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PROPERTIES OF UNIQUE INFORMATION

Johannes Rauh, Maik Schünemann and Jürgen Jost

We study the unique information function UI(T : X \ Y ) defined by Bertschinger et al. [4]
within the framework of information decompositions. In particular, we study uniqueness and
support of the solutions to the convex optimization problem underlying the definition of UI.
We identify sufficient conditions for non-uniqueness of solutions with full support in terms of
conditional independence constraints and in terms of the cardinalities of T , X and Y . Our
results are based on a reformulation of the first order conditions on the objective function as
rank constraints on a matrix of conditional probabilities. These results help to speed up the
computation of UI(T : X \ Y ), most notably when T is binary. Optima in the relative interior
of the optimization domain are solutions of linear equations if T is binary. In the all binary
case, we obtain a complete picture of where the optimizing probability distributions lie.

Keywords: information decomposition, unique information

Classification: 94A15,94A17

1. INTRODUCTION

Bertschinger et al. [4] introduced an information measure UI(T : X\Y ) which they called
unique information. The function UI is proposed within the framework of information
decompositions [17] to quantify the amount of information about T that is contained in
X but not in Y . Similar quantities within this framework have been proposed by Harder
et al. [8], Ince [9], James et al. [10] and Niu and Quinn [12]. Among them, the quantity
UI probably has the clearest axiomatic characterization. Although it has received a lot
of attention by theorists [see e. g. 2, 13, 15], so far, applications have focused on other
measures, because UI is difficult to compute, although there has been recent progress
[3, 11].

The function UI is defined by means of an optimization problem. Let T , X, Y be
random variables with finite state spaces T ,X ,Y and with a joint distribution P . Let
∆T ,X ,Y be the set of all joint distributions of such random variables, and let

∆P =
{
Q ∈ ∆T ,X ,Y : Q(X = x, T = t) = P (X = x, T = t),

Q(Y = y, T = t) = P (Y = y, T = t) for all x ∈ X , y ∈ Y, t ∈ T
}
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be the set of all joint distributions that have the same pair marginals as P for the pairs
(X,T ) and (Y, T ). Then

UI(T : X \ Y ) = min
Q∈∆P

IQ(T : X|Y ), (1)

where IQ(T : X|Y ) denotes the conditional mutual information of T and X given Y ,
computed with respect to Q. Due to the definition of ∆P , the optimization problem
in (1) can be reformulated as follows:

min
Q∈∆P

IQ(T : X|Y ) = H(T |Y )− max
Q∈∆P

H(T |X,Y ). (2)

This paper studies UI, focusing on the following two questions:

1. When is there a unique solution to the optimization problems in (2)?

2. When is there a solution in the relative interior of ∆P ?

In the framework of information decomposition, the solutions to the optimization
problems (2) are distributions with “zero synergy about T .” Thus, understanding these
solutions sheds light on the concept of synergy. If the solution is unique, there is a
unique way to combine the random variables X and Y without synergy about T that
preserves the (X,T )- and (Y, T )-marginals.

Moreover, a unique solution Q∗ might be used to “localize” the information decom-
position, in the sense of Finn and Lizier [7]; although one should keep in mind that the
support of Q∗ may satisfy supp(Q∗) 6⊇ supp(P ). A better understanding of the opti-
mization problems also helps in the computation of UI. In the case where T is binary,
an optimum in the interior of ∆P can be found as solutions of linear equations. Solving
an optimization problem can be avoided in the all binary case in which we derive a
closed form solution of the optimization problem.

Summary of results and outline

Section 2 describes how the optimization domain ∆P and its support depend on P .
Section 3 summarizes general facts about the optimization problem. The relationship

between uniqueness of the optimizer and the supports of the optimizers is discussed, and
sufficient conditions for non-uniqueness are identified.

Section 4 specializes to the case where T is binary. In this case, if there is an optimizer
in the interior, then this optimizer satisfies a conditional independence constraint. In
general, the optimizer is not unique. We analyze how often the optimum lies in the
interior or at the boundary of ∆P and how often an optimum in the interior is unique
as a function of the cardinalities of X ,Y when sampling P uniformly from ∆T ,X ,Y .

Section 5 gives a complete picture for the case where all variables are binary. In this
case, ∆P is a rectangle, a line segment or a single point. A closed form expression is
given for optimizers that lie in the interior of ∆P . If the optimizer does not lie in the
interior, the optimum is attained at a vertex of ∆P .

Section 6 collects examples that demonstrate that the conditions of some of our results
are indeed necessary. The final Section 7 presents our conclusions.
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2. THE OPTIMIZATION DOMAIN ∆P

Fix a joint distribution P ∈ ∆T ,X ,Y . Since the marginal of T is constant on ∆P , the
support of T , which we denote by T ′ := {t ∈ T : P (T = t) > 0}, is also constant on ∆P .

Any distribution Q ∈ ∆P is characterized uniquely by the conditional probabilities
Q(X,Y |T = t) for t ∈ T ′. The map

P ∈ ∆T ,X ,Y 7→
(
P (X,Y |T = t)

)
t∈T ′

(where T ′ depends on P ) induces a linear bijection

∆P = ×
t∈T ′

∆P,t,

where

∆P,t =
{
Q ∈ ∆X ,Y : Q(X = x) = P (X = x|T = t),

Q(Y = y) = P (Y = y|T = t)
}
,

and ∆X ,Y is the set of all probability distributions of random variables X,Y with finite
state spaces X ,Y. For example, when X and Y are binary, ∆P,t is a line segment (which
may degenerate to a point) for all t ∈ T ′. Thus, ∆P is a product of line segments; that
is, a hypercube (up to a scaling). If T is also binary, then ∆P is a rectangle (a product of
two line segments), which may degenerate to a line segment or even a point depending
on the support of P . A figure of ∆P in the case that all variables are binary (when
∆P is a rectangle) can be found in[4]. Figure 1 makes use of the product structure to
visualize ∆P in the case |T | = 2 = |X |, |Y = 3|, where dim(∆P ) = 4.

In the following, for Q ∈ ∆P and t ∈ T ′, we write Qt := Q(X,Y |T = t) for the
conditional distribution of X,Y given that T = t. The product structure of ∆P implies:
if Q ∈ ∆P lies on the boundary of ∆P , then at least one of the Qt lies on the boundary
of ∆P,t. Moreover, Q lies on the boundary of ∆T ,X ,Y . Hence, the boundaries of the
polytopes ∆P or ∆P,t are characterized by the vanishing of probabilities.

Remark 2.1. In the following, the expression boundary of ∆P refers to the relative
boundary. If P lies on the boundary of ∆T ,X ,Y , then ∆P may be a subset of the
boundary of ∆T ,X ,Y (cf. Lemma 2.4). This happens if and only if one probability
vanishes throughout ∆P,t (and thus one probability vanishes throughout ∆P ). In this
case, ∆P is part of the boundary of ∆T ,X ,Y . However, the (relative) boundary of ∆P is
a strict subset of ∆P , and the same holds for ∆P,t.

Let A be the linear map that maps a joint distribution P ∈ ∆T ,X ,Y to the pair
(P (X,T ), P (Y, T )) of marginal distributions. Then

∆P = (P + ker(A)) ∩∆T ,X ,Y .

The difference of any two elements of ∆P belongs to ker(A). Conversely, the elements
of ker(A) can be used to move within each ∆P . A generating set of ker(A) is given by
the vectors

γt;x,x′;y,y′ = δt,x,y + δt,x′,y′ − δt,x,y′ − δt,x′,y, x, x′ ∈ X , y, y′ ∈ Y, t ∈ T (3)
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(a) Unique optimizer in interior of ∆P

(b) Unique optimizer at boundary of ∆P

(c) arg maxQ∈∆P
HQ(T |XY ) given by a line segment

Fig. 1. Three examples of ∆P and arg maxQ∈∆P HQ(T |XY ) for

|T | = 2,|X | = 2,|Y| = 3. Left plots show ∆P,0, while ∆P,1 is shown on

the right side. Boundaries of ∆P are marked by black lines,

arg maxQ∈∆P HQ(T |XY ) is marked in gray. (a) There exists a unique

optimizer in the interior of ∆P . (b) The unique optimizer lies at the

boundary of ∆P . Note that both projections of the optimizer lies at

the boundary of ∆P,0,∆P,1. (c) Gray lines mark the projections of

arg maxQ∈∆P HQ(T |XY ) to ∆P,0 and ∆P,1.
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where δt,x,y denotes the Dirac measure supported at T = t,X = x, Y = y. These vectors
are not linearly independent. One way to choose a linearly independent subset is to fix
x0 ∈ X , y0 ∈ Y. Then the set

Γ :=
{
γt;x,x0;y,y0 : x ∈ X \ {x0}, y ∈ Y \ {y0}, t ∈ T

}
is a basis of ker(A).

Remark 2.2. Apart from being symmetric, the larger dependent set has the following
advantage, which is reminiscent of the Markov basis property [5]: Any two points Q,Q′ ∈
∆P can be connected by a path in ∆P by applying a sequence of multiples of the
elements γt;x,x′;y,y′ . The same is not true if we restrict x′, y′ to x0, y0: if Q(X = x0) = 0,
then adding a multiple of γt;x,x0;y,y0 for any x ∈ X , y ∈ Y leads to a negative entry.

Let V be the set of distributions Q0 ∈ ∆T ,X ,Y that have a factorization of the form

Q0(t, x, y) = Q0(t)Q0(x|t)Q0(y|t).

Thus, V consists of all joint distributions that satisfy the Markov chain X – T – Y . For
each P ∈ ∆T ,X ,Y , the intersection ∆P ∩ V contains precisely one element Q0 = Q0(P );
namely

Q0(t, x, y) = P (t)P (x|t)P (y|t). (4)

In the language of information geometry, ∆P is a linear family that is dual to the
exponential family V [1]. A general distribution Q ∈ ∆T ,X ,Y can thus be expressed
uniquely in the form

Q = Q0 +
∑
t,x′,y′

P (t)gt,x′,y′γt;x,x0;y,y0 (5)

with Q0 = Q0(Q) ∈ V and g = (gt,x′,y′)t,x′ 6=x0,y′ 6=y0 denoting the coefficients with
respect to Γ.

Let supp(∆P ) :=
⋃
Q∈∆P

supp(Q) be the largest support of an element of ∆P .
Generic elements of ∆P have support supp(∆P ). We also let

supp(∆P,t) :=
⋃

Q∈∆P

supp(Qt)

=
{

(x, y) ∈ X × Y : (t, x, y) ∈ supp(∆P )
}

for t ∈ T ′.

If ∆P is a singleton, then P = Q0. In this case, supp(∆P ) = supp(P ), and supp(∆P,t) =
supp(Pt).

For t ∈ T ′ let Xt =
{
x ∈ X : P (X = x|T = t) > 0

}
and Yt =

{
y ∈ Y : P (Y = y|T =

t) > 0}. It follows from the definitions:

Lemma 2.3. Let t ∈ T ′. Then supp(∆P,t) = supp(Q0,t) = Xt × Yt. Moreover,
supp(∆P ) = supp(Q0). Thus, Q0 has maximal support in ∆P .

The next lemma follows from Lemma 2.3 and the definitions:
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Lemma 2.4. Let t ∈ T , x ∈ X and y ∈ Y. The following statements are equivalent:

1. ∆P lies in the face of ∆T ,X ,Y defined by Q(t, x, y) = 0.

2. (t, x, y) /∈ supp(∆P ).

3. Every Q ∈ ∆P satisfies Q(t, x, y) = 0.

4. Q0 := Q0(P ) satisfies Q0(t, x, y) = 0.

5. P (T = t, Y = y)P (T = t,X = x) = 0.

Lemma 2.5. Let t ∈ T ′. The following are equivalent:

1. ∆P,t is a singleton.

2. At least one of Xt, Yt is a singleton.

P r o o f . Condition 2. in the lemma captures precisely when it is not possible to add a
multiple of some γt;x,x′;y,y′ to P or, in fact, to any Q ∈ ∆P (cf. Remark 2.2). �

3. SUPPORT AND UNIQUENESS OF THE OPTIMUM

This section studies the uniqueness of the optimizer and the question, when it lies on
the boundary of ∆P . There are many relations between uniqueness and support of
the optimizers: Lemma 3.1 states that, if the optimizer is not unique, then there are
optimizers with restricted support. Theorems 3.6, 3.7, 3.8 and 3.10 prove that either the
optimizer lies at the boundary or it is not unique under a variety of different assumptions
that involve the cardinalities of |X |, |Y| and |T | or conditional independence conditions.

Lemma 3.1. If the optimizer is not unique, then there exists an optimizer on the bound-
ary of ∆P .

P r o o f . Suppose that there are two distinct optimizers Q1, Q2 ∈ ∆P , and assume
that neither Q1 nor Q2 lies on the boundary of ∆P . By convexity of the target function
IQ(T : X|Y ) on ∆P (see Lemma 4 in [4] or Lemma 3.4 below), the convex hull of Q1 and
Q2 consists of optimizers. Let LQ1,Q2

be the line through Q1, Q2. The target function
IQ(T : X|Y ) is a continuous function on the line segment LQ1,Q2 ∩∆P , and it is analytic
on the relative interior of this line segment. By assumption, IQ(T : X|Y ) is constant on
the part of LQ1,Q2

between Q1 and Q2. By the principle of permanence, IQ(T : X|Y ) is
constant on LQ1,Q2

∩∆P . Therefore, the two points where LQ1,Q2
intersect the boundary

of ∆P are optimizers of IQ(T : X|Y ) that lie on the boundary of ∆P . �

The derivative of IQ(T : X|Y ) in the direction of γt;x,x′;y,y′ at Q equals

log

(
Q(t, x, y)Q(t, x′, y′)

Q(t, x, y′)Q(t, x′, y)
· Q(x, y′)Q(x′, y)

Q(x, y)Q(x′, y′)

)
= log

(
Q(t|x, y)Q(t|x′, y′)
Q(t|x, y′)Q(t|x′, y)

)
, (6)

assuming that the probabilities in the logarithm are positive. Otherwise, the partial
derivative has to be computed as a limit.
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Remark 3.2. The vanishing of the directional derivative of IQ(T : X|Y ) can be seen
as a determinantal condition: all derivatives (6) vanish if and only if for all t ∈ T ′ the
determinants of all 2 × 2-submatrices of the matrix (Q(t|x, y))x,y ∈ RX×Y vanish; that
is, if and only if these matrices have rank one. As

∑
t∈T ′ Q(t|x, y) = 1 for all x, y, the

sum of these rank-one matrices is again of rank one.
Conversely, let Q̃1, . . . , Q̃k be non-negative rank-one matrices such that the sum Q̃ =

Q̃1+· · ·+Q̃k is non-zero and again of rank one; say Q̃ = vw> with v, w non-negative and
> denoting the transpose. Let V = diag(v), W = diag(w), and let Qt = V −1Q̃tW

−1 for
t = 1, . . . , k. Then Q1 + · · · + Qk = V −1Q̃W−1 is the matrix with all entries equal to
one. Thus, the matrices Qt for t = 1, . . . , k can be interpreted as matrices of conditional
probabilities Q(t|X,Y ). Together with any distribution of the pair (X,Y ), one obtains
a distribution Q(T,X, Y ) at which all directional derivatives of IQ(T : X|Y ) vanish.

Lemma 3.3. Let Q∗ be a minimizer of IQ(T : X|Y ) for Q ∈ ∆P , and let (t, x, y) ∈
supp(∆P ). If Q∗(t, x, y) = 0, then Q∗(x, y) = 0. Thus, Q∗(t′, x, y) = 0 for all t′ ∈ T .

P r o o f . Suppose that Q∗(t, x, y) = 0, but that Q∗(x, y) > 0. Then there exist x′, y′

such that Qε := Q∗ + εγt;x,x′;y,y′ is non-negative for ε > 0 small enough (and thus
Qε ∈ ∆P ). In particular, Q∗(t, x′, y), Q∗(t, x, y′) > 0.

Since Q∗ is a minimizer, the partial derivative (6) at Q∗ must be non-negative. Note
that, by assumption, Q∗(t, x, y) = 0. If all four probabilities in the denominator of the
fraction in the logarithm were non-zero, then the partial derivative would be equal to
minus infinity. Thus, either Q∗(x, y) or Q∗(x′, y′) must vanish.

Suppose that Q∗(x, y) > 0. Then Q∗(x′, y′) = 0. Hence, Q∗(t, x′, y′) = 0, and so

Qε(t, x, y)Qε(t, x
′, y′)

Qε(t, x, y′)Qε(t, x′, y)
· Qε(x, y

′)Qε(x′, y)

Qε(x, y)Qε(x′, y′)

=
ε2Qε(x, y

′)Qε(x
′, y)

Qε(t, x, y′)Qε(t, x′, y)Qε(x, y)ε
= O(ε).

Thus, the partial derivative diverges as log(ε) to −∞ as ε → 0, contradicting the fact
that Q∗ is a local minimizer. Therefore, Q∗(x, y) = 0. �

If Q∗(t, x, y) = 0 and Q∗(t, x′, y) > 0, Q∗(t, x, y′) > 0 for some t ∈ T ′, x, x′ ∈ X ,
y, y′ ∈ Y, then the partial derivative at Q∗ in the direction of γt;x,x′;y,y′ is

log

(
Q∗(t, x′, y′)Q∗(x, y′)Q∗(x′, y)

Q∗(t, x, y′)Q∗(t, x′, y)Q∗(x′, y′)

)
.

Therefore,

Q∗(t, x′, y′)Q∗(x, y′)Q∗(x′, y) ≥ Q∗(t, x, y′)Q∗(t, x′, y)Q∗(x′, y′),

or
Q∗(t, x′, y′)

Q∗(x′, y′)
≥ Q∗(t, x, y′)

Q∗(x, y′)

Q∗(t, x′, y)

Q∗(x′, y)
.

It is well known that entropy is strictly concave and that conditional entropy is
concave. From the proof of this fact, it is easy to analyze where conditional entropy is
strictly concave.
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Lemma 3.4. The conditional entropyH(A|B) is concave in the joint distribution ofA,B.
It is strictly concave, with the exception of those directions where P (A|B) is constant.
That is:

λHP1
(A|B) + (1− λ)HP2

(A|B) ≤ HλP1+(1−λ)P2
(A|B)

with equality if and only if P1(A|B) = P2(A|B) a.e.

P r o o f . Let θ be a Bernoulli random variable with parameter λ, and consider the joint
distribution P of θ, A and B given by

P (A,B, θ) =

{
λP1(A,B), if θ = 0,

(1− λ)P2(A,B), if θ = 1.

Then

HλP1+(1−λ)P2
(A|B) = HP (A|B) ≥ HP (A|B, θ)

= λHP1(A|B) + (1− λ)HP2(A|B).

Equality holds if and only if A is independent of θ given B; that is:

P1(A|B) = P (A|B, θ = 0) = P (A|B, θ = 1) = P2(A|B).

�

Lemma 3.5. Let Q1, Q2 ∈ ∆P be two maximizers of maxQ∈∆P
HQ(T |XY ). Then

Q1(T |XY ) = Q2(T |XY ).

P r o o f . We may assume that Q1 6= Q2. By assumption, HQ(T |XY ) is constant on the
line segment between Q1 and Q2. Thus, on this line segment HQ(T |XY ) is not strictly
concave. By Lemma 3.4, Q1(T |XY ) = Q2(T |XY ). �

The following four theorems give different sufficient conditions for non-uniqueness of
the optimizer.

Theorem 3.6. Suppose that |T | < min
{
|X |, |Y|

}
. If there exists an optimizer of

maxQ∈∆P
HQ(T |XY ) with full support, then the optimizer is not unique.

P r o o f . Suppose that Q∗ ∈ arg maxQ∈∆P
HQ(T |XY ) has full support. The proof

proceeds by finding a direction within ∆P in which HQ(T |XY ) is not strictly concave.
Consider the linear equation

Q(t, x, y) = Q∗(t|x, y)Q(x, y) for Q ∈ ∆P . (7)

If Q′ ∈ ∆P solves this equation, then, by Lemma 3.4, the function HQ(T |X,Y ) is affine
on the line connecting Q∗ and Q′. Since Q∗ is a maximizer, HQ(T |X,Y ) is constant on
this line, whence any point on this line is a maximizer. Thus, to prove the theorem, it
suffices to show that there exists a solution Q′ 6= Q∗ in ∆P to (7).
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By Remark 3.2, for every t ∈ T ′, there exists a pair of non-negative vectors vt, wt
such that Q∗(t|x, y) = vtw

>
t . The assumption |T | < min

{
|X |, |Y|

}
implies that there

exist non-zero v0 ∈ RX , w0 ∈ RY with v>0 vt = 0 = w>0 wt for all t ∈ T ′. For ε ∈ R let

Qε(x, y) := Q∗(x, y) + εv>0,xw0,y.

Then ∑
x∈X ,y∈Y

Qε(x, y) =
∑

x∈X ,y∈Y
Q∗(x, y) + ε

∑
x∈X ,y∈Y

v0,xw0,y = 1,

because∑
x∈X ,y∈Y

v0,xw0,y =
∑

x∈X ,y∈Y
v0,xw0,y

∑
t∈T ′

Q∗(t|x, y)

=
∑
t∈T ′

∑
x∈X

v0,xvt,x
∑
y∈Y

w0,ywt,y = 0.

Therefore, if ε is sufficiently close to zero, then Qε defines a probability distribution for
X and Y .

Extend Qε to a joint distribution of T,X, Y by Qε(t, x, y) = Q∗(t|x, y)Qε(x, y). Then
Qε satisfies (7). It remains to show that Qε ∈ ∆Q∗ . From

Qε(t, x)−Q∗(t, x) =
∑
y∈Y

(
Qε(t, x, y)−Q∗(t, x, y)

)
=
∑
y∈Y

Q∗(t|x, y)
(
Qε(x, y)−Q∗(x, y)

)
= εvt,xv0,x

∑
y∈Y

wt,yw0,y = 0

follows Qε(T,X) = Q∗(T,X). The equality Qε(T, Y ) = Q∗(T, Y ) follows similarly. �

Theorem 3.7. Let |T | < |Y|, and suppose that UI(T : X \ Y ) = 0. If there is an
optimizer of maxQ∈∆P

HQ(T |X,Y ) with full support, then the optimizer is not unique.

P r o o f . The proof of Theorem 3.6 can be adapted. Under the assumptions of the the-
orem, if Q∗ is an optimizer, then Q∗(t|x, y) = Q∗(t|y) does not depend on x. Therefore,
one may choose vt,x = 1 for all y ∈ Y, t ∈ T and wt,y = Q∗(t|y). To construct v0, it now
suffices that |X | ≥ 2, since all vectors vt, t ∈ T , are identical. �

Theorem 3.8. Suppose that H(X), H(Y ) > 0. If both T ⊥⊥P X and T ⊥⊥P Y , then
arg maxQ∈∆P

HQ(T |X,Y ) is not unique.

P r o o f . Let Q0 = Q0(P ) = PTPX|TPY |T = PTPXPY ∈ ∆P . Then T ⊥⊥Q0
(X,Y ) by

construction. Since HQ(T |X,Y ) ≤ H(T ) for Q ∈ ∆P and since Q0 achieves equality,
Q0 maximizes H(T |X,Y ) on ∆P .

Due to the assumption of positive entropy, there exist x0, x1 ∈ X , y0, y1 ∈ Y with
PX(x0) > 0, PX(x1) > 0, PY (y0) > 0 and PY (y1) > 0. For δ ∈ R let

Qδ(t, x, y) := Q0(t, x, y) + δpT (t)γt;x0,x1;y0,y1 .
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If |δ| is small enough, then Qδ is non-negative and hence belongs to ∆P . For such δ, the
conditional Qδ(x, y|t) does not depend on t, whence T ⊥⊥Qδ (X,Y ) . Thus, all such Qδ
are maximizers of HQ(T |X,Y ) for Q ∈ ∆P . �

Example 3.9. Let P be the distribution of three independent uniform binary random
variables T,X, Y , and let P ′ be the joint distribution where X,T are uniform indepen-
dent binary random variables and where X = Y . Then ∆P = ∆P ′ , and both P and P ′

maximize HQ(T |X,Y ) for Q ∈ ∆P .
This example is the same as Example 31 by Bertschinger et al. [4]. Ironically,

Bertschinger et al. [4] remarked that the optimization problem is ill-conditioned, but
they failed to observe the non-uniqueness of the optimum in this case.

The following technical result generalizes Theorem 3.8. It is illustrated by Exam-
ple 6.2.

Theorem 3.10. Suppose that T ⊥⊥P X
∣∣Y and T ⊥⊥P Y

∣∣X . If there exist x0 ∈ X ,
y0 ∈ Y with P (X = x0, Y = y0) > 0 and H(X|Y = y0) 6= 0 6= H(Y |X = x0), then
maxQ∈∆P

HQ(T |X,Y ) is not unique.

P r o o f . If T ⊥⊥P X
∣∣Y , then IP (T : X|Y ) = 0. From this it follows that P belongs

to arg minQ∈∆P
IQ(T : X|Y ) = arg maxQ∈∆P

HQ(T |XY ). The probability distributions
that satisfy T ⊥⊥P X

∣∣Y and T ⊥⊥P Y
∣∣X have first been characterized by Fink [6];

see also the reformulation by Rauh and Ay [14]. This characterization implies that
there are partitions X = X ′1 ∪ · · · ∪ X ′b and Y = Y ′1 ∪ · · · ∪ Y ′b such that supp(P ) ⊆
(X ′1×Y ′1)∪· · ·∪ (X ′b×Y ′b) and such that T ⊥⊥P {X,Y }

∣∣X ∈ X ′i , Y ∈ Y ′i for i = 1, . . . , b.
There exists i0 ∈ {1, . . . , b} such that x0 ∈ X ′i0 and y0 ∈ Y ′i0 . Since H(X|Y = y0) 6= 0 6=
H(Y |X = x0), there exist x1 ∈ X ′i0 \ {x0} and y1 ∈ Y ′i0 \ {y0} with P (x1, y0) > 0 and
P (x0, y1) > 0. For δ > 0 let

Pδ = P + δ · P (T |X,Y )γt;x0,x1;y0;y1 .

If δ is positive and small enough, then Pδ is a probability distribution in ∆P that sat-
isfies supp(P ) = supp(Pδ). Moreover, T ⊥⊥Pδ {X,Y }

∣∣X ∈ X ′i , Y ∈ Y ′i for i = 1, . . . , b.

Hence, T ⊥⊥Pδ X
∣∣Y and T ⊥⊥Pδ Y

∣∣X , and so Pδ ∈ arg minQ∈∆P
IQ(T : X|Y ). �

4. THE CASE OF BINARY T

4.1. Independence properties for optimizers in the interior

If T ⊥⊥P X
∣∣Y or T ⊥⊥P Y

∣∣X , then P solves the PID optimization problem (2). The
next theorem is a partial converse in the case of binary T . We denote the interior of ∆P

by
◦
∆P .

Theorem 4.1. Let T be binary. Assume that ∆P has full support and that Q̃ ∈
◦
∆P ∩ arg maxQ∈∆P

HQ(T |X,Y ) is an interior point. Then, either T ⊥⊥Q̃ X
∣∣Y or

T ⊥⊥Q̃ Y
∣∣X (or both). Thus, either UI(T : X \ Y ) = 0 or UI(T : Y \X) = 0.
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Remark 4.2. The proof of the theorem relies on the vanishing condition of the direc-

tional derivatives. Thus, the conclusion still holds when Q̃ does not belong to
◦
∆P , as long

as all directional derivatives of the target function HQ(T |X,Y ) exist and vanish at Q̃. By

Remark 3.2, this happens if and only if for any t ∈ T ′ the matrix (Q̃(t|x, y))x,y ∈ RX×Y
has rank one.

Remark 4.3. When T has cardinality three or more, the statement of the theorem
becomes false; see Example 6.1. This is related to the fact that there exist three positive
rank-one-matrices the sum of which has again rank one, cf. Remark 3.2. When the
support of ∆P is not full, the statement of the theorem becomes false, even when all
variables are binary; see Example 6.4

Remark 4.4. Theorem 4.1 can be used to efficiently compute UI (and the correspond-
ing bivariate information decomposition) when the optimum lies in the interior of ∆P ,
as searching for conditional independences in ∆P constitutes solving a linear program-
ming problem (see the proof of Theorem 4.5). If no solution in the interior is found,
maxQ∈∂∆P

(HQ(T |X,Y )) has to be solved.

P r o o f . Under the assumption that the optimum is attained in the interior of ∆P , it

is characterized by
∂Hq(T |X,Y )
∂gt,x,y

= 0. This leads to the system of equations

log
Q̃(t|x, y0)Q̃(t|x0, y)

Q̃(t|x0, y0)Q̃(t|x, y)
= 0 ,

for t ∈ {0, 1}, x ∈ X \ {x0} and y ∈ Y \ {y0}. For fixed x, y, this rewrites to

Q̃(0|x, y0)Q̃(0|x0, y) = Q̃(0|x0, y0)Q̃(0|x, y)

Q̃(1|x, y0)Q̃(1|x0, y) = Q̃(1|x0, y0)Q̃(1|x, y) .

Using Q̃(0|x, y) = 1− Q̃(1|x, y), this system is equivalent to

Q̃(0|x, y0)Q̃(0|x0, y) = Q̃(0|x0, y0)Q̃(0|x, y)

Q̃(0|x, y0) + Q̃(0|x0, y) = Q̃(0|x0, y0) + Q̃(0|x, y) .

These equations imply

(Q̃(0|x, y0)− Q̃(0|x0, y0))(Q̃(0|x0, y)− Q̃(0|x0, y0))

= Q̃(0|x, y0)Q̃(0|x0, y)− Q̃(0|x, y0)Q̃(0|x0, y0)

− Q̃(0|x0, y0))Q̃(0|x0, y) + Q̃(0|x0, y0))2

= Q̃(0|x0, y0)
(
Q̃(0|x, y)− Q̃(0|x, y0)− Q̃(0|x0, y) + Q̃(0|x0, y0)

)
= 0.

Therefore, for fixed values of x and y, there are only two possible solutions:

I(x, y) : Q̃(t|x0, y0) = Q̃(t|x, y0) and Q̃(t|x, y) = Q̃(t|x0, y) for all t,

II(x, y) : Q̃(t|x0, y0) = Q̃(t|x0, y) and Q̃(t|x, y) = Q̃(t|x, y0) for all t.
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Let X ′ = X \ {x0} and Y ′ = Y \ {y0}. By what has been shown so far, AI ∪ AII =
X ′ × Y ′, where

AI =
{

(x, y) ∈ X ′ × Y ′ : I(x, y) holds
}
,

AII =
{

(x, y) ∈ X ′ × Y ′ : II(x, y) holds
}
.

We next show that either AI = X ′ × Y ′ or AII = X ′ × Y ′ (or both).
Suppose that AI is not empty. Let (x, y) ∈ AI , and let y′ ∈ Y ′ \ {y}. If II(x, y′)

holds, then Q̃(t|x, y′) = Q̃(t|x, y0) = Q̃(t|x0, y0) = Q̃(t|x0, y
′). Thus, I(x, y′) also holds,

which implies (x, y′) ∈ AI . Thus, AI ⊂ X ′ × Y ′ is of the form AI = X ′I × Y ′, where
X ′I ⊆ X ′.

Similarly, AII = X ′×Y ′II , where Y ′II ⊆ Y ′. If AI 6= ∅ and AII 6= ∅, then AI ∩AII 6= ∅;
say (x′, y′) ∈ AI ∩ AII . Let (x, y) ∈ AI . Then Q̃(t|x, y) = Q̃(t|x′, y) = Q̃(t|x′, y′)
for all t. Similarly, if (x, y) ∈ AII . Then Q̃(t|x, y) = Q̃(t|x, y′) = Q̃(t|x′, y′) for all t.
Thus, all conditional distributions of t given any (x, y) ∈ X × Y are identical, and so
AI = AII = X ′ × Y ′.

The theorem now follows from the following observation: if AI = X ′ × Y ′, then
T ⊥⊥Q̃ X

∣∣Y , and if AII = X ′ × Y ′, then T ⊥⊥Q̃ Y
∣∣X . �

As a corollary to Theorem 3.7:

Theorem 4.5. Let Q̃ ∈
◦
∆P ∩ arg maxQ∈∆P

H(T |X,Y ), and assume that ∆P has full

support. Then Q̃ is not unique if

1. T ⊥⊥Q̃ X
∣∣Y and |X | ≥ 3 or

2. T ⊥⊥Q̃ Y
∣∣X and |Y| ≥ 3.

Equivalently, Q̃ is not unique

• when UI(T : X \ Y ) = 0 and |Y| > 2, or

• when UI(T : Y \X) = 0 and |X | > 2.

4.2. The case of restricted support

With a little more effort, the analysis of Theorem 4.1 extends to the case where ∆P

has restricted support. For any t ∈ T ′ = {0, 1} let Xt = supp(P (X|T = t)) and
Yt = supp(P (Y |T = t)). Lemma 2.3 says that supp(∆P,t) = Xt × Yt.

For any t ∈ T let t̄ = 1 − t. If x /∈ Xt, then P (T = t̄|X = x) = 1. Therefore,
T ⊥⊥ Y

∣∣ {X = x} for all x ∈ X \ Xt. Similarly, T ⊥⊥ X
∣∣ {Y = y} for all y ∈ Y \ Yt.

Thus, to prove that T ⊥⊥ Y
∣∣X , say, it suffices to look at X0 ∩ X1.

Lemma 4.6. 1. If X0 ∩ X1 = ∅, then T ⊥⊥Q Y
∣∣X for any Q ∈ ∆P .

2. If Y0 ∩ Y1 = ∅, then T ⊥⊥Q X
∣∣Y for any Q ∈ ∆P .

3. Suppose that X0 ∩ X1 6= ∅ 6= Y0 ∩ Y1.
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(a) If there exists t ∈ T ′ that satisfies Xt \ Xt̄ 6= ∅ and Yt \ Yt̄ 6= ∅, then

arg maxQ∈∆P
H(T |X,Y ) does not intersect the interior

◦
∆P .

(b) If Xt \ Xt̄ 6= ∅ and if there exists Q∗ ∈
◦
∆P ∩ arg maxQ∈∆P

H(T |X,Y ), then
T ⊥⊥Q∗ Y

∣∣ {X,Y ∈ Yt} (i. e., with respect to Q∗, T is independent of Y given
X, given that Y ∈ Yt).

(c) If Yt \ Yt̄ 6= ∅ and if there exists Q∗ ∈
◦
∆P ∩ arg maxQ∈∆P

H(T |X,Y ), then
T ⊥⊥Q∗ X

∣∣ {Y,X ∈ Xt} .

P r o o f . Statements (1) and (2): If X0 ∩X1 = ∅, then T is a function of X for any Q ∈
∆P , whence T ⊥⊥Q Y

∣∣X . Statement (2) follows similarly.
Statement (3a): Let x0 ∈ X0∩X1, y0 ∈ Y0∩Y1, x1 ∈ Xt \Xt̄ 6= ∅ and y1 ∈ Yt \Yt̄ 6= ∅.

Suppose that q ∈
◦
∆P . Then Q(t, x0, y0) > 0 and Q(t̄, x0, y0) > 0, whence Q(t|x0, y0) 6=

1. Then the derivative of H(T |X,Y ) in the direction of γt;x0,x1;y0,y1 is

log
Q(t|x0, y0)Q(t|x1, y1)

Q(t|x0, y1)Q(t|x1, y0)
= logQ(t|x0, y0) 6= 0.

Statement (3b): If |Yt| = 1, then Y is constant when conditioning on Y ∈ Yt, whence
the conclusion holds trivially. Let y0, y1 ∈ Yt with y0 6= y1, let x0 ∈ X0 ∩ X1, and let
x1 ∈ Xt \ Xt̄ 6= ∅. The derivative of H(T |X,Y ) at Q∗ in the direction of γt;x0,x1;y0,y1 is

log
Q∗(t|x0, y0)Q∗(t|x1, y1)

Q∗(t|x0, y1)Q∗(t|x1, y0)
= log

Q∗(t|x0, y0)

Q∗(t|x0, y1)
.

By assumption, this derivative vanishes at Q∗, whence Q∗(t|x0, y0) = Q∗(t|x0, y1), which
proves the statement. �

Theorem 4.7. Let T be binary, and suppose that Q∗ ∈ arg maxQ∈∆P
H(T |X,Y ) lies

in
◦
∆P .

• If X0 = X1 and Y0 6= Y1, then T ⊥⊥Q∗ X
∣∣Y .

• If Y0 = Y1 and X0 6= X1, then T ⊥⊥Q∗ Y
∣∣X .

P r o o f . The theorem follows from Lemma 4.6. �

4.3. Statistics for uniqueness and support of optimizers for binary T

To better understand whether the optimizer typically lies in the interior of ∆P and
whether it is typically unique, we uniformly sampled joint distributions P ∈ ∆T ,X ,Y
for binary T and different cardinalities of |X |, |Y|. Uniform sampling from ∆T,X,Y

was performed with Kraemers’ method [16]. Based on 10000 samples, the following
percentage of optima were found in the interior of ∆P :
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|X |/|Y| 2 3 4 5

2 77.6 49.3 76.3 81.4
3 - 52.7 58.4 63.8
4 - - 57.0 56.3
5 - - - 53.1

The percentage of solutions found in the interior of ∆P decreases with increasing
cardinality of |X | and |Y|. The following table lists the percentages for |X | = |Y| = k
over 1000 samples for different values of k.

k: 6 8 10 12 14 16 18 20

optimizer in interior [%]: 47.8 43.9 41.0 37.4 37.3 37.5 32.5 29.1

Under uniform sampling, all sampled distributions have full support. In accordance
with Theorem 4.5, we do not find unique optima in the interior of ∆P , except when the
cardinalities are 2 × 2 × k. In the 2 × 2 × k-case, the percentage of samples where we
found unique optimizers are (10,000 samples per k):

k: 2 3 4 5 6 10

optimizer unique [%]: 100 31.2 7.4 2.4 0.1 0

4.4. Visualization of the 2x2x3 case

For the all binary case, the geometry of optimization domain ∆P is generically a
rectangle and can readily be visualized, see Bertschinger et al. [4]. In this section
we aim to illustrate the features of the optimization domain for the next larger case
|T | = 2, |X | = 2, |Y| = 3. In this case, the four-dimensional optimization domain
∆P = ∆P,0 × ∆P,1 is the direct product of two two-dimensional polytopes. We pa-
rameterize elements Q ∈ ∆P by Q = Q0 + PT (0)(g0,0,0γ0;0,1,0,2 + g0,0,1γ0;0,1,1,2) +
PT (1)(g1,0,0γ1;0,1,0,2 + g1,0,1γ1;0,1,1,2). Figure 1 visualizes ∆P,0,∆P,1, and the projec-
tions of arg maxQ∈∆P

HQ(T |XY ) for three different distributions sampled from the unit
simplex. In (a) and (b), arg maxQ∈∆P

HQ(T |XY ) is a singleton in the interior or on the
boundary of ∆P . Note that in case (b) both projections of the optimizer lie at the bound-
ary of ∆P,0,∆P,1, in agreement with Lemma 3.3 In (c), there exists no unique optimizer,
but conditional independence T ⊥⊥Q∗ X

∣∣Y holds for all Q∗ on the line segment between
the boundary points in ∆P,0 and ∆P,1 and every such Q∗ ∈ arg maxQ∈∆P

HQ(T |XY ).

5. THE ALL BINARY CASE

If X, Y and T are all binary, ∆T ,X ,Y has 7 dimensions, which split in 5 dimen-
sions for V and 2 dimensions for ∆P . In this case it is possible to explicitly describe
arg maxQ∈∆P

HQ(T |X,Y ). This description will be developped throughout this chapter
and summarized at the end of this section in Theorem 5.5.

Throughought this section we assume that T ′ = {0, 1} = X = Y. In the following, V
is parameterized by the variables

a = PT (0),
b = PX|T (0|0),

c = PX|T (0|1),

d = PY |T (0|0),

e = PY |T (0|1),
(8)
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T X Y P (t, x, y)

0 0 0 a(bd+ g1)
0 0 1 a(b(1− d)− g1)
0 1 0 a((1− b)d− g1)
0 1 1 a((1− b)(1− d) + g1)
1 0 0 (1− a)(ce+ g2)
1 0 1 (1− a)(c(1− e)− g2)
1 1 0 (1− a)((1− c)e− g2)
1 1 1 (1− a)((1− c)(1− e) + g2)

Tab. 1. Parameterization of 2× 2× 2 distributions.

and by the coefficients g1, g2 of aγ0;0,1;0,1, (1−a)γ1;0,1;0,1. Table 1 makes the parametriza-
tion (5) explicit.

∆P is a rectangle. The allowed parameter domain is

−min {bd, (1− b)(1− d)} ≤ g1 ≤ min {b(1− d), (1− b)d}
−min {ce, (1− c)(1− e)} ≤ g2 ≤ min {c(1− e), (1− c)e} .

The lower and upper bounds on gi will be denoted by gimin
and gimax

respectively.
The following holds:

1. ∆p,0 is a singleton iff b ∈ {0, 1} or d ∈ {0, 1}.

2. ∆p,1 is a singleton iff c ∈ {0, 1} or e ∈ {0, 1}.

3. ∆P is a singleton iff both conditions are met. Thus, ∆P degenerates to a single
point precisely in the following four cases:

(a) H(X|T ) = 0;

(b) H(Y |T ) = 0;

(c) H(X|T = 0) = 0 and H(Y |T = 1) = 0;

(d) H(X|T = 1) = 0 and H(Y |T = 0) = 0.

In the all-binary case, Theorem 4.1 slightly generalizes:

Theorem 5.1. Let X,Y, T be binary. Suppose that ∆P is not a singleton in case (c)

or (d). If Q̃ = arg maxQ∈∆P
HQ(T |X,Y ) ∈

◦
∆P , then T ⊥⊥Q̃ X

∣∣Y or T ⊥⊥Q̃ Y
∣∣X .

Remark 5.2. Example 6.4 shows that the conclusion does not in general hold in the
singleton cases (c) and (d).

P r o o f . The singleton cases (a) and (b) are trivial, and the remaining cases follow from
Theorem 4.7. �

In the all-binary case, uniqueness can be completely characterized:
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Theorem 5.3. arg maxQ∈∆P
HQ(T |X,Y ) is unique, unless b = c and d = e.

P r o o f .
If arg maxQ∈∆P

HQ(T |X,Y ) is not unique, then arg max
Q∈
◦
∆P

HQ(T |X,Y ) is not

unique either (by Lemma 3.3), so we may restrict attention to maximizers in the interior
of ∆P . Thus, we assume that b, c, d, e /∈ {0, 1}.

First assume that ∆P has full support. As shown in Theorem 4.1 and its proof, there
are two cases I and II to consider. Inserting the parameterization from above and using
the injectivity of 1

1+x leads for case I to the equations 1

ce+ g2

bd+ g1
=

(1− c)e− g2

(1− b)d− g1

c(1− e)− g2

b(1− d)− g1
=

(1− c)(1− e) + g2

(1− b)(1− d) + g1
,

which simplify to

g2d− g1e = de(b− c)
g1(1− e)− g2(1− d) = (1− d)(1− e)(b− c) .

Rearranging for g1, g2 leads to

g1(d− e) = d(b− c)(1− d)

g2(d− e) = e(b− c)(1− e) .
(9)

For d 6= e, there exists a unique solution, and for b = c, the optimum is Q0 itself. For
d = e, there only exists a solution if b = c.

Similarly, case II reduces to

g2b− g1c = bc(d− e)
g1(1− c)− g2(1− b) = (1− b)(1− c)(d− e)

and rearranging for g1, g2 gives

g1(b− c) = b(d− e)(1− b)
g2(b− c) = c(d− e)(1− c) .

(10)

Again, there exists a unique solution for b 6= c and Q0 is the optimum for d = e.
Now assume that ∆P is a line. Following the proof of Theorem 5.1, assume that

b = 0. Plugging the parametrization from above into the equality Q(1|10) = Q(1|11)
gives

(1− a)
(
(1− c)e− g2

)
(1− a)

(
(1− c)e− g2

)
+ P (010)

=
(1− a)

(
(1− c)(1− e) + g2

)
(1− a)

(
(1− c)(1− e) + g2

)
+ P (011)

.

1No solutions exist for which one denominator equals 0. The same applies for case II.
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If P (010) = 0, then P (011) = 0, and conversely; otherwise, this equation has no solution.
In this case P (010) = P (011) = 0, the sum P (01) = P (010) + P (011) = a vanishes,
which contradicts T ′ = {0, 1}. Thus, P (010) 6= 0 and P (011) 6= 0. Using injectivity of
x 7→ 1

1+x and cancelling (1− a), this is equivalent to

(1− c)e− g2

P (010)
=

(1− c)(1− e) + g2

P (011)
. (11)

This equation is linear in g2 and has a single unique solution, since the coefficient 1
P (010) +

1
P (011) in front of g2 is positive. �

Only the case where the maximizer lies on the boundary of ∆P remains to be analyzed.

Theorem 5.4. Assume that Q̃ = arg maxQ∈∆P
HQ(T |X,Y ) lies at the boundary of ∆P .

Then, it is attained either at (g1min , g2min) or (g1max , g2max).

P r o o f . If ∆P is degenerate, then either g1min = g1max or g2min = g2max , and the theorem
becomes trivial. Otherwise, the statement follows from Lemma 3.3. �

The following theorem sums up the different possibilities.

Theorem 5.5. For non-constant binary random variables X, Y and T , there are five
cases:

1. b = c and d = e. In this case, X ⊥⊥ Y
∣∣T and arg maxQ∈∆P

HQ(T |X,Y ) is not
unique, but consists of the diagonal of ∆P .

2. T ⊥⊥Q̃ X
∣∣Y for the unique Q̃ = arg maxQ∈∆P

HQ(T |X,Y ).

3. T ⊥⊥Q̃ Y
∣∣X for the unique Q̃ = arg maxQ∈∆P

HQ(T |X,Y ).

4. The unique maximizer lies at (g1min
, g2min

).

5. The unique maximizer lies at (g1max
, g2max

).

Remark 5.6. (1) The last four cases in Theorem 5.5 intersect. For example, the in-
tersection of the last four cases contains the distribution 1

2δ000 + 1
2δ111 (see [6, 14] for a

discussion of the intersection of cases (2) and (3)).
(2) In cases 2. and 3., if 0 < b, c, d, e < 1, then Q̃ can be computed by solving (9)

or (10). If b = 0, then Q̃ can be computed in cases 2. and 3. by solving (11). Similar
equations can be obtained if b = 1 or if any of c, d, e lies in {0, 1}.

(3) The five cases can be distinguished by polynomial inequalities among the pa-
rameters a, b, c, d, e. Therefore, the five cases correspond to five semi-algebraic sets of
probability distributions. For example, case (2) holds if and only if the unique solution
(g1, g2) to (9) satisfies gimin ≤ gi ≤ gimax for i = 1, 2, which can be formulated as eight
polynomial inequalities.
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6. EXAMPLES

Example 6.1. (For ternary T , maximizers with full support need not satisfy CI state-
ments) Let X,Y be binary random variables with P (X,Y ) arbitrary (of full support),
and let T be ternary with

(P (T = 1|X = x, Y = y))x,y =

(
1/3 1/2

1/12 1/8

)
,

(P (T = 2|X = x, Y = y))x,y =

(
1/3 1/8

5/24 5/64

)
,

(P (T = 3|X = x, Y = y))x,y =

(
1/3 3/8

17/24 51/64

)
Then P minimizes IQ(T : X|Y ) on ∆P (cf. Remark 3.2), and one can check that P is

the unique minimizer on ∆P (it is impossible to find a line through P in ∆P such that
the two points at which this line hits the boundary satisfy the conclusion of Lemma 3.3).
P has full support, but there is no conditional independence statement.

Example 6.2. (An illustration of Theorem 3.10) Consider the distributions

x y t P (x, y, t)

0 0 0 1/6

0 0 1 1/6

1 1 0 1/6

1 1 1 1/6

2 2 0 1/9

2 2 1 2/9

x y t P ′(x, y, t)

0 1 0 1/6

0 1 1 1/6

1 0 0 1/6

1 0 1 1/6

2 2 0 1/9

2 2 1 2/9

Then T ⊥⊥P Y
∣∣X and T ⊥⊥P ′ Y

∣∣X as well as T ⊥⊥P X
∣∣Y and T ⊥⊥P ′ X

∣∣Y , and
P ′ ∈ ∆P . It follows that IP (T : Y |X) = IP ′(T : Y |X) = 0, whence P and P ′ are both
minimizers. The same holds true for any convex combination of P and P ′. Note that P
and P ′ (more generally: any convex combination of P and P ′) have restricted support:
the probability of

{
X = 2, Y 6= 2

}
vanishes. On the other hand, supp(∆P ) is full.

Example 6.3. (The all-binary case where ∆P is a line) Consider the 2× 2× 2 distri-
bution given by e = 0 and a, b, c, d = 1

2

T X Y P (t, x, y)

0 0 0 1/8

0 0 1 1/8

0 1 0 1/8

0 1 1 1/8

1 0 1 1/4

1 1 1 1/4
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∆P degenerates to a line P + g1γ0;0,1;0,1 with support − 1
8 ≤ g1 ≤ 1

8 . The conditional
entropy is

Hg1(T |X,Y ) = (3
8 − g1)Hg1(T |0, 1) + ( 3

8 + g1)Hg1(T |1, 1)

= ( 3
8 − g1)h

( 1
8 − g1

3
8 − g1

,
1
4

3
8 − g1

)
+ ( 3

8 + g1)h

( 1
8 + g1

3
8 + g1

,
1
4

3
8 + g1

)
.

By symmetry and Lemma 3.5, the unique maximizer of Hg1(T |X,Y ) lies at g1 = 0, that
is, P is the unique solution to the optimization problem. In this case, P equals Q0; that
is, X ⊥⊥P Y

∣∣T holds. Moreover, T ⊥⊥P X
∣∣Y holds.

Example 6.4. (The all-binary case where ∆P is a singleton) Consider the 2 × 2 × 2
distribution given by b = e = 1 and a, c, d = 1

2 :

T X Y P (t, x, y)

0 0 0 1/4

0 0 1 1/4

1 0 0 1/4

1 1 0 1/4

Here, ∆P is a singleton. Neither T ⊥⊥P Y
∣∣X nor T ⊥⊥P X

∣∣Y holds.

7. CONCLUSIONS

In this work we investigated uniqueness and support of the solutions to the optimization
problem underlying the definition of the unique information function UI(T : X \ Y )
defined by Bertschinger et al. [4]. This optimization problem consists of maximizing
the conditional entropy H(T |XY ) over the space of probability distributions with fixed
pairwise TX, TY marginals. We showed that this conditional entropy is not strictly
concave in exactly the directions in which P (T |XY ) is constant. From this we showed
that all optima that are attained in the interior of the optimization space which have full
support are not unique if |T | < max(|X |, |Y|) and identified sufficient conditions for non-
uniqueness that relate to independence statements. If the variable T is binary we showed
partial converses of these results. In this case, vanishing of the directional derivatives of
the H(T |XY ) implies a conditional independence T ⊥⊥ Y

∣∣X or T ⊥⊥ X
∣∣Y and thus

vanishing of the corresponding unique informations. Imposing such an independence
relation on the optimization domain led to a set of linear constraints. Thus, by solv-
ing this linear problems we solve the optimization problem if there exists a solution in
the interior, otherwise we reduce the optimization domain to its boundary. Numerical
experiments showed that a noticeable fraction of distributions sampled uniformely from
the probability simplex have corresponding optima in the interior. This fraction be-
comes smaller with growing cardinalities of |X |, |Y|. We derived an analytical solution
of the optimization problem when all variables are binary. Whenever possible, we gave
extensions to the theorems relaxing the assumptions on the support of the optima and
gave examples showing that the assumptions in our theorems are neccesary.
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