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RISK PROBABILITY OPTIMIZATION PROBLEM
FOR FINITE HORIZON CONTINUOUS TIME MARKOV
DECISION PROCESSES WITH LOSS RATE

Haifeng Huo and Xian Wen

This paper presents a study the risk probability optimality for finite horizon continuous-time
Markov decision process with loss rate and unbounded transition rates. Under drift condition,
which is slightly weaker than the regular condition, as detailed in existing literature on the
risk probability optimality Semi-Markov decision processes, we prove that the value function is
the unique solution of the corresponding optimality equation, and demonstrate the existence
of a risk probability optimization policy using an iteration technique. Furthermore, we provide
verification of the imposed condition with two examples of controlled birth-and-death system
and risk control, and further demonstrate that a value iteration algorithm can be used to
calculate the value function and develop an optimal policy.
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1. INTRODUCTION

Risk probability problems have formed a class of important stochastic optimization
problems, that can be used in risk analysis, queueing systems and finance [4, 6, 9, 11,
13, 24, 32]. In contrast to the classical expected optimality problem [6, 7, 8, 20, 27] that
focuses on the expectations of the total reward/costs, the risk probability optimization
problem aims at minimizing (or maximizing) the risk probability, which means that the
total loss (or reward) during a given time range is no more than (or exceeds) a given
initial loss (or reward) goal. The results of this process can then be used to measure the
risk of a stochastic system (economic and financial systems). Inspired by this situation,
risk probability criteria have garnered significant attention and have been widely studied
by [1, 2, 6, 10, 13, 15, 26, 28, 29, 31] for Markov decision processes (for short MDPs).

Risk probability optimality problems for Markov decision processes are first divided
into three groups that are based on the hold times of the system state: discrete-time
Markov decision processes (DTMDPs) [2, 26, 28, 29, 30, 31], semi-Markov decision pro-
cesses (SMDPs) [10, 11, 12, 13, 25], and continuous-time Markov decision processes

DOI: 10.14736/kyb-2021-2-0272

http://doi.org/10.14736/kyb-2021-2-0272


Risk probability for finite horizon continuous time Markov decision processes with loss rate 273

(CTMDPs) [14, 15, 16]. Then the second classification is grouped by the risk proba-
bility optimization problems with the reward case or the loss case. Most of the earlier
studies focus on the reward case, that minimizes the risk probability Pπ(Br ≤ λ) over all
the policies π, where Br denotes the total reward during a given time horizon, λ denote
the reward level. It is clear that Pπ(Br ≤ λ) = 1 − Pπ(Br > λ), which combined with
the conclusions from [13, 23] suggests that the risk probability minimization problem
Pπ(Br ≤ λ) in [16] is not equivalent to the minimization problem Pπ(Br > λ) in this
paper. Moreover, in some control models such as economic and financial systems, the
controller is often focused on the probability that the total loss incurred over a given
time horizon exceeds the initial capacity. Hence, limited literature [13, 19] is available
for the loss case, which minimizes the risk probability Pπ(Bl > λ) over all the policies π,
where Bl denotes the total loss during a given time horizon, λ denotes the loss level (or
goal). Specifically, Huang, Zou, and Guo [13] investigate the loss rates risk probability
for first passage SMDPs, They use the invariant embedding technique to establish the
optimality equation and prove the existence of optimal risk probability policies. Simi-
larly, Liu and Zou [19] consider the risk probability criterion for finite horizon SMDPs
with loss rate using the idea and iteration technique in [14] to demonstrate that the
value function satisfies the optimality equation and the existence of optimal policies,
and to derive an efficient algorithm for solving the value function. A review of the above
mentioned literature demonstrates that the risk probability criterion with loss rate just
considered in SMDPs, and CTMDPs for the risk probability criterion with the loss rate
have not yet been explored. Moreover, there are many real-word situations, such as
queueing systems, in which the lifetime is usually finite. Therefore, to the best of our
knowledge, it is prudent to research the risk probability criterion for finite CTMDPs
with loss rates in this paper.

Compared with the first passage risk probability CTMDPs developed in [15], the
considered ones for finite-horizon CTMDPs with loss rates have many different charac-
teristics due to their different performance criteria. (i) To define the policies, both loss
levels λ and planning horizons t should be considered the extended states’ components,
while only reward levels λ have been considered in [15]. (ii) Our condition here is weaker
than those proposed in [15]. The existence of optimal policies here is guaranteed by us-
ing the non-explosion of the controlled state process (see Assumption 1 in our paper),
while the existence of optimal policies is guaranteed by using the non-explosion of the
controlled state process and the properties of the target set B (see Assumption 3.2 and
3.6 in [15]). (iii) According to different policies, the probability space and the optimality
equation in our paper are different from those developed in [15].

Since a key feature of our proposed model is that the loss levels and planning horizons
are considered when the controller makes decisions. Thus, we first characterize the
history-dependent policy with the system’s states, loss levels and planning horizons,
and reestablish a probability space. Secondly, following the same method utilized in
[6, 7, 8], we establish a so-called drift condition to ensure the controlled state process
is non-explosive. As a result of this condition and the continuity and compactness
condition, we use an iteration technique to prove that the value function is the unique
solution to the corresponding optimality equation, and from this optimization equation
we demonstrate that a risk probability optimization policy exists. It should be noted
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that the drift condition is imposed on the transaction rates for CTMDPs, which is
typical, unlike the regular condition as explained in [10, 11, 12, 13, 25], because the
transition rates are allowed to be unbounded, as detailed in Remark 3.3. Moreover, a
value iteration algorithm is developed for calculating the value function and optimal
policies. Finally, we provide two examples to explain our primary results. In the first
example we demonstrate that our condition is verifiable via a controlled birth-and-death
system. In the second example we use the value iterative algorithm to compute the value
function and optimal policies.

The remainder of this paper is organized as follows. In Section 2, we describe the
model of CTMDPs with the risk probability criterion, in which the policies depend on
the states of the system, loss levels, and planning horizons. In Section 3, we present the
value iteration technique for solving the concerned optimization problem. Our results
are illustrated with two examples in Section 4.

2. OPTIMAL CONTROL PROBLEM

Continuous-time Markov decision processes (CTMDPs) model consists of the data

{E,A, (A(i) ⊆ A, i ∈ E), q(j|i, a), c(i, a)} (1)

with the following interpretation:

(a) E denotes the state space, which is assumed to be a nonempty denumerable set;

(b) A denotes the action space, which is assumed to be a nonempty Borel space,
endowed with the Borel σ-algebra B(A);

(c) A(i) denotes a set of admissible actions at a given state i ∈ E. The subset
K := {(i, a)|i ∈ E, a ∈ A(i)} of E ×A represents the set of allowed state-action pairs;

(d) q(j|i, a) denote the transition rates, which are assumed to be conservative in that∑
j∈E

q(j|i, a) = 0 ∀(i, a) ∈ K, (2)

and stable in the sense

q∗(i) = sup
a∈A(i)

qi(a) <∞ ∀(i, a) ∈ K, (3)

where qi(a) := −q(i|i, a) ≥ 0 for all (i, a) ∈ K and q(j|i, a) ≥ 0 for all (i, a) ∈ K such
that j 6= i;

(e) c(i, a) denotes the loss rate, which is assumed to be a nonnegative real-valued
function on K.

The stochastic evolution of the control model (1) is described as follows: At the initial
time s0 = 0, the system is in the state i0 and the controller has a loss level λ̃0 := λ0. The
controller will do his/her best to manage the loss level during the planning horizon t0.
Roughly speaking, given the system state i0, the loss level λ0 and the planning horizon
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t0, the controller chooses an action a0 ∈ A(i0) according to some given policy. Once
such an action is taken, two things happen:

(i) The system stays at state i0 until time s1. At time s1, the system moves to a

new state i1 with the probability q(i1|i0,a0)
qi0 (a0) (qi0(a0) 6= 0). The holding time θ1 = s1 − s0

satisfies the exponential distribution 1− e−qi0 (a0)(s1−s0).

(ii) At time s1, a loss c(i0, a0)(s1 − s0) is incurred. Based on the current state i1,
loss level λ̃1 = [λ0− c(i0, a0)(s1− s0)]+, planning horizon t1 = [t0− (s1− s0)]+, and the
previous state i0, loss level λ0, planning horizon t0, the controller chooses another action
a1 ∈ A(i1), and the process is repeated. Thus, a sequence of losses stemming from all
the taken actions will be incurred. The aim is to seek out a control policy that optimizes
the risk probability criterion, that is the probability that the total losses exceeds a loss
level during a fixed planning horizon.

To formalize the above description, we denote by sk (k ≥ 1) the kth decision epoch,
by ik the state of the system on [sk, sk+1), by ak the action at time sk, by θk := sk−sk−1

the holding time at state ik−1. Moreover, we denote by λ̃k the loss level at the decision
epoch sk, and by tk the planning horizon at the decision epoch sk. The loss level λ̃k
satisfies

λ̃k := L1(ik−1, λ̃k−1, ak−1, θk) := [λ̃k−1 − c(ik−1, ak−1)θk]+, (4)

and the planning horizon tk satisfies

tk := L2(tk−1, θk) := [tk−1 − θk]+. (5)

Here and everywhere else, the state process after moment s∞ := limk→∞ sk is considered
to remain in the artificial state i∞ := ∆ 6∈ E forever. Thus, we set q(·|∆, a∆) := 0,
c(∆, a∆) := 0, A∆ := A ∪ {a∆} with isolated point a∆.

When the decision maker chooses actions, he/she must consider not only the state of
the system, but also the loss level and the planning horizon.Thus, we have to redefine
some policies and reestablish a probability space. The measurable space (Ω,F) is defined
by

Ω := Ω0
⋃
{(i0, λ0, t0, s1, i1, λ1, t1, . . . , sk, ik, λk, tk, . . . ,∞,∆,∞,∞, . . .)|i0 ∈ E, λ0

∈ [0,+∞), t0 ∈ [0,+∞), sl ∈ (0,∞], il ∈ E, λl ∈ [0,+∞), tl ∈ [0,∞),∀1 ≤ l ≤
k, k ≥ 1},

and F denotes the Borel σ-algebra on Ω, where Ω0 := E × [0,+∞) × [0,+∞) ×
((0,+∞] × E × [0,+∞) × [0,+∞))∞. For each k ≥ 0, e := (i0, λ0, t0, s1, i1, λ1, t1, . . . ,
sk, ik, λk, tk, . . .) ∈ Ω, the k-component internal history is given by h0(e) := (i0, λ0, t0),
hk(e) := (i0, λ0, t0, s1, i1, λ1, t1, . . . , sk, ik, λk, tk), the projections Sk, Xk,Λk, Tk are de-
fined by

Sk(e) := sk, Xk(e) := ik, Λk(e) := λk, Tk(e) := tk,

and S∞ := limk→∞ Sk. For simplicity, the argument e will often be omitted. The state
process {xs} is defined by

xs :=
∑
k≥0

I{Sk≤s<Sk+1}ik + ∆I{s≥S∞} for s ≥ 0, (6)
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where IB denotes the indicator function of a set B.

Definition 2.1. A deterministic history-dependent policy is a sequence π = {f0, f1, . . .}
of Borel measurable functions from Ω onto A∆ for each k = 0, 1, 2, . . . , and such that
for each e ∈ Ω, s ≥ 0,

π(e, s) = I{s=0}f0(h0(e)) +
∑
k≥0

I{Sk<s≤Sk+1}fk(hk(e)) + I{s≥S∞}δa∆(da), (7)

where δa∆
(da) denotes the Dirac measure on A∆ concentrated on the isolated point a∆.

The set of all deterministic history-dependent policies is denoted by Π.
A deterministic history-dependent policy π = {f0, f1, . . .} is said to be Markovian, if

there exist some Borel measurable functions f̃k(k ≥ 0) from E×R+× [0, T ] to A∆, such
that fk(hk(e)) = f̃k(ik, λk, tk) for all e ∈ Ω. We denote by Πm the set of all deterministic
Markov policies.

A deterministic Markov policy π = {f̃0, f̃1, . . .} ∈ Πm is said to be stationary if there
exists a Borel measurable function f from E×R+× [0, T ] to A∆such that f̃k = f . When
it is the case, we denote by f such policy. The set of all deterministic stationary policies
is denoted by Πs. Clearly, we have Πs ⊆ Πm ⊆ Π.

For any given policy π = {f0, f1, . . .} ∈ Π, from [7, 17], the jumps intensity of the
process {xs} is given by

mπ(j|e, s) = I{s=0}m
π
0 (j|h0(e)) +

∑
k≥0

I{Sk<s≤Sk+1}m
π
k (j|hk(e)), (8)

where mπ
0 (j|h0(e)) := q(j|i0, f0(h0(e)))I{j 6=i0},m

π
k (j|hk(e)) := q(j|ik, fk(hk(e)))I{j 6=ik}.

Due to the changes in the loss levels and the planning horizons here, for each policy
π = {f0, f1, . . .} ∈ Π and each initial probability measure γ on E ×R+ ×R+, according
to the Ionescu Tulcea theorem (e. g., Proposition 7.45 in [3]), there exists a unique
probability measure Pπγ space on the measure space (Ω,F , Pπγ ), which has a projection
onto k-component internal history Hk with

Pπγ,0(i, dλ0, dt0) := γ(i, dλ0, dt0), (9)

Pπγ,k+1(Γ× (ds, j, dλk+1, dtk+1)) :=

∫
Γ

Pπγ,k(dhk)I{θk<∞}m
π
k (j|hk) (10)

× exp{−mπ
k (E|hk)(s− Sk)}δL2(tk,s−Sk)(dtk+1)

×δL1(ik,λk,fk(hk),s−Sk)(dλk+1) ds,

Pπγ (Γ× (∞,∆,∞,∞)) :=

∫
γ

Pπγ (dhk)I{θk=∞} (11)

+I{θk<∞} exp{−
∫ ∞

0

mπ
k (E|hk) dv},

for (i, dλ0, dt0) ∈ E × B(R+) × B(R+), where H0 := E × R+ × R+ and Hk := (E ×
R+ × R+) × ((0,∞] × E∆ × R+ × R+)k, for k = 1, 2, . . ., Γ ∈ B(Hk),mπ

k (E|hk) :=
−q(ik|ik, fk(hk)), and B(X) stands for the σ-algebra on X.
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Let Eπγ denotes the expectation operator with respect to Pπγ . If the initial probability
measure γ is concentrated on the initial (i, λ, t) ∈ E × R+ × R+, we shall use Eπ(i,λ,t)
and Pπ(i,λ,t) instead of Eπγ and Pπγ , respectively.

To ensure the existence of the risk probability optimal policy, we need to assume that
the state process {xs, s ≥ 0} is nonexplosive.

Assumption 2.1. For any π ∈ Π, (i, λ, t) ∈ E ×R+ × [0, T ], Pπ(i,λ,t)(S∞ =∞) = 1.

The main goal of Assumption 2.1 is to avoid the possibility of an infinite number of
jumps during any finite horizon. We give a sufficient condition used in [5, 6, 7, 14] for
the verification of Assumption 2.1.

Lemma 2.2. If there exist some constants c0 > 0, b0 ≥ 0, M0 ≥ 0 and a measurable
function V ≥ 1 on E satisfying the following condition:

(a)
∑
j∈E V (j)q(j | i, a) ≤ c0V (i) + b0, for all (i, a) ∈ K;

(b) q∗(i) ≤M0V (i) for all i ∈ E, with q∗(i) = supa∈A(i) qi(a).

then Assumption 2.1 holds.

P r o o f . The statement follows from Theorem 1 in [14]. �

Remark 2.3. (1) Lemma 2.2 is a generalization of the drift condition introduced in
[6, 7, 8]. The conditions of the Lemma 2.2 are satisfied when the transition rates are
uniformly bounded (i. e. supi∈E q

∗(i) <∞).
(2) It should be noted that there is a significant difference between Lemma 2.2 and

the regular condition described in some existing literature on SMDPs [11, 12, 13]. The
regular condition means that the semi-Markov kernel Q(δ, E|i, a) satisfies Q(δ, E|i, a) ≤
1 − ε for some constants δ > 0 and ε > 0 and (i, a) ∈ K. For the model of CTMDPs,
it means that 1 − e−qi(a)δ ≤ 1 − ε, or equivalently, e−qi(a)δ ≥ ε for all (i, a) ∈ K. This
implies that the transition rates q(j|i, a) must be bounded. Note that, in this work, we
allow for the transition rates to be unbounded, see Example 4.1.

For any (i, λ) ∈ E × R+ and π ∈ Π, the risk probability criterion Uπ(i, λ, T ) with
loss rate on the finite horizon T is given by

Uπ(i, λ, T ) := Pπ(i,λ,T )

(∫ T

0

c(xs, πs) ds > λ
)
, (12)

where c(xs, πs)(e) := c(xs(e), π(e, s)) for all e ∈ Ω and s ≥ 0.

Definition 2.4. A policy π∗ ∈ Π is called risk probability optimal if

Uπ
∗
(i, λ, T ) = U∗(i, λ, T ) ∀(i, λ) ∈ E ×R+, (13)

where U∗(i, λ, T ) := infπ∈Π U
π(i, λ, T ) is the corresponding risk probability value func-

tion.
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3. MAIN RESULTS

In this section, some suitable conditions are provided for ensuring the existence of op-
timality equation and the optimal policies. Moreover, an efficient method is developed
for computing the value function and the optimal policies.

Notation: For a policy π ∈ Π, let Uπ(i, λ, t) be the corresponding risk probability of
the controlled system from 0 to time t ∈ [0, T ], given the initial state i ∈ E and the loss
level λ ∈ R+, i. e.,

Uπ(i, λ, t) := Pπ(i,λ,t)

(∫ t

0

c(xs, πs) ds > λ
)
. (14)

Let

U∗(i, λ, t) = inf
π∈Π

Uπ(i, λ, t) ∀(i, λ, t) ∈ E ×R+ × [0, T ]. (15)

Denote by Um the set of all Borel measurable functions from E×R+× [0, T ] to [0, 1].
For each (i, λ, t) ∈ E × R+ × [0, T ], U ∈ Um, f ∈ Πs and a ∈ A(i), we define the

operators HfU and HU on Um by

HfU(i, λ, t) := I(λ,+∞)(c(i, f)t)e−qi(f)t (16)

+
∑
j 6=i

∫ t

0

U
(
j, λ− c(i, f)u, t− u

)
e−qi(f)uq(j|i, f) du

HaU(i, λ, t) := I(λ,+∞)(c(i, a)t)e−qi(a)t (17)

+
∑
j 6=i

∫ t

0

U
(
j, λ− c(i, a)u, t− u

)
e−qi(a)uq(j|i, a) du

HU(i, λ, t) := inf
a∈A(i)

HaU(i, λ, t), (18)

with qi(f) := −q(i|i, f(i, λ, t)) and q(j|i, f) := q(j|i, f(i, λ, t)).
Similarly, for every f ∈ Πs, we define iteratively the operators (HnU, n ≥ 1), ((Hf )nU,

n ≥ 1) on Um by setting

H1U = HU,Hn+1U = H(HnU), (Hf )1U = HfU, (Hf )n+1U = Hf ((Hf )nU), n ≥ 1.

From the theoretical perspective, to show the existence of a risk probability optimal
policy, as in CTMDPs [6, 7, 8, 11], we introduce the following assumption.

Assumption 3.1. For any fixed (i, λ, t) ∈ E ×R+ × [0, T ],

(a) A(i) is compact.

(b) For all i, j ∈ E, the function c(i, a) and q(j|i, a) are continuous in a ∈ A(i) and
q(i|i, a) is inf-compact on K.
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(c) For each fixed U ∈ Um,
∑
j 6=i
∫ t

0
U
(
j, λ− c(i, a)u, t− u

)
e−qi(a)uq(j|i, a) du is lower

semicontinuous in a ∈ A(i).

Remark 3.1. Assumption 3.1 is so-called continuity-compactness condition, which is
trivially satisfied when the action space is denumerable and the set A(i) is finite for all
i ∈ E.

We list below some important properties of these operators.

Lemma 3.2. Suppose that Assumption 2.1 and 3.1 hold. The following assertions hold:

(a) If U, V ∈ Um with U(i, λ, t) ≥ V (i, λ, t) for all (i, λ, t) ∈ E × R+ × [0, T ], then
HaU(i, λ, t) ≥ HaV (i, λ, t) and HU(i, λ, t) ≥ HV (i, λ, t), for every a ∈ A(i).

(b) If U ∈ Um, then HU ∈ Um, and there exists a policy f ∈ Πs for which the infimum
in (18) is attained at f(i, λ, t) ∈ A(i), i. e.,

HU(i, λ, t) = HfU(i, λ, t) ∀(i, λ, t) ∈ E ×R+ × [0, T ]. (19)

P r o o f . (a) This part follows from the definition of the operator H.
(b) If U ∈ Um, by (18), we know that HU ∈ Um. Moreover, under Assumption

2.1 and 3.1, for any (i, λ, t) ∈ E × R+ × [0, T ], by the measurable selection theorem
(Proposition D.5(a) in [9]), we know that there is a policy f ∈ Πs for which the infimum
in (18) is attained at f(i, λ, t) ∈ A(i). �

For any (i, λ, t) ∈ E×R+× [0, T ] and π ∈ Π, and based on facts that the state process
{xs, s ≥ 0} is non-explosive, the loss rate c(i, a) is nonnegative, and the probability
measure is continuous, we may write Uπ(i, λ, t) as

Uπ(i, λ, t) = Pπ(i,λ,t)

(∫ t

0

c(xs, πs) ds > λ
)

= Pπ(i,λ,t)

( ∞∑
m=0

∫ Sm+1∧t

Sm∧t
c(xs, πs) ds > λ

)
= Pπ(i,λ,t)

( ∞⋂
n=1

n∑
m=0

∫ Sm+1∧t

Sm∧t
c(xs, πs) ds > λ

)
= lim

n→∞
Pπ(i,λ,t)

( n∑
m=0

∫ Sm+1∧t

Sm∧t
c(xs, πs) ds > λ

)
:= lim

n→∞
Uπn (i, λ, t).

Thus, we obtain a sequence {Uπn (i, λ, t), n = −1, 0, 1, . . .} with Uπ−1(i, λ, t) := 0, satisfy-
ing 0 ≤ Uπn (i, λ, t) ≤ Uπn+1(i, λ, t) ≤ 1, n ≥ −1 and limn→∞ Uπn (i, λ, t) = Uπ(i, λ, t).

The following lemma provides a fundamental result for solving the optimality equa-
tion.

Lemma 3.3. Suppose that Assumption 2.1 and 3.1 hold. Then, for each (i, λ, t) ∈
E ×R+ × [0, T ], π = {f0, f1, . . .} ∈ Π and n ≥ −1,
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(a) Uπn ∈ Um and Uπ ∈ Um.

(b) Uπn+1(i, λ, t) = Hf0U
1π
n (i, λ, t), and Uπ(i, λ, t) = Hf0U

1π(i, λ, t) with the 1-shift

policy of π, i. e. π1 := (f̂0, f̂1, ...), f̂k(s1, i1, λ1, t1, . . . , sk+1, ik+1, λk+1, tk+1) :=
fk+1(i, λ, t, s1, i1, λ1, t1, . . . , sk+1, ik+1, λk+1, tk+1), k = 0, 1, . . ..

In particular, for f ∈ Πs, U
f
n+1(i, λ, t) = HfUfn (i, λ, t) and Uf (i, λ, t) = HfUf (i, λ, t).

P r o o f . (a) We shall prove part(a) by induction on the integer n. The claims being
obvious for n = −1 since Uπ−1(i, λ, t) = 0 ∈ Um for (i, λ, t) ∈ E × R+ × [0, T ], π ∈ Π.
We assume they hold for any n ≥ −1. From (10) and the property of the conditional
expectation, we have

Uπn+1(i, λ, t) = Pπ(i,λ,t)

( n+1∑
m=0

∫ Sm+1∧t

Sm∧t
c(xs, πs) ds > λ

)
= Pπ(i,λ,t)

(∫ t

0

c(xs, πs) ds > λ, S1 > t
)

+Pπ(i,λ,t)

( n+1∑
m=0

∫ Sm+1∧t

Sm∧t
c(xs, πs) ds > λ, S1 ≤ t

)
= Eπ(i,λ,t)[I{

∫ t
0
c(xs,πs) ds>λ,S1>t}]

+Eπ(i,λ,t)[I{
∑n+1

m=0

∫ Sm+1∧t
Sm∧t c(xs,πs) ds>λ,S1≤t}

]

= Eπ(i,λ,t)[E
π
(i,λ,t)[I{

∫ t
0
c(xs,πs) ds>λ,S1>t}|S1, xS1 ,Λ1, T1]]

+Eπ(i,λ,t)[E
π
(i,λ,t)[I{

∑n+1
m=0

∫ Sm+1∧t
Sm∧t c(xs,πs) ds>λ,S1≤t}

|S1, xS1
,Λ1, T1]]

=
∑
j 6=i

∫ +∞

0

Pπ(i,λ,t)

(∫ t

0

c(xs, πs) ds > λ, S1 > t|S1 = u, xS1 = j,

Λ1 = λ− c(i, f0)u, T1 = [t− u]+
)
e−qi(f0)uq(j|i, f0) du

+
∑
j 6=i

∫ +∞

0

Pπ(i,λ,t)

(∫ u

0

c(xs, πs) ds+

n+1∑
m=1

∫ Sm+1∧t

Sm∧t
c(xs, πs) ds

> λ, S1 ≤ t|S1 = u, xS1
= j,Λ1 = λ− c(i, f0)u, T1 = [t− u]+

)
×e−qi(f0)uq(j|i, f0) du

= I(λ,∞)(c(i, f0)t)e−qi(f0)t +
∑
j 6=i

∫ t

0

Pπ(i,λ,t)

( n+1∑
m=1

∫ Sm+1∧t

Sm∧t
c(xs, πs) ds

> λ− c(i, f0)u, S1 ≤ t|S1 = u, xS1 = j,

Λ1 = λ− c(i, f0)u, T1 = [t− u]+
)
e−qi(f0)uq(j|i, f0) du

= I(λ,+∞)(c(i, f0)t)e−qi(f0)t
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+
∑
j 6=i

∫ t

0

Pπ(i,λ,t)

( n+1∑
m=1

∫ (Sm+1∧t)−u

(Sm∧t)−u
c(xl+u, πl+u) dl > λ− c(i, f0)u,

S1 ≤ t|S1 = u, xS1
= j,Λ1 = λ− c(i, f0)u, T1 = [t− u]+

)
×e−qi(f0)uq(j|i, f0) du

= I(λ,+∞)(c(i, f0)t)e−qi(f0)t

+
∑
j 6=i

∫ t

0

P
1π
(j,λ−c(i,f0)u,t−u)

( k∑
m=0

∫ Sm+1∧(t−u)

Sm∧(t−u)

c(xs, πs) ds

> λ− c(i, f0)u
)
e−qi(f0)uq(j|i, f0) du

= I(λ,+∞)(c(i, f0)t)e−qi(f0)t +
∑
j 6=i

∫ t

0

U
1π
k

(
j, λ− c(i, f0)u, t− u

)
×e−qi(f0)uq(j|i, f0) du

:= Hf0U
1π
k (i, λ, t).

The induction hypothesis then gives Uπn+1 := Hf0U
1π
k ∈ Um. Thus, by the limit of a

sequence of measurable functions is still measurable, we have limn→∞ Uπn = Uπ ∈ Um.

(b) Given (i, λ, t) ∈ E × R+ × [0, T ], we have Uπn+1(i, λ, t) = Hf0U
1π
n (i, λ, t), for

any n ≥ −1. Thus letting n → ∞, and applying the dominated convergence theorem,
we have Uπ(i, λ, t) = Hf0U

1π(i, λ, t). In particular, if π = f ∈ Πs, then Uf (i, λ, t) =
HfUf (i, λ, t). �

Remark 3.4. Lemma 3.3 provides an efficient method for computing the function
Uf (i, λ, t), namely we have Ufn+1(i, λ, t) = HfUfn (i, λ, t) and Uf (i, λ, t) = limn→∞ Ufn (i, λ, t)

for any (i, λ, t) ∈ E ×R+ × [0, T ], f ∈ Πs, where Uf−1(i, λ, t) := 0.

The following result is new, and we shall use it to prove the uniqueness of the solution
to the corresponding optimality equation.

Theorem 3.5. Suppose that Assumption 2.1 and 3.1 are satisfied.

(a) Given U, V ∈ Um and f ∈ Πs, if U(i, λ, t) − V (i, λ, t) ≤ Hf (U − V )(i, λ, t), then
U(i, λ, t) ≤ V (i, λ, t) for all (i, λ, t) ∈ E ×R+ × [0, T ].

(b) Uf is the unique solution in Um to the equation

U(i, λ, t) = HfU(i, λ, t) ∀f ∈ Πs, (i, λ, t) ∈ E ×R+ × [0, T ].

P r o o f . (a) To prove part (a), we shall show that for all f ∈ Πs, (i, λ, t) ∈ E × R+ ×
[0, T ], n = 1, 2, . . . ,

(Hf )n(U − V )(i, λ, t) ≤ P f(i,λ,t)(Sn ≤ t). (20)
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We shall prove (3.7) by induction on the integer n. We know that

P f(i,λ,t)(S1 ≤ t)

= Ef(i,λ,t)[I{S1≤t}]

= Ef(i,λ,t)[E
f
(i,λ,t)[I{S1≤t}|S1, XS1

,Λ1, T1]]

=
∑
j 6=i

∫ +∞

0

P f(i,λ,t)

(
S1 ≤ t|S1 = u,XS1 = j,Λ1 = λ− c(i, f)u,

T1 = [t− u]+
)
e−qi(f)uq(j|i, f) du

=
∑
j 6=i

∫ t

0

e−qi(f)uq(j|i, f) du

= 1− e−qi(f)t. (21)

Since U, V ∈ Um, by the definition of the operator H, we have

Hf (U − V )(i, λ, t)

=
∑
j 6=i

∫ t

0

(U − V )
(
j, λ− c(i, f)u, t− u

)
×e−qi(f)uq(j|i, f) du

≤
∑
j 6=i

∫ t

0

e−qi(f)uq(j|i, f) du

= P f(i,λ,t)(S1 ≤ t),

where the last equality follows from (21). Thus, the statement (20) is true for n = 1.
Suppose that the statement is true for any n ≥ 1. By (10) and the property of the
conditional expectation, we have

P f(i,λ,t)(Sn+1 ≤ t)

= Ef(i,λ,t)[I{Sn+1≤t}]

= Ef(i,λ,t)[E
f
(i,λ,t)[I{Sn+1≤t}|S1, XS1 ,Λ1, T1]]

=
∑
j 6=i

∫ +∞

0

P f(i,λ,t)

(
Sn+1 ≤ t|S1 = u,XS1

= j,Λ1 = λ− c(i, f)u,

T1 = [t− u]+
)
e−qi(f)uq(j|i, f) du

=
∑
j 6=i

∫ t

0

P f(j,λ−c(i,f)u,t−u)

(
Sn ≤ t− u

)
e−qi(f)uq(j|i, f) du. (22)

Moreover, from the definition of the operators (Hf )n and the induction hypothesis,
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we obtain

(Hf )n+1(U − V )(i, λ, t)

= Hf (Hf )n(U − V )(i, λ, t)

=
∑
j 6=i

∫ t

0

(Hf )n(U − V )
(
j, λ− c(i, f)u, t− u

)
×e−qi(f)uq(j|i, f) du

≤
∑
j 6=i

∫ t

0

P f(j,λ−r(i,f)u,t−u)

(
Sn ≤ t− u

)
×e−qi(f)uq(j|i, f) du

= P f(i,λ,t)(Sn+1 ≤ t)

where the last equality follows from (22). This together with the sufficient condition
U(i, λ, t)− V (i, λ, t) ≤ Hf (U − V )(i, λ, t) and the induction hypothesis yield

U(i, λ, t)− V (i, λ, t) ≤ (Hf )n(U − V )(i, λ, t) ≤ P f(i,λ,t)(Sn ≤ t). (23)

Letting n→∞ in (23), and taking into account Assumption 2.1, we obtain

U(i, λ, t)− V (i, λ, t) ≤ lim
n→∞

P f(i,λ,t)(Sn ≤ t) = 0.

This concludes the proof of part (a) of the theorem.
(b) For each (i, λ, t) ∈ E×R+×[0, T ], it follows from Lemma 3.2 (b) that Uf (i, λ, t) =

HfUf (i, λ, t). If V is another solution in Um to the equation U(i, λ, t) = HfU(i, λ, t)
for (i, λ, t) ∈ E × R+ × [0, T ], then Uf (i, λ, t) − V (i, λ, t) = Hf (Uf (i, λ, t) − V (i, λ, t)),
which together with part (a) gives Uf (i, λ, t) = V (i, λ, t). This concludes the proof. �

The following theorem is our main result. It shows that the unique solution to the
corresponding optimality equation is the value function and proves the existence of
optimal policies.

Theorem 3.6. Suppose that Assumption 2.1 and 3.1 hold.

(a) For any (i, λ, t) ∈ E ×R+ × [0, T ] and n ≥ −1, define

U∗n+1 := HU∗n, with U∗−1 := 0.

Then, limn→∞ U∗n = U∗.

(b) The value function U∗ is the unique solution in Um to the optimality equation. i. e.,

U∗(i, λ, t) = HU∗(i, λ, t) ∀(i, λ, t) ∈ E ×R+ × [0, T ]. (24)

(c) There exists a policy f∗ ∈ Πs with U∗(i, λ, t) = Hf∗U∗(i, λ, t) and U∗(i, λ, t) =
Uf
∗
(i, λ, t).
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(d) Let f̃0(i, λ, T ) := f∗(i, λ, T ), f̃k(i, λ, T, s1, i1, λ1, t1, . . . , Sk, ik, λk, tk) := f∗(ik, λ̃k, tk)
for (i, λ, T, s1, i1, λ1, t1, . . . , Sk, ik, λk, tk) ∈ Hk, k ≥ 1. Then, The deterministic
history-dependent policy π∗ := (f̃0, f̃1, . . . , f̃k) is optimal, where λ̃k = L1(ik−1, λ̃k−1,
f∗(ik−1, λ̃k−1, tk−1), θk), tk = L2(tk−1, θk), i0 = i, λ0 = λ, t0 = T, θk = sk − sk−1,
and L1, L2 are defined in (4),(5).

P r o o f . (a) By definition of the operator H and U∗n, we have

0 ≤ U∗n(i, λ, t) ≤ U∗n+1(i, λ, t) ≤ 1, n ≥ −1.

This implies that limn→∞ U∗n(i, λ, t) := Ũ(i, λ, t). To finish the proof, it remains to prove
that Ũ = U∗.

We first prove, for any π ∈ Π, by induction on the integer n ≥ −1 that

U∗n(i, λ, t) ≤ Uπn (i, λ, t) ∀(i, λ, t) ∈ E ×R+ × [0, T ]. (25)

Obviously, (25) holds for n = −1, since U∗−1(i, λ, t) = 0 = Uπ−1(i, λ, t) for any π ∈ Π.
Suppose that U∗n(i, λ, t) ≤ Uπn (i, λ, t) for all π = {f0, f1, . . .} ∈ Π and n ≥ −1. Then, by
the induction hypothesis and Lemma 3.3(b), we have

U∗n+1(i, λ, t) = HU∗n(i, λ, t) ≤ HU
1π
n (i, λ, t) ≤ Hf0

U
1π
n (i, λ, t) = Uπn+1(i, λ, t).

Letting n → ∞, we obtain Ũ(i, λ, t) = limn→∞ U∗n(i, λ, t) ≤ Uπ(i, λ, t). This implies
that Ũ(i, λ, t) ≤ U∗(i, λ, t), as π is arbitrary.

To prove the converse, we consider the setsAn := {a ∈ A(i)|HaU∗n(i, λ, t) ≤ HŨ(i, λ, t)}
for all n ≥ −1 and A∗ := {a ∈ A(i)|HaŨ(i, λ, t) = HŨ(i, λ, t)}. Under Assump-
tion 3.1, using the operator H is monotone, and U∗n ↑ Ũ , we deduce that the sets An
and A∗ are nonempty and compact, and An ↓ A∗. Hence, it follows from the mea-
surable selection theorem (Proposition D.5(a) in [9]) that there exist an ∈ An such
that HanU∗n(i, λ, t) = HU∗n(i, λ, t). Thus, using the facts that A(i) is compact and
An ↓ A∗, we conclude the existence of a subsequence {ank

} of {an} and a∗ ∈ A∗ satis-
fying ank

→ a∗ as nk → ∞. Hence, in view of the monotonicity of the sequence {U∗n}
and the definition of the operator H, we have

HankU∗nk
(i, λ, t) ≥ HankU∗n(i, λ, t) ∀nk ≥ n.

Letting k →∞ and applying the dominated convergence theorem, we obtain

lim
k→∞

HankU∗nk
(i, λ, t) = lim

k→∞
HU∗nk

(i, λ, t) ≥ Ha∗U∗n(i, λ, t).

Thus Ũ(i, λ, t) ≥ Ha∗U∗n(i, λ, t).
Furthermore, letting n→∞, we obtain that Ũ(i, λ, t) ≥ HŨ(i, λ, t). The Lemma 3.2

(b) ensures the existence of a policy f ∈ Πs satisfying

Ũ(i, λ, t) ≥ HŨ(i, λ, t) = Hf Ũ(i, λ, t),

which together with Lemma 3.3(b) and Remark 3.4 gives that

Ũ(i, λ, t) ≥ (Hf )nŨ(i, λ, t) ≥ (Hf )nŨ−1(i, λ, t) = Ufn−1(i, λ, t).
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Letting n→∞, we obtain that

Ũ(i, λ, t) ≥ Uf (i, λ, t) ≥ U∗(i, λ, t).

This fact concludes the proof of part (a).
(b) By Lemma 3.3(b), for each (i, λ, t) ∈ E ×R+ × [0, T ], we have

Uπ(i, λ, t) = Hf0U
1π(i, λ, t) ≥ Hf0U∗(i, λ, t) ≥ HU∗(i, λ, t) ∀π ∈ Π,

This implies that U∗(i, λ, t) ≥ HU∗(i, λ, t), as π is arbitrary.
On the other hand, from part (a) and the definition of U∗n, for each (i, λ, t) ∈ E ×

R+ × [0, T ], we have

U∗n+1(i, λ, t) = HU∗n(i, λ, t) ≤ HaU∗n(i, λ, t) ∀a ∈ A(i).

Letting n→∞ and invoking the dominated convergence theorem, give

U∗(i, λ, t) ≤ HaU∗(i, λ, t).

Therefore, U∗(i, λ, t) ≤ HU∗(i, λ, t), since a was taken to be arbitrary. Thus, U∗ = HU∗.
Furthermore, for each (i, λ, t) ∈ E × R+ × [0, T ], the existence of a policy f ∈ Πs

satisfying U∗(i, λ, t) = HfU∗(i, λ, t) is ensured by Lemma 3.2(b). Similarly, if V ∈ Um
satisfies the equation V (i, λ, t) = HV (i, λ, t) then there exists a policy f

′ ∈ Πs such that

V (i, λ, t) = Hf
′

V (i, λ, t). This implies that

U∗(i, λ, t) = HfU∗(i, λ, t) ≤ Hf
′

U∗(i, λ, t), (26)

V (i, λ, t) = Hf
′

V (i, λ, t) ≤ HfV (i, λ, t). (27)

Combining (26) and (27) gives

U∗(i, λ, t)− V (i, λ, t) ≤ Hf
′

(U∗ − V )(i, λ, t), (28)

V (i, λ, t)− U∗(i, λ, t) ≤ Hf (U∗ − V )(i, λ, t), (29)

which together with Theorem 3.5(a) yield U∗(i, λ, t) = V (i, λ, t). This proves part (b).
(c)According to Lemma 3.2(b), there exists a policy f∗ ∈ Πs such that

U∗(i, λ, t) = Hf∗U∗(i, λ, t),

which together with Theorem 3.5(b) and part (b) gives U∗(i, λ, t) = Uf
∗
(i, λ, t).

(d) Using (4),(7),(10), and the definition of π∗ for any (i, λ, t) ∈ E ×R+ × [0, T ], we

have P f
∗

γ,k = Pπ
∗

γ,k and for all k ≥ 0. Therefore, P f
∗

γ = Pπ
∗

γ . Hence, we conclude that

Uπ
∗
(i, λ, t) = Uf

∗
(i, λ, t) = U∗(i, λ, t), and so π∗ is optimal. �

The arguments of Theorem 3.6 lead to the following iterative scheme for computing
the value function U∗(i, λ, t).
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The Value iteration algorithm

Step 1: Set U∗−1(i, λ, t) := 0 with (i, λ, t) ∈ E ×R+ × [0, T ].
Step 2: Substitute n+ 1 for n, set

HaU∗n(i, λ, t) = I(λ,+∞)(c(i, a)t)e−qi(a)t

+
∑
j 6=i

∫ t

0

U∗n

(
j, λ− c(i, a)u, t− u

)
e−qi(a)uq(j|i, a) du, (30)

U∗n+1(i, λ, t) = min
a∈A(i)

{HaU∗n(i, λ, t)}. (31)

Step 3: For a given fully small positive ε, if |U∗n+1(i, λ, t) − U∗n(i, λ, t)| < ε, stop.
Otherwise, return to step 2.

Since, for large value of n, U∗n+1(i, λ, t) and U∗n(i, λ, t) are highly close, the value U∗n+1

is usually taken as the value function U∗.

Remark 3.7. It should be noted that the formula (30) is derived from the trapezoidal
integration method in [18], which is explained as below.∫ b

a

g(x) dx ≈
m−1∑
k=0

g(a+ kh) + g(a+ (k + 1)h)

2
h, (32)

in which h is the step length, k ≤ m, k,m denotes positive integer with a+mh = b.

4. EXAMPLES

In this section, we provide two examples to illustrate our main results. The first one
concerns the birth-and-death system and illustrates the verification of the imposed con-
dition in this paper. The second one is about the risk management problem and exhibits
the usefulness of the value iteration algorithm for computing the value function and an
optimal policy.

Example 4.1. (Optimal control of birth-and-death system; see Example 6.1 in [6])
Consider a controlled birth-and-death system (33 – 34) below, in which the state variable
represents the population size. The positive constants ρ and µ denote natural birth and
death rates, respectively. In state 0, the decision maker selects an action a from a
finite set A(0). This action may increase (u2(0, a) ≥ 0) or decrease (u2(0, a) ≤ 0) the
immigration parameter. In state i ∈ {1, 2, 3, . . .}, the decision maker takes an action
a ∈ A(i), where A(i) is a finite set. This action may increase (u2(i, a) ≥ 0) or decrease
(u2(i, a) ≤ 0) the immigration parameter, and also increase (u1(i, a) ≥ 0) or decrease
(u1(i, a) ≤ 0) the emigration parameter. Moreover, the decision maker takes a action
a ∈ A(i), i ∈ E, which incurs a loss at the loss rate c(i, a) ≥ 0.

This birth-and-death system can be described by a continuous-time Markov decision
process. Suppose that the corresponding transition rates are given by

For i = 0 and a ∈ A(0),

q(1|0, a) := −q(0|0, a) = u2(0, a), q(j|0, a) = 0 for j ≥ 2. (33)
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For i ≥ 1 and a ∈ A(i)

q(j|i, a) =


µi+ u1(i, a), if j = i− 1,

−(ρ+ µ)i− u1(i, a)− u2(i, a), if j = i,

ρi+ u2(i, a), if j = i+ 1,

0, otherwise.

(34)

The goal here is to give some suitable conditions ensuring the existence of an optimal
policy. To do so, we establish the following conditions.

B1. µi + u1(i, a) ≥ 0 and ρi + u2(i, a) ≥ 0 for all a ∈ A(i) and i ≥ 1; and u2(0, a) ≥ 0
for all a ∈ A(0).

B2. ‖uk‖ := sup(i,a)∈K |uk(i, a)| <∞ for k = 1, 2.

Under these conditions, we obtain the following :

Proposition 4.1. Under the conditions B1, B2, the birth-and-death system satisfies
Assumption 2.1 and 3.1. Thus, in particular, the existence of a risk probability optimal
policy is ensured by Theorem 3.6.

P r o o f . To verify Assumption 2.1, set V (i) := i+1 for i ≥ 0, M0 := ρ+µ+‖u1‖+‖u2‖.
Since conditions B1 and B2 are satisfied, we have

q∗(i) = sup
a∈A(i)

qi(a) ≤M0V (i) (35)

for all i ∈ E, which implies that Assumption 2.1(b) holds.
Moreover, using (33) and (34), we obtain, for a ∈ A(0)∑

j∈E
V (j)q(j|0, a) = u2(0, a) ≤ (ρ+ µ)V (0) +M0, (36)

for i ≥ 1 and a ∈ A(i). We also obtain∑
j∈E

V (j)q(j|i, a) = (ρ− µ)i− u1(i, a) + u2(i, a) ≤ (ρ+ µ)V (i) +M0, (37)

which together with (35), (36) imply that Assumption 2.1 holds with c0 := ρ + µ and
b0 := M0.

It follows from the finiteness of A(i) and Remark 3.1 that Assumption 3.1 holds.
Then, by Theorem 3.6, we know that the risk probability optimal policy exists. �

Example 4.2. (A risk management problem) Consider a startup company with three
running status 0, 1 and 2, where the state 0 represents the company goes bankrupt, the
state 1 represents the company is running normally, the state 2 represents the company
has been a very good cash generator. In state 0, the company went bankrupt and could
not pay any losses, which means that the decision maker do not need to choose any
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decision action (we denote by a01) and c(0, a01) = 0, a01 ∈ A(0). In state 1, the decision
maker can choose a financing way a11 incurring in a loss rate c(1, a11) ≥ 0 or another
financing way a12 incurring in a loss rate c(1, a12) ≥ 0. In state 2, the decision maker
can choose a high yield financing way a21 incurring in a higher loss rate c(2, a21) ≥ 0 or
an ordinary financing way a22 incurring in a lower loss rate c(2, a22) ≥ 0. The evolution
of this controlled system as follows: when the system is in the state i ∈ {1, 2}, and
the action a ∈ A(i) = {ai1, ai2} is chosen, the system remains at i for an exponential-
distributed random time with the parameter q(i|i, a), and then moves to a new state j

with probability q(j|i,a)
qi(a) (qi(a) 6= 0, j = 0, 1, 2). For this system, the main objective of

the decision marker is to find an optimal policy for the risk probability with loss rate
during a fixed finite horizon [0, T ].

From the above evolution, this controlled system can be regarded as a model of
CTMDPs with the state space E = {0, 1, 2}, the action sets A(0) = {a01}, A(1) =
{a11, a12}, A(2) = {a21, a22}. Moreover, we assume that the planning horizon T = 15,
the transition rates are given by

q(0|0, a01) = 0, q(1|0, a01) = 0, q(2|0, a01) = 0,

q(0|1, a11) = 0.0144, q(1|1, a11) = −0.18, q(2|1, a11) = 0.1656,

q(0|1, a12) = 0.0072, q(1|1, a12) = −0.12, q(2|1, a12) = 0.1128, (38)

q(0|2, a21) = 0.006, q(1|2, a21) = 0.294, q(2|2, a21) = −0.3,

q(0|2, a22) = 0.0018, q(1|2, a22) = 0.0582, q(2|2, a22) = −0.06,

and the loss rates are given by

c(0, a01) = 0, c(1, a11) = 4, c(1, a12) = 3, c(2, a21) = 5, c(2, a22) = 2.

From (38), we know that the transition rates are uniformly bounded, the state space and
the action space are finite. Then, by Remark 2.3 and 3.1, we obtain that Assumption
2.1 and 3.1 are satisfied under the condition V ≡ 1 in Lemma 2.2. Thus, we can use
the value iteration algorithm in Theorem 3.6 to compute the value function and optimal
policies.

For i = 0, by (38), we know the state 0 is a absorbing state. Hence, from c(0, a01) = 0,
we have the value function U∗(0, λ, t) = Uπ(0, λ, t) = 0 for any policy π ∈ Π.

For i = 1, 2, λ ∈ [0,+∞) and t ∈ [0, 15], by Theorem 3.6(a), we compute the function
U∗(2, λ, t) as follows:

Step 1: Set U∗−1(i, λ, t) := 0.

Step 2: Employing (30) and (31), we calculate the functions Uan+1(i, λ, t) and
U∗n+1(i, λ, t) as follows:

For i = 1, a ∈ A(1), n ≥ 1,

Ha11U∗n(1, λ, t) = I(λ,+∞)(4t)e
−0.18t

+0.08× 0.18×
∫ t

0

U∗n(0, λ− 4u, t− u)e−0.18u du

+0.92× 0.18×
∫ t

0

U∗n(2, λ− 4u, t− u)e−0.18u du,
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Ha12U∗n(1, λ, t) = I(λ,+∞)(3t)e
−0.12t

+0.06× 0.12×
∫ t

0

U∗n(0, λ− 3u, t− u)e−0.12u du

+0.94× 0.12×
∫ t

0

U∗n(2, λ− 3u, t− u)e−0.12u du,

U∗n+1(1, λ, t) = min{Ha11U∗n(1, λ, t), Ha12H∗n(1, λ, t)}.

For i = 2, a ∈ A(2), n ≥ 1,

Ha21U∗n(2, λ, t) = I(λ,+∞)(5t)e
−0.3t

+0.02× 0.3×
∫ t

0

U∗n(0, λ− 5u, t− u)e−0.3u du

+0.98× 0.3×
∫ t

0

U∗n(1, λ− 5u, t− u)e−0.3u du,

Ha22U∗n(2, λ, t) = I(λ,+∞)(2t)e
−0.06t

+0.03× 0.06×
∫ t

0

U∗n(0, λ− 2u, t− u)e−0.06u du

+0.97× 0.06×
∫ t

0

U∗n(1, λ− 2u, t− u)e−0.06u du,

U∗n+1(2, λ, t) = min{Ha21U∗n(2, λ, t), Ha22U∗n(2, λ, t)}.

Step 3: For each i = 1, 2, if |U∗n+1(i, λ, t)− U∗n(i, λ, t)| < 10−12, the iteration stops.
Then, go to step 4, the value U∗n+1 is usually received as U∗; or else, go black to step 2
and by replacing n with n+ 1.

Step 4: For each i = 1, 2, t = 10, 15, drawing the graphs of these functionsHaU∗(i, λ, t),
U∗(i, λ, t), see Figures 1 – 4.

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

loss level λ 

H
a
U

* (i
,λ

,1
5
)

 

 

(30,0.1748)

(45,0.1362)

H
a

11U
*
(1,λ,15)

H
a

12U
*
(1,λ,15)

H
a

21U
*
(2,λ,15)

H
a

22U
*
(2,λ,15)

Fig. 1. The function HaU∗(i, λ, 15).
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Fig. 2. The value function U∗(i, λ, 15).

From Figures 1 – 4, we can observe the following conclusions.
(a) From Figures 1 – 2, we see that at time s0 = 0, the planning horizon is t = 15
and U∗(i, λ, 15) = Hai1U∗(i, λ, 15) = Hai2U∗(i, λ, 15) = 0 with i = 1, 2, λ ≥ 90. At
state 1, when 0 < λ < 45, Ha11U∗(1, λ, 15) is less than Ha12U∗(1, λ, 15); when 45 ≤
λ < 90, Ha12U∗(1, λ, 15) is less than Ha11U∗(1, λ, 15). At state 2, when 0 < λ < 30,
Ha21U∗(2, λ, 15) is less than Ha22U∗(1, λ, 15); when 30 ≤ λ < 90, Ha22U∗(2, λ, 15) is
less than Ha21U∗(2, λ, 15). In this case, under the minimum risk probability criterion
the optimal action is selected according to the following formula:

f∗(1, λ, 15) =


a11, 0 ≤ λ < 45;

a12, 45 ≤ λ < 90;

a11 = a12, λ ≥ 90.

f∗(2, λ, 15) =


a21, 0 ≤ λ < 30;

a22, 30 ≤ λ < 90;

a21 = a22, λ ≥ 90.

(39)

(b) From Figures 3 – 4, we see that U∗(i, λ, 10) = Hai1U∗(i, λ, 10) = Hai2U∗(i, λ, 10) = 0
with i = 1, 2, λ ≥ 90. At state 1, when 0 < λ < 30, Ha11U∗(1, λ, 10) is less than
Ha12U∗(1, λ, 10); when 30 ≤ λ < 90, Ha12U∗(1, λ, 10) is less than Ha11U∗(1, λ, 10). At
state 2, when 0 < λ < 20, Ha21U∗(2, λ, 10) is less than Ha22U∗(1, λ, 10); when 20 ≤ λ <
90, Ha22U∗(2, λ, 10) is less than Ha21U∗(2, λ, 10). In this case, under the minimum risk
probability criterion the optimal action is selected according to the following formula:

f∗(1, λ, 10) =


a11, 0 ≤ λ < 30;

a12, 30 ≤ λ < 90;

a11 = a12, λ ≥ 90.

f∗(2, λ, 15) =


a21, 0 ≤ λ < 20;

a22, 20 ≤ λ < 90;

a21 = a22, λ ≥ 90.

(40)

It follows from (a), we know that at the initial time s0 = 0, when the system state is
i0 ∈ {1, 2}, the loss level λ0 > 0 and the planning horizon t0 = 15, the controller chooses
an action f̃0(i0, λ0, t0) := f∗(i0, λ0, t0) according to (39). Once such an action is taken,
the system stays at state i0 until time s1, at which point the system moves to a new
state i1 ∈ {0, 1, 2}(i1 6= i0) and a loss c(i0, f̃0(i0, λ0, t0))θ1 is incurred. If the system state
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Fig. 3. The function HaU∗(i, λ, 10).
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Fig. 4. The value function U∗(2, λ, 10).

i1 = 0, the system will remain in state forever, as can be seen from (38). If the system
state i1 6= 0, based on the current state i1, loss level λ̃1 = L1(i0, λ0, f̃0(i0, λ0, t0), θ1) =
[λ0 − c(i0, f̃0(i0, λ0, t0))θ1]+, planning horizon t1 = L2(t0, θ1) = [t0 − θ1]+ with θ1 =
s1−s0, the controller chooses another action f̃1(i0, λ0, t0, s1, i1, λ1, t1) := f∗(i1, λ̃1, t1) ∈
A(i1), where the holding time θ1 = s1 − s0 satisfies the exponential distribution 1 −
e−qi0 (f̃0(i0,λ0,t0))θ1 . For example, suppose that θ1 = 5, by (4) and (5), we know that
the corresponding planning horizon t1 = 10. Then, from (40), the optimal action f̃1 is
taken. The evolution of this system is repeated, which together with Theorem 3.6 (c)
gives that π∗ = {f̃0, f̃1, . . .} is optimal.
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