) ∈ X3 | (x, y, z) ∈ T` n P`(S)
}

= T` ◦1 S .

(iii) We only prove that (T ◦1 S)+ = (St ◦6 T t)`, as the other cases can be proved
analogously.

(T ◦1 S)+ =
{

(x, y, z) ∈ X3 | (z, x, y) ∈ T ◦1 S
}

=
{

(x, y, z) ∈ X3 | (z, x, y) ∈ T n P`(S)
}

=
{

(x, y, z) ∈ X3 | (∃t ∈ X)((z, x, t) ∈ T ∧ (t, y) ∈ P`(S))
}

=
{

(x, y, z) ∈ X3 | (∃t ∈ X)((y, t) ∈ Pr(St) ∧ (t, x, z) ∈ T t)
}

=
{

(x, y, z) ∈ X3 | (y, x, z) ∈ Pr(St) o T t
}

=
{

(x, y, z) ∈ X3 | (x, y, z) ∈ (St ◦6 T t)`
}

= (St ◦6 T t)` .

(iv) We only prove that (T ◦1 S)− = (St ◦6 T t)a, as the other cases can be proved
analogously.

(T ◦1 S)− =
{

(x, y, z) ∈ X3 | (y, z, x) ∈ T ◦1 S
}

=
{

(x, y, z) ∈ X3 | (y, z, x) ∈ T n P`(S)
}

=
{

(x, y, z) ∈ X3 | (∃t ∈ X)((y, z, t) ∈ T ∧ (t, x) ∈ P`(S))
}

=
{

(x, y, z) ∈ X3 | (∃t ∈ X)((x, t) ∈ Pr(St) ∧ (t, z, y) ∈ T t)
}

=
{

(x, y, z) ∈ X3 | (x, z, y) ∈ Pr(St) o T t
}

=
{

(x, y, z) ∈ X3 | (x, y, z) ∈ (St ◦6 T t)a
}

= (St ◦6 T t)a .

(v) We only prove that (T ◦1 S)t = St ◦6 T t, as the other cases can be proved analo-
gously.

(T ◦1 S)t = (T n P`(S))t

= (P`(S))t o T t

= Pr(S
t) o T t

= St ◦6 T t .
�



Compositions of ternary relations 415

In the following proposition, we investigate the interaction of the ◦-composition with
the permutations.

Proposition 5.4. Let T and S be two ternary relations on a set X. The following
equalities hold:

(i) (T ◦ S)+ = (St ◦ T t)`;

(ii) (T ◦ S)− = (St ◦ T t)a;

(iii) (T ◦ S)t = St ◦ T t.

P r o o f . We only prove (i), as the other cases are analogous. From Remark 2.1 and
Proposition 5.3, it follows that

(T ◦ S)+ = (

6⋃
i=1

T ◦i S)+ =

6⋃
i=1

(T ◦i S)+ =

6⋃
i=1

(St ◦7−i T t)`

= (

6⋃
i=1

St ◦7−i T t)` = (St ◦ T t)` .

�

6. INTERACTION OF THE COMPOSITIONS WITH THE BINARY PROJEC-
TIONS AND CYLINDRICAL EXTENSIONS

In this section, we study the interaction of the compositions of ternary relations with
the binary projections and cylindrical extensions.

6.1. Interaction of the compositions with the projections

In this subsection, we investigate the projections of the compositions of ternary relations
in terms of the compositions of their binary projections.

Proposition 6.1. Let T and S be two ternary relations on a set X. The left, middle
and right projections of the compositions (T ◦i S), for any i ∈ {1, . . . , 6}, are listed in
the following table:

XXXXXXXXXXComp.
Proj.

P`(·) Pm(·) Pr(·)

T ◦1 S P`(T ) ◦ P`(S) Pm(T ) ◦ P`(S) −
T ◦2 S P`(T ) ◦ Pm(S) Pm(T ) ◦ Pm(S) −
T ◦3 S P`(T ) ◦ Pr(S) Pm(T ) ◦ Pr(S) −
T ◦4 S − P`(T ) ◦ Pm(S) P`(T ) ◦ Pr(S)
T ◦5 S − Pm(T ) ◦ Pm(S) Pm(T ) ◦ Pr(S)
T ◦6 S − Pr(T ) ◦ Pm(S) Pr(T ) ◦ Pr(S)
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P r o o f . We only prove that P`(T ◦1S) = P`(T )◦P`(S), as the other cases are analogous.

P`(T ◦1 S) = {(x, y) ∈ X2 | (∃z ∈ X)((z, x, y) ∈ T ◦1 S)}
= {(x, y) ∈ X2 | (∃z ∈ X)((z, x, y) ∈ T n P`(S))}
= {(x, y) ∈ X2 | (∃z, t ∈ X)((z, x, t) ∈ T ∧ (t, y) ∈ P`(S))}
= {(x, y) ∈ X2 | (∃t ∈ X)((x, t) ∈ P`(T ) ∧ (t, y) ∈ P`(S))}
= {(x, y) ∈ X2 | (x, y) ∈ P`(T ) ◦ P`(S)}
= P`(T ) ◦ P`(S) .

�

Remark 6.1. The following example shows that the left projection of the ◦4-composition
of two ternary relations is not equal to the composition of any of their binary projections.
Indeed, let T and S be the ternary relations on X = {x1, x2, x3, x4} given by:

T = {(x1, x1, x2), (x1, x2, x3)} ,
S = {(x1, x1, x1), (x2, x4, x1), (x3, x2, x2)} .

It holds that

T ◦4 S = {(x1, x4, x1), (x2, x2, x2)} ,

and thus

P`(T ◦4 S) = {(x4, x1), (x2, x2)} .

Further, it holds that

P`(·) Pm(·) Pr(·)
T {(x1, x2), (x2, x3)} {(x1, x2), (x1, x3)} {(x1, x1), (x1, x2)}
S {(x1, x1), (x2, x2), (x4, x1)} {(x1, x1), (x2, x1), (x3, x2)} {(x1, x1), (x2, x4), (x3, x2)}

and

◦ P`(S) Pm(S) Pr(S)
P`(T ) {(x1, x2)} {(x1, x1), (x2, x2)} {(x1, x4), (x2, x2)}
Pm(T ) {(x1, x2)} {(x1, x1), (x1, x2)} {(x1, x2), (x1, x4)}
Pr(T ) {(x1, x1), (x1, x2)} {(x1, x1)} {(x1, x1), (x1, x4)}

It is clear that for any λ1, λ2 ∈ {`,m, r} it holds that

P`(T ◦4 S) 6= Pλ1(T ) ◦ Pλ2(S) .

In a similar way, one can easily prove the other cases.
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6.2. Interaction of the compositions with the cylindrical extensions

In this subsection, we investigate the interaction of the compositions of ternary relations
with the left, middle and right cylindrical extensions of a binary relation. First, we recall
the definition of the cylindrical extensions of a binary relation.

Definition 6.1. (Zedam et al. [38]) Let R be a binary relation on a set X.

(i) The left cylindrical extension of R is the ternary relation C`(R) on X defined as

C`(R) = {(x, y, z) ∈ X3 | (y, z) ∈ R} ;

(ii) The middle cylindrical extension of R is the ternary relation Cm(R) on X defined
as

Cm(R) = {(x, y, z) ∈ X3 | (x, z) ∈ R} ;

(iii) The right cylindrical extension of R is the ternary relation Cr(R) on X defined as

Cr(R) = {(x, y, z) ∈ X3 | (x, y) ∈ R} .

The following proposition shows the interaction of the cylindrical extensions of a
binary relation with inclusion and set-theoretical operations.

Proposition 6.2. Let R1 and R2 be two binary relations on a set X. For any λ ∈
{`,m, r}, the following statements hold:

(i) If R1 ⊆ R2, then Cλ(R1) ⊆ Cλ(R2);

(ii) Cλ(R1 ∩R2) = Cλ(R1) ∩ Cλ(R2);

(iii) Cλ(R1 ∪R2) = Cλ(R1) ∪ Cλ(R2).

P r o o f . We only give the proof for the case λ = `, as the other cases can be proved
analogously.

(i) Suppose that R1 ⊆ R2. Let (x, y, z) ∈ C`(R1), then it holds that (y, z) ∈ R1.
Since R1 ⊆ R2, it follows that (y, z) ∈ R2. Hence, (x, y, z) ∈ C`(R2).

(ii) We easily verify that

C`(R1 ∩R2) = {(x, y, z) ∈ X3 | (y, z) ∈ R1 ∩R2}
= {(x, y, z) ∈ X3 | (y, z) ∈ R1 ∧ (y, z) ∈ R2}
= {(x, y, z) ∈ X3 | (x, y, z) ∈ C`(R1) ∧ (x, y, z) ∈ C`(R2)}
= C`(R1) ∩ C`(R2).

(iii) The proof is analogous to that of (ii).

�
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The following proposition shows that any binary relation coincides with the binary
projections of its cylindrical extensions and any ternary relation is included in the cylin-
drical extensions of its projections.

Proposition 6.3. Let T be a ternary relation and R be a binary relation on a set X.
For any λ ∈ {`,m, r}, the following statements hold:

(i) R = Pλ(Cλ(R));

(ii) T ⊆ Cλ(Pλ(T )).

P r o o f . We only give the proof for the case λ = `, as the other cases can be proved
analogously.

(i) We easily verify that

P`(C`(R)) = {(x, y) ∈ X2 | (∃z ∈ X)((z, x, y) ∈ C`(R))} = R .

(ii) Let (x, y, z) ∈ T , then it holds that (y, z) ∈ P`(T ). Hence, (x, y, z) ∈ C`(P`(T )).
Thus, T ⊆ C`(P`(T )) .

�

Remark 6.2. The following example shows that in Proposition 6.3 (ii), the equality
does not hold in general. Indeed, let T be the ternary relation on X = {x1, x2, x3, x4}
given by:

T = {(x1, x1, x2), (x1, x2, x3)} .

It holds that
P`(T ) = {(x1, x2), (x2, x3)} ,

and thus

C`(P`(T )) = {(x1, x1, x2), (x2, x1, x2), (x3, x1, x2), (x4, x1, x2),

(x1, x2, x3), (x2, x2, x3), (x3, x2, x3), (x4, x2, x3)} .

It is clear that C`(P`(T )) 6⊆ T .

The following proposition expresses the compositions of a ternary relation with a
binary relation introduced in [38] in terms of the six compositions of ternary relations
introduced in this paper.

Proposition 6.4. Let T be a ternary relation and R be a binary relation on a set X.
The following equalities hold:

(i) T nR = T ◦1 C`(R);

(ii) T nR = T ◦2 Cm(R);

(iii) T nR = T ◦3 Cr(R);
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(iv) Ro T = C`(R) ◦4 T ;

(v) Ro T = Cm(R) ◦5 T ;

(vi) Ro T = Cr(R) ◦6 T .

P r o o f . We only give the proof for the first equality, as the other equalities can be
proved analogously.

T nR = {(x, y, z) ∈ X3 | (∃t ∈ X)((x, y, t) ∈ T ∧ (t, z) ∈ R)}
= {(x, y, z) ∈ X3 | (∃t, s ∈ X)((x, y, t) ∈ T ∧ (s, t, z) ∈ C`(R))}
= T ◦1 C`(R) .

�

The following proposition investigates the cylindrical extensions of the composition
of binary relations in terms of the compositions of their cylindrical extensions.

Proposition 6.5. Let R1 and R2 be two binary relations on a set X. The left, middle
and right cylindrical extensions of the composition R1 ◦ R2 are listed in the following
table:

XXXXXXXXXXComp.
Cyl. ext.

C`(·) Cm(·) Cr(·)

C`(R1) ◦1 C`(R2) Cm(R1) ◦1 C`(R2)
C`(R1) ◦2 Cm(R2) Cm(R1) ◦2 Cm(R2)

R1 ◦R2 C`(R1) ◦3 Cr(R2) Cm(R1) ◦3 Cr(R2)
C`(R1) ◦4 Cm(R2) C`(R1) ◦4 Cr(R2)
Cm(R1) ◦5 Cm(R2) Cm(R1) ◦5 Cr(R2)
Cr(R1) ◦6 Cm(R2) Cr(R1) ◦6 Cr(R2)

P r o o f . We only prove that C`(R1 ◦ R2) = C`(R1) ◦1 C`(R2), as the other cases can
be proved analogously.

C`(R1 ◦R2) = {(x, y, z) ∈ X3 | (y, z) ∈ R1 ◦R2}
= {(x, y, z) ∈ X3 | (∃t ∈ X)((y, t) ∈ R1 ∧ (t, z) ∈ R2)}
= {(x, y, z) ∈ X3 | (∃t, s ∈ X)((x, y, t) ∈ C`(R1) ∧ (s, t, z) ∈ C`(R2))}
= {(x, y, z) ∈ X3 | (x, y, z) ∈ C`(R1) ◦1 C`(R2)}
= C`(R1) ◦1 C`(R2) .

�

Remark 6.3. The following example shows that the left cylindrical extension of the
composition of two binary relations is not equal to the ◦4-composition of any of their
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cylindrical extensions. Indeed, let R1 and R2 be the binary relations on X = {x1, x2, x3}
given by:

R1 = {(x1, x2)} ,
R2 = {(x2, x2), (x3, x1)} .

It holds that
R1 ◦R2 = {(x1, x2)} ,

and thus
C`(R1 ◦R2) = {(x1, x1, x2), (x2, x1, x2), (x3, x1, x2)} .

Further, it holds that

C`(·) Cm(·) Cr(·)

R1
{(x1, x1, x2), (x2, x1, x2),

(x3, x1, x2)}
{(x1, x1, x2), (x1, x2, x2),

(x1, x3, x2)}
{(x1, x2, x1), (x1, x2, x2),

(x1, x2, x3)}

R2

{(x1, x2, x2), (x1, x3, x1),
(x2, x2, x2), (x2, x3, x1),
(x3, x2, x2), (x3, x3, x1)}

{(x2, x1, x2), (x2, x2, x2),
(x2, x3, x2), (x3, x1, x1),
(x3, x2, x1), (x3, x3, x1)}

{(x2, x2, x1), (x2, x2, x2),
(x2, x2, x3), (x3, x1, x1),
(x3, x1, x2), (x3, x1, x3)}

and

◦4 C`(R2) Cm(R2) Cr(R2)

C`(R1) {(x1, x2, x2), (x1, x3, x1)} {(x1, x1, x2), (x1, x2, x2),
(x1, x3, x2)}

{(x1, x2, x1), (x1, x2, x2),
(x1, x2, x3)}

Cm(R1)
{(x1, x2, x2), (x1, x3, x1),
(x2, x2, x2), (x2, x3, x1),
(x3, x2, x2), (x3, x3, x1)}

{(x1, x1, x2), (x1, x2, x2),
(x1, x3, x2), (x2, x1, x2),
(x2, x2, x2), (x2, x3, x2),
(x3, x1, x2), (x3, x2, x2),

(x3, x3, x2)}

{(x1, x2, x1), (x1, x2, x2),
(x1, x2, x3), (x2, x2, x1),
(x2, x2, x2), (x2, x2, x3),
(x3, x2, x1), (x3, x2, x2),

(x3, x2, x3)}

Cr(R1) {(x2, x2, x2), (x2, x3, x1)}
{(x2, x1, x1), (x2, x1, x2),
(x2, x2, x1), (x2, x2, x2),
(x2, x3, x1), (x2, x3, x2)}

{(x2, x1, x1), (x2, x1, x2),
(x2, x1, x3), (x2, x2, x1),
(x2, x2, x2), (x2, x2, x3)}

It is clear that for any λ1, λ2 ∈ {`,m, r} it holds that

C`(R1 ◦R2) 6= Cλ1
(R1) ◦4 Cλ2

(R2) .

In a similar way, one can easily prove the other cases.

7. INTERACTION OF THE COMPOSITIONS WITH THE TRACES

In this section, we study the interaction of the compositions of ternary relations with the
left, middle and right traces. First, we recall the notions of traces of a ternary relation
introduced in [38].

Definition 7.1. (Zedam et al. [38]) Let T be a ternary relation on a set X.
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(i) The left trace of T is the binary relation T ` on X defined as

T ` = {(x, y) ∈ X2 | (∀(a, b) ∈ X2)((x, a, b) ∈ T ⇒ (y, a, b) ∈ T )} ;

(ii) The middle trace of T is the binary relation Tm on X defined as

Tm = {(x, y) ∈ X2 | (∀(a, b) ∈ X2)((a, x, b) ∈ T ⇒ (a, y, b) ∈ T )} ;

(iii) The right trace of T is the binary relation T r on X defined as

T r = {(x, y) ∈ X2 | (∀(a, b) ∈ X2)((a, b, x) ∈ T ⇒ (a, b, y) ∈ T )} .

The following proposition shows the interaction of the compositions of ternary rela-
tions with the left, middle and right traces.

Proposition 7.1. Let T and S be two ternary relations on a set X. The following
inclusions hold:

(i) T ` ⊆ (T ◦i S)`, for any i ∈ {1, 2, 3, 5, 6};

(ii) Tm ⊆ (T ◦i S)m, for any i ∈ {1, 2, 3};

(iii) Sm ⊆ (T ◦i S)m, for any i ∈ {4, 5, 6};

(iv) T r ⊆ (T ◦i S)r, for any i ∈ {1, 2, 4, 5, 6}.

P r o o f . We only give the proof for first inclusion and i = 1, as the other inclusions can
be proved analogously. Let (x, y) ∈ T ` and (x, a, b) ∈ T ◦1 S. Then there exists t, s ∈ X
such that (x, a, t) ∈ T and (s, t, b) ∈ S. Since (x, y) ∈ T `, it follows that (y, a, t) ∈ T .
This implies that (y, a, b) ∈ T ◦1 S. Hence, (x, y) ∈ (T ◦1 S)`. Thus, T ` ⊆ (T ◦1 S)`. �

Next, we will show that the traces of a ternary relation are the greatest binary
relations that satisfy some relational inclusions. First, we need to recall the following
two theorems.

Theorem 7.1. (Zedam et al. [38]) Let T be a ternary relation on a set X. It holds
that

(i) T ` is the greatest binary relation R that satisfies Rt o T ⊆ T ;

(ii) T r is the greatest binary relation R that satisfies T nR ⊆ T .

Theorem 7.2. (Zedam et al. [38]) Let T be a ternary relation on a set X. It holds
that

(T `)t o T = T n T r = T .

The following result shows that the traces of a ternary relation are the greatest binary
relations that satisfy the following relational inclusions corresponding to the relational
compositions introduced above.
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Proposition 7.2. Let T be a ternary relation on a set X. It holds that

(i) T ` is the greatest binary relation R that satisfies the following inclusions:

(a) C`(R
t) ◦4 T ⊆ T ;

(b) Cm(Rt) ◦5 T ⊆ T ;

(c) Cr(R
t) ◦6 T ⊆ T .

(ii) T r is the greatest binary relation R that satisfies the following inclusions:

(a) T ◦1 C`(R) ⊆ T ;

(b) T ◦2 Cm(R) ⊆ T ;

(c) T ◦3 Cr(R) ⊆ T .

P r o o f . We only give the proof for the inclusion (i) (a), as the other inclusions can
be proved analogously. Note that Proposition 6.4 implies that C`(R

t) ◦4 T = Rt o T .
Theorem 7.1 guarantees that T ` is the greatest binary relation R that satisfies RtoT ⊆
R. Hence, T ` is the greatest binary relation R that satisfies C`(R

t) ◦4 T ⊆ T . �

Combining Proposition 6.4 and Theorem 7.2 leads to the following result.

Corollary 7.1. Let T be a ternary relation on a set X. The following equalities hold:

(i) T ◦1 C`(T r) = T ;

(ii) T ◦2 Cm(T r) = T ;

(iii) T ◦3 Cr(T r) = T ;

(iv) C`((T
`)t) ◦4 T = T ;

(v) Cm((T `)t) ◦5 T = T ;

(vi) Cr((T
`)t) ◦6 T = T .

Along the same lines of Proposition 7.2, we obtain the following equivalences.

Proposition 7.3. Let T and S be two ternary relations on a set X. The following
equivalences hold:

(i) T ◦1 S ⊆ T if and only if S ⊆ C`(T r);

(ii) T ◦2 S ⊆ T if and only if S ⊆ Cm(T r);

(iii) T ◦3 S ⊆ T if and only if S ⊆ Cr(T r);

(iv) S ◦4 T ⊆ T if and only if S ⊆ C`((T `)t);

(v) S ◦5 T ⊆ T if and only if S ⊆ Cm((T `)t);

(vi) S ◦6 T ⊆ T if and only if S ⊆ Cr((T `)t).



Compositions of ternary relations 423

P r o o f . We only prove the first equivalence, as the other equivalences can be proved
analogously. Suppose that T ◦1 S ⊆ T , then we need to prove that S ⊆ C`(T

r). From
Proposition 6.4, it follows that T ◦1 S = T ◦1 C`(P`(S)). Since T ◦1 S ⊆ T , it follows
that T ◦1 C`(P`(S)) ⊆ T . We know from Proposition 7.2 (ii) that T r is the greatest
binary relation R that satisfies T ◦1 C`(R) ⊆ T , and, hence, P`(S) ⊆ T r, which implies
that C`(P`(S)) ⊆ C`(T

r). Proposition 6.3 guarantees that S ⊆ C`(P`(S)). Thus,
S ⊆ C`(T

r). Conversely, assume that S ⊆ C`(T
r). From Proposition 5.1, it follows

that T ◦1 S ⊆ T ◦1 C`(T r). Proposition 7.2 guarantees that T ◦1 C`(T r) ⊆ T . Since
T ◦1 S ⊆ T ◦1 C`(T r) and T ◦1 C`(T r) ⊆ T , it follows that T ◦1 S ⊆ T . �

8. CONCLUSION

In this work, we have extended the composition of binary relations to the setting of
ternary relations. More specifically, we have introduced six types of composition of
ternary relations based on the composition of a ternary relation with a binary relation
and vice versa, and we have investigated their properties in detail. Moreover, we have
studied the interaction of these compositions with the binary projections of ternary re-
lations, cylindrical extensions of binary relations and traces of ternary relations. We
anticipate that these compositions of ternary relations will facilitate our future study of
the different notions of transitivity of a ternary relation, among others. Given the im-
portance of fuzzy relations, as amply illustrated in the introduction for binary relations,
future efforts will be directed to the study of fuzzy ternary relations as well.

(Received March 21, 2020)

R E F E R E N C E S

[1] S. Alvarez-Garcia, G. de Bernardo, N. R. Brisaboa, and G. Navarro: A succinct data
structure for self-indexing ternary relations. J. Discrete Algorithms 43 (2017), 38–53.
DOI:10.1016/j.jda.2016.10.002

[2] W. Bandler and L. J. Kohout: Fuzzy relational products as a tool for analysis and synthesis
of the behaviour of complex natural and artificial systems. In: Theory and Application
to Policy Analysis and Information Systems (P. Wang and S. Chang, eds.), Plenum Press,
New York 1980, pp3 41–367. DOI:10.1007/978-1-4684-3848-2 1

[3] W. Bandler and L. J. Kohout: Semantics of implication operators and fuzzy rela-
tional product. Int. J. Man-Machine Studies 12 (1980), 89–116. DOI:10.1016/S0020-
7373(80)80055-1

[4] J. Beall, R. Brady, J. M. Dunn, A. P. Hazen, E. Mares, R. K. Meyer, G. Priest, G. Restall,
D. Ripley, J. Slaney, and R. Sylvan: On the ternary relation and conditionality. J.
Philosoph. Logic 41 (2012), 595–612. DOI:10.1007/s10992-011-9191-5
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