This paper investigates a distributed solver for non-negative matrix factorization (NMF) over a multi-agent network. After reformulating the problem into the standard distributed optimization form, we design our distributed algorithm (DisNMF) based on the primal-dual method and in the form of multiplicative update rule. With the help of auxiliary functions, we provide monotonic convergence analysis. Furthermore, we show by computational complexity analysis and numerical examples that our distributed NMF algorithm performs well in comparison with the centralized NMF algorithm.
distributed optimization, multi-agent network, non-negative matrix factorization, multiplicative update rules
15A23, 68W15