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In this work, we define a partial order on probabilistic metric spaces and establish some
new Caristi’s fixed point theorems and Ekeland’s variational principle for the class of (right)
continuous and Archimedean t-norms. As an application, a partial answer to Kirk’s problem
in metric spaces is given.
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1. PRELIMINARIES

In [4], Caristi established a celebrated fixed point theorem which is very useful in the
theory of nonlinear analysis. Since then, several generalizations of the theorem were
obtained by many authors in generalized spaces, for instance, see [1, 2, 6, 12–15, 28].
Recall that this theorem states that any map T : X → X defined on a complete metric
space (X, d) has a fixed point provided that there exists a lower semi-continuous map
ϕ : X → [0,+∞) such that

d(x, T (x)) ≤ ϕ(x)− ϕ(T (x)), for every x ∈ X. (1)

The notion of a probabilistic metric space as a field of probabilistic analysis was intro-
duced in 1942 by K. Menger [23], which is a generalization of metric spaces. Since then,
this theory has been developed in many directions, besides in its axiomatic growth and
defining topological structure therein (e. g., fuzzy metric spaces in the sense of Michalek
and Kramosil [22] and George and Veeramani [7]), fixed point theory was studied by
several authors in these spaces (see [1, 6, 8, 11, 27]). The aim of the present paper is
to prove a new Caristi’s fixed point theorem in probabilistic metric spaces based on the
contraction introduced in [1] and as a consequence deduce some related Caristi’s type
fixed point theorems in metric and probabilistic metric spaces. Also a partial answer to
Krik’s problem in ordinary metric space (X, d) is given. In the following, we recall some
well-known definitions and results in the theory of probabilistic metric spaces.
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Recall (see [25]) that a t-norm is a binary operation ∗ : [0, 1]2 → [0, 1] which satisfies
the following conditions:

(a) x ∗ y = y ∗ x,

(b) x ∗ (y ∗ z) = (x ∗ y) ∗ z,

(c) a ∗ 1 = a for all a ∈ [0, 1],

(d) a ∗ b ≤ c ∗ d where a ≤ c and b ≤ d and a, b, c, d ∈ [0, 1].

Also, ∗ is said to be continuous (upper or lower semicontinuous, briefly, u.s.c. or l.s.c.)
if it is a continuous (u.s.c. or l.s.c.) function in [0, 1]2. Since a t-norm ∗ is non-
decreasing and commutative, the following proposition allows us to speak about left-
continuous and right continuous t-norms instead of lower and upper semicontinuous
t-norms, respectively.

Proposition 1.1. (Klement and Mesiar [18]) A t-norm ∗ is l.s.c. (u.s.c.) if and only
if it is left-continuous (right continuous) in its first component, that is, if and only if for
each y ∈ [0, 1] and for all non-decreasing (non-increasing) sequences (xn)n≥1 we have

lim
n→+∞

(xn ∗ y) = ( lim
n→+∞

xn ∗ y).

For the class of all t-norms (which includes non-continuous t-norms) the only exist-
ing characterization is by the axioms (a)-(d) and among the important algebraic sub-
classes of t-norms, the following conceptions are more important. The t-norm ∗ is called
Archimedean if for each x, y ∈ (0, 1), there is n ∈ N such that

xn =

n times︷ ︸︸ ︷
x ∗ x ∗ · · · ∗ x< y,

and the t-norm ∗ is said to be strictly monotone if x ∗ y < x ∗ z whenever x > 0 and
y < z, also a t-norm ∗ is called strict if it is continuous and strictly monotone [11, 18].

Remark 1.2. (Kolesárová [21], Klement and Mesiar [18], Klement and Mesiar [16])
Every left-continuous Archimedean t-norm is necessarily continuous.

The following representation theorem holds.

Theorem 1.3. (see Schweizer and Sklar [26], Klement and Mesiar [18], Abbasi and
Mottaghi Golshan [1]) For a t-norm ∗ : [0, 1]2 → [0, 1] the following are equivalent:

(i) ∗ is a Archimedean t-norm,

(ii) a ∗ b ≥ a⇒ b = 1,∀a ∈ (0, 1].

Indeed, if ∗ be a continuous t-norm then above condition is equivalent to the
following (see [16, 18, 20]).
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(iii) There exists a continuous, strictly decreasing function ϑ : [0, 1] → [0,+∞] such
that ϑ(1) = 0 (so-called additive generator), and such that for all x, y ∈ [0, 1],

ϑ(x) + ϑ(y) ∈ Rang(ϑ) ∪ [ϑ(0),+∞],

x ∗ y = ϑ(−1)(ϑ(x) + ϑ(y)),

where, ϑ(−1) is the pseudo-inverse of ϑ, i. e.,

ϑ(−1)(x) = sup{y ∈ [a, b], ϑ(y) > x}.

Moreover, the function ϑ−1 is non-increasing and right-continuous.

(iv) There exists a continuous, strictly increasing function θ : [0, 1] → [0, 1] such that
θ(1) = 1 (so-called multiplicative generator), and such that for all x, y ∈ [0, 1]

θ(x)θ(y) ∈ Rang(θ) ∪ [0, θ(0)],

x ∗ y = θ(−1)(θ(x)θ(y)),

where, θ(−1) is the pseudo-inverse of θ, i. e.,

θ(−1)(x) = sup{y ∈ [0, 1], θ(y) < x}.

Moreover, ∗ is a strict t-norm if and only if every continuous additive (multiplicative)
generator ϑ (θ) of ∗ satisfies ϑ(1) = 0 (θ(0) = 0) (see [16, 18]).

In general, additive generator and multiplicative generator are only assumed right-
continuous at 0 (see [19, Definition 2.4] and [18]). Among the important examples of
t-norm we mention the following. For every x, y ∈ [0, 1],

(i) The minimum t-norm is defined by x ∗∧ y = ∧{x, y},

(ii) The product t-norm is defined by x ∗p y = x · y,

(iii) The Schweizer-Sklar t-norms is defined by xLλy = ∨({xλ + yλ − 1, 0})1/λ, λ > 0.

(iv) The family (TYλ )λ∈(0,+∞) of Yager t-norms is given by

TYλ (x, y) = ∨
{

1− ((1− x)λ + (1− y)λ)
1
λ , 0
}
.

(v) The family (TSWλ )λ∈(−1,+∞) of Sugeno-Weber t-norm is given by

TSWλ (x, y) = ∨
{
x+ y − 1 + λxy

1 + λ
, 0

}
.
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The Yager and Sugeno-Weber t-norms are increasing and TY1 = TSW0 = L1. Minimum
t-norm has no any additive generator and − ln(x), (1− xλ)/λ and (1− x)λ are additive
generators of (ii), (iii) and (iv), respectively.

In the standard notation, ∆+ stands for the set of all non-decreasing functions F :
R→ R+ satisfying supt∈R F (t) = 1 and F (0) = 0. Since any function from ∆+ is equal
zero on [−∞, 0], we can consider the set ∆+ consisting of non-decreasing functions F
defined on [0,+∞] that satisfy F (0) = 0 and F (+∞) = 1. The class ∆+ plays important
role in the probabilistic fixed point theorems.

Denote by ε0 the specific distribution function defined by

ε0 =

{
1 t > 0,
0, t = 0.

Definition 1.4. (see Menger [23], Schweizer and Sklar [26], Hadzic and Pap [11])
A Menger probabilistic metric space (briefly in the sequel we use PM-space) is a triple
(X,F, ∗), where X is a non-empty set and F is a mapping from X × X into ∆+. We
denote the function F (x, y)(·) by Fx,y(·), for all x, y ∈ X. The function F is assumed to
satisfy the following conditions:

(PM1) Fx,y(t) = 0 if t = 0,

(PM2) Fx,y(t) = ε0 if and only if x = y,

(PM3) Fx,y(t) = Fy,x(t),

(PM4) Fx,y(t+ s) ≥ Fx,z(t) ∗ Fy,z(s),

for all x, y, z ∈ X and t, s > 0.
Axiom (PM2) is equivalent to the following condition:

(PM2) Fx,y(t) = 1 for all t > 0 if and only if x = y.

Any fuzzy metric space (X,M, ∗) is equivalent to a Menger space [22, Corollary
of Theorem 1] in the sense that M(x, y, t) = Fx,y(t), for all x, y ∈ X, t > 0. Note
that in the most literature F is considered left-continuous function, but, in general by
virtue of Corollary 1.8 it may be assumed that F is right-continuous (also, see the
last paragraph below Definition 7 of [22]). Indeed, in this paper, in order to obtain
the main results, like the same argument in [7, Axiom (GV1)], we will assume that
Fx,y(t) > 0,∀t > 0, x, y ∈ X.

Recall that if (X,F, ?) be a PM-space and ∗ be a t-norm such that a ? b ≥ a ∗ b, for
each a, b ∈ [0, 1], then (X,F, ∗) is a PM-space but the converse, in general, is not true.

The (ε, λ)-topology [25] in X is introduced by the family of neighbourhoods {Uε,λ(x),
ε > 0, λ ∈ (0, 1)}x∈X where Uε,λ(x) is defined by

Uε,λ(x) = {(x, y) ∈ X,Fxy(ε) > 1− λ},

according to this definition, a sequence (xn)n≥1 in a PM-space is said to converge to a
point x if for every r ∈ (0, 1), t > 0, there exists n0 ∈ N (n0 depends on r and t) such
that xn ∈ Ut,r(x) whenever n ≥ n0. Notice that xn → x if and only if, Fx,xn → ε0, i. e.
for every t > 0, limn Fx,xn(t) = 1. If a t-norm ∗ is such that supa<1 a ∗ a = 1, then X in
the (ε, λ)-topology is a metrizable topological space.
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Definition 1.5. (see George and Veeramani [7], Schweizer and Sklar [26], Gregori et
al. [9])

(a) (xn)n≥1 is called a F-Cauchy sequence in (X,F, ∗) if for any given t > 0 and ε ∈ (0, 1],
there exists n0 = n0(ε, t) ∈ N such that Fxn,xm(t) > 1− ε whenever n,m ≥ n0.

(b) A PM-space in which every F-Cauchy sequence is convergent is called F-complete.

In general note that the convergence and so completeness of X is independent of the
choice of t-norm ∗.

Remark 1.6. (Grabiec [8]) In a PM-space (X,F, ∗), Fx,y(·) is non-decreasing for all
x, y ∈ X.

It follows that at each point t > 0, the right limit F+
x,y = lims→t+ Fx,y(s) and the left

limit F−x,y = lims→t− Fx,y(s) exist in [0, 1] and the following two inequalities hold:

F−x,y(t) ≤ Fx,y(t) ≤ F+
x,y(t).

Lemma 1.7. (see Lemma 6 and Corollary 7 of Grabiec [8]) If limn→∞ xn = x and
limn→∞ yn = y. Then

Fx,y(t− ε) ≤ lim inf
n→∞

Fxn,yn(t) ≤ lim sup
n→∞

Fxn,yn(t) ≤ Fx,y(t+ ε),

for all t > 0 and 0 < ε < t/2.

Corollary 1.8. Let limn→∞ xn = x and limn→∞ yn = y. Then

(i) If Fx,y(·) is right continuous, for all x, y ∈ X, then lim supn→∞ Fxn,yn(t) ≤ Fx,y(t),
for all t > 0, that is, F(·,·)(t) is an upper semi-continuous function on X ×X, for
all t > 0.

(ii) If Fx,y(·) is left continuous, for all x, y ∈ X, then lim infn→∞ Fxn,yn(t) ≥ Fx,y(t),
for all t > 0, that is, F(·,·)(t) is a lower semi-continuous function on X ×X, for all
t > 0.

(iii) If Fx,y(·) is continuous, for all x, y ∈ X, then limn→∞ Fxn,yn(t) = Fx,y(t), for all
t > 0, that is, F(·,·)(t) is a continuous function on X × X, for all t > 0 (see also
[26]).

Lemma 1.9. If (X,F, TSWλ ) be a PM-space for some λ ∈ (−1,+∞) then the triangular
inequality (PM4) is equivalent to the following inequality

(1 + λ)Fx,y(t+ s) + 1 ≥ Fx,z(s) + Fy,z(t) + λFx,z(s)Fy,z(t), (2)

for all x, y, z ∈ X and s, t > 0.

P r o o f . It immediately follows from TSWλ (a, b) ≤ c ⇔ a + b + λab ≤ (1 + λ)c + 1, for
all a, b, c ∈ [0, 1]. �
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2. MAIN RESULTS

In this section we extend the results in [1] by a new proof based on partially ordered
set and Zermelo-Bourbaki-Kneser fixed point theorem for the class of (right) continuous
and Archimedean t-norms in PM-space.

A partially ordered set is a pair (X,4), where X is a nonempty set and 4 is a relation
in X which is reflexive (x 4 x for all x ∈ X), antisymmetric (for x, y ∈ X,x 4 y and
y 4 x imply x = y) and transitive (for x, y, z ∈ X,x 4 y and y 4 z imply x 4 z). A
nonempty subset C of X is said to be a chain if every pair of elements is comparable,
i. e. for given x, y ∈ C, either x 4 y or y 4 x. A mapping T : X → X is said to be
progressive (regressive) if x 4 T (x) (T (x) 4 x), for all x ∈ X, respectively.

The Zermelo fixed point is a general principle and is one of the first fixed point
theorems using the order structure on X. Many important fixed point theorems can be
derived from it.

Theorem 2.1. (Zermelo, Bourbaki, and Kneser [29], see also Zeidler [28]) Let (X,4)
be a partially ordered set, in which every chain has a supremum. If T is a progressive,
then T has a fixed point. Also the theorem remains true if “supremum” is replaced by
“infimum” and “progressive” by “regressive”.

Lemma 2.2. Let (X,F, ∗) be a PM-space endowed with an Archimedean t-norm ∗ and
ϕ be a non-trivial (i. e. ∃x ∈ X such that ϕ(x) 6= 0) fuzzy set on X. Define the binary
relation 4 on X as follows, for every x ∈ X, if ϕ(x) = 0 then x 4 y if and only if x = y
and if ϕ(x) 6= 0 then

x 4 y ⇐⇒ ϕ(y) ∗ Fx,y(t) ≥ ϕ(x), ∀t > 0. (3)

Then (X,4) is the partial order set induced by 4.

P r o o f . Since if ϕ(x) 6= 0 then by (3) ϕ(y) 6= 0, the relation 4 is well defined. The
reflexivity of 4 follows immediately. Suppose that for given x, y ∈ X, x 4 y and y 4 x.
The cases ϕ(x) = 0 or ϕ(y) = 0 are trivial, if not, by (3) we have

ϕ(y) ∗ Fx,y(t) ≥ ϕ(x) and ϕ(x) ∗ Fx,y(t) ≥ ϕ(y), ∀t > 0.

So, for all t > 0 we have ϕ(y) ∗ Fx,y(t) ≥ ϕ(x) ≥ ϕ(x) ∗ Fx,y(t) ≥ ϕ(y). Archimedean
condition implies that Fx,y(t) = 1, for all t > 0, hence, axiom (PM2) implies that x = y,
thus, 4 is antisymmetric. Suppose that for given x, y, z ∈ X, x 4 y and y 4 z. We may
assume that ϕ(z) 6= 0. It follows from (3) that

ϕ(y) ∗ Fx,y(t) ≥ ϕ(x) and ϕ(z) ∗ Fz,y(t) ≥ ϕ(y), ∀t > 0,

so,

ϕ(z) ∗ Fx,z(t) ≥ ϕ(z) ∗ Fx,y(t/2) ∗ Fy,z(t/2) ≥ ϕ(y) ∗ Fx,y(t/2) ≥ ϕ(x), ∀t ≥ 0.

Thus, x 4 z. This proves transitivity. �
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Theorem 2.3. (Caristi’s fixed point theorem in complete PM-space) Let (X,F, ?) be
a complete PM-space for arbitrary t-norm ?, T be a mapping from X into itself and ∗
be a t-norm such that ∗ ≤ ?. If one of the following holds:

(i) Suppose that ∗ is a right continuous and Archimedean t-norm, F is right continuous
and that ϕ is a non-trivial and u.s.c. fuzzy set of X. Moreover, assume that

ϕ(Tx) ∗ Fx,Tx(t) ≥ ϕ(x), ∀x ∈ X, t > 0, (4)

(ii) Suppose that ∗ is a continuous and Archimedean t-norm, F is left continuous and
that ϕ is a l.s.c. fuzzy set of X and infx∈X ϕ(x) > 0. Moreover, assume that

ϕ(x) ∗ Fx,Tx(t) ≥ ϕ(Tx), ∀x ∈ X, t > 0, (5)

then T has a fixed point in X.

P r o o f . (i) Define the partial order 4 on X as in Lemma 2.2, then any chain has a
supremum element. Indeed, let C = (xα)α∈Ω be a chain and η = supx∈C ϕ(x). The case
η = 0 is trivial, so suppose that η > 0. Let (αn)n≥1 be elements from Ω such that

ϕ(xαn)↗ η. (6)

From 0 < ϕ(xα1) ≤ ϕ(xα2) ≤ · · · , it follows that xα1 4 xα2 4 · · · . Hence, the following
inequality holds:

ϕ(xαm) ∗ Fxαn ,xαm (t) ≥ ϕ(xαn), ∀t > 0,m ≥ n ∈ N. (7)

Contrary to the assumptions suppose that (xαn)n≥1 is not a Cauchy sequence, so there
exist 0 < ε < 1 and t > 0 such that for all n ∈ N there exists m ≥ n such that

Fxαn ,xαm (t) ≤ (1− ε). (8)

By (6) for each 0 < ε′ < 1 there is N ∈ N such that ϕ(xαn) ≥ η(1− ε′), for all n ≥ N .
From (7) one can conclude that η∗(1−ε) ≥ η(1−ε′), for all 0 < ε′ < 1, which contradicts
the Archimedean condition, so (xαn)n≥1 is a Cauchy sequence. By the completeness of
(X,F, ?), (xαn)n≥1 converges to some u ∈ X and taking limsup from both sides of (7)
we have

ϕ(xαn) ≤ lim sup
m→+∞

(ϕ(xαm) ∗ Fxαn ,xαm (t)) ≤ ϕ(u) ∗ Fxαn ,u(t), ∀t > 0. (9)

This shows that xαn 4 u, for all n ∈ N, which means that u is a upper bound for
(xαn)n≥1. In order to see that u is also a upper bound for C, let β ∈ Ω be such that
xαn 4 xβ , for all n ≥ 1. Then for each n ∈ N, we have

ϕ(xβ) ∗ Fxαn ,xβ (t) ≥ ϕ(xαn), ∀t > 0. (10)

Hence
ϕ(xαn) ≤ ϕ(xβ), ∀n ≥ 1,
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which implies,

ϕ(xβ) = sup{ϕ(xα), α ∈ Ω} = lim
n→+∞

ϕ(xαn) = η.

Thus from (10) and the Archimedean condition we get limn→+∞ xαn = xβ , which implies
xβ = u. Also, condition (4) implies that T is progressive, so, Theorem 2.1 implies that
T has a fixed point in X.

(ii) The proof is a bit different from part (i), with the same symbols from the previous
part, let η = infx∈C ϕ(x) > 0 and (αn)n≥1 be elements from Ω such that ϕ(xαn) ↘ η.
From ϕ(xα1) ≥ ϕ(xα2) ≥ · · · , it follows that xα1 < xα2 < · · · . Hence, instead of (7) the
following inequality holds:

ϕ(xαn) ∗ Fxαm ,xαm (t) ≥ ϕ(xαm), for all t > 0,m ≥ n ∈ N. (11)

For each 0 < ε′ < 1 there is N ∈ N such that ϕ(xαn) ≤ η(1 − ε′), for all n ≥ N .
Like as part (i) from (8) and (11) it is concluded that η(1 − ε′) ∗ (1 − ε) ≥ η, for all
0 < ε′ < 1, contrary to the Archimedean condition on t-norm. Hence (xαn) converges
to some u ∈ X, take lim inf in (11), it follows that xαn < u, n ∈ N, which means that
u is a lower bound for (xαn)n≥1, Similarly to (i) one can prove that u is a lower bound
for net C = (xα)α∈Ω , also condition (5) implies that T is regressive, so, Theorem 2.1
implies that T has a fixed point in X. �

Note that in Theorem 2.3-(i) (2.3-(ii)), the mapping ϕ need only be assumed to
be u.s.c. (l.s.c.) relative to sequences xn → x for which ϕ(xn) ≤ ϕ(xn+1), n ≥ 1,
(ϕ(xn+1) ≤ ϕ(xn), n ≥ 1).

The next example comes from [3] and shows that conditions of Theorem 2.3-(i) are
satisfied.

Example 2.4. Let X = [0, 1] ∪ {2, 3, . . .}. For the metric, let Fx,y(0) = 0 and

Fx,y(t) =
min{x, y}+ 1

max{x, y}+ 1
, ∀x, y ∈ X, t > 0.

In [9, Corollary 23, Proposition 14-(iv)] it is shown that ([0,+∞), F, ∗p) is a complete
PM-space and its topology is the usual topology of R restricted to [0,+∞), so X is a
closed subset of it and (X,F, ∗p) is a complete PM-space. Let T and ϕ on X defined by

T (x) =

{
x− x2

2 , x ∈ [0, 1],
x− 1, x = 2, 3, . . .

and ϕ(x) = e−x, x ∈ X.

Since T (x) ≤ x, for all x ∈ X, we have Fx,Tx(t) = Tx+1
x+1 , x ∈ X, t > 0. Indeed, it is

easy to check that f(x) = e−x(x + 1) is a decreasing function on [0,+∞), thus, we get
e−T (x)(T (x) + 1) ≥ e−x(x+ 1), for all x ∈ X, which prove that condition (4) holds.

Using Lemma 1.9 and the same proof in [1, Corollary 3.3 and 3.4], the following
corollaries are obtained without the Archimedean condition on t-norm.
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Corollary 2.5. Let (X,F, ∗) be a complete PM-space and let T be a mapping from
X into itself. Also, let ∗ be a right continuous t-norm such that a ∗ b ≥ L1(a, b) for
all a, b ∈ [0, 1] and let ϕ be a u.s.c. upper bounded function from X into [−∞,+∞].
Additively, suppose that ∃x ∈ X such that ϕ(x) 6= −∞ and

Fx,Tx(t) ≥ 1 + ϕ(x)− ϕ(Tx), (12)

holds for all x ∈ X and t > 0. Then T has a fixed point in X.

Corollary 2.6. Let (X,F, ∗) be a complete PM-space and let T be a mapping from X
into itself. Also assume that ∗ be a right continuous t-norm such that a ∗ b ≥ TYλ (a, b),
for all a, b ∈ [0, 1] and for some λ > −1. Let ϕ be a u.s.c. bounded function from X
into [0,+∞). Moreover suppose that

ϕ(Tx)Fx,Tx(t) ≥ ϕ(x), (13)

for all x ∈ X and t > 0. Then T has a fixed point in X.

The following theorem is obtained by the characterization of t-norms. This theorem is
comparable with a problem raised by Kirk [4, 5] (see also [2, 12, 13]) in ordinary metric
space, for improving Caristi’s fixed point theorem. This indicates what condition can
be given for a function η : [0,+∞) → [0,+∞) such that Caristi’s fixed point theorem
remains true for a function η ◦ d instead of d (see also [14]). More precisely, if (1) is
substituted by

η(d(x, T (x)) ≤ ϕ(x)− ϕ(T (x)), ∀x ∈ X. (14)

Theorem 2.7. Let (X,F,∧) be a complete PM-space and let T be a mapping from X
into itself, if one of the following holds,

(i) Let F be right continuous, ϑ : [0, 1] → [0,+∞] be a strictly decreasing right
continuous (or equivalently u.s.c.) function with ϑ(1) = 0 such that

ϑ(x) + ϑ(y) ∈ Rang(ϑ) ∪ [ϑ(0+),+∞].

ϕ is a function from X into [0,+∞] such that Rang(ϕ) ⊆ Rang(ϑ), ϑ(−1) ◦ ϕ is
u.s.c and ∃x ∈ X such that ϕ(x) 6= +∞. Assume that

ϑ(Fx,Tx(t)) ≤ ϕ(x)− ϕ(Tx), ∀x ∈ X, t > 0, (15)

(ii) Let F be left continuous, ϑ : [0, 1] → [0,+∞] be a strictly decreasing continuous
function with ϑ(1) = 0 such that

ϑ(x) + ϑ(y) ∈ Rang(ϑ) ∪ [ϑ(0+),+∞],

and ϕ is a bounded function from X into [0,+∞) such that Rang(ϕ) ⊆ Rang(ϑ)
and ϑ(−1) ◦ ϕ is l.s.c. and infx∈X θ

(−1) ◦ ϕ(x) > 0. Assume that

ϑ(Fx,Tx(t)) ≤ ϕ(Tx)− ϕ(x), ∀x ∈ X, t > 0, (16)
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(iii) Let F be right continuous, ∗ is a right continuous and Archimedean t-norm and
that ϕ is a non-trivial fuzzy set of X and θ : [0, 1] → [0, 1] is a strictly increasing
bijection such that θ(−1) ◦ ϕ is u.s.c. Assume that

ϕ(Tx) ∗ θ(Fx,Tx(t)) ≥ ϕ(x), ∀x ∈ X, t > 0, (17)

(iv) Let F be left continuous, ∗ is a continuous and Archimedean t-norm and that ϕ
is a fuzzy set of X and θ : [0, 1]→ [0, 1] is a strictly increasing bijection such that
θ(−1) ◦ ϕ is l.s.c. and infx∈X θ

(−1) ◦ ϕ(x) > 0. Assume that

ϕ(x) ∗ θ(Fx,Tx(t)) ≥ ϕ(Tx), ∀x ∈ X, t > 0,

then T has a fixed point in X.

P r o o f .

(i) Set ϕ′ = ϑ(−1) ◦ ϕ, so, ϕ′ is a non-trivial and u.s.c. fuzzy set of X. Define the
function ∗ϑ : [0, 1]2 → [0, 1] by

a ∗ϑ b = ϑ(−1)(ϑ(a) + ϑ(b)), ∀a, b ∈ [0, 1].

Theorem 3.23 and Proposition 3.29 of [18] imply that ∗ϑ is an Archimedean t-
norm, also since ∗ϑ ≤ ∧, (X,F, ∗ϑ) is a fuzzy metric space. indeed, ϑ is a right
continuous function, so ∗ϑ is too (see [18, Proposition 3.27]). Since ϑ(−1) is a
decreasing function, from (15) we find

ϑ(−1)(ϕ(Tx) + ϑ(Fx,Tx(t))) ≥ ϑ(−1)(ϕ(x)), ∀x ∈ X, t > 0.

From Rang(ϕ) ⊆ Rang(ϑ) and [18, Remark 3.4-(v)] we have ϑ◦ϕ′ = ϑ◦(ϑ(−1)◦ϕ) =
ϕ and so the preceding inequality leads to

ϑ(−1)(ϑ(ϕ′(Tx)) + ϑ(Fx,Tx(t))) ≥ ϕ′(x), ∀x ∈ X, t > 0,

or
ϕ′(Tx) ∗ϑ Fx,Tx(t) ≥ ϕ′(x), ∀x ∈ X, t > 0,

thus, Theorem 2.3-(i) concludes that T has a fixed point in X.

(ii) It follows from Theorem 2.3-(ii) and similar to the previous one.

(iii) Let θ(−1) is the pseudo-inverse of θ and set ϕ′ = θ(−1) ◦ ϕ. Define the function
∗θ : [0, 1]2 → [0, 1] by

a ∗θ b = θ(−1)(θ(a) ∗ θ(b)), ∀a, b ∈ [0, 1].

t-norm ∗θ is right continuous and Archimedean (see Proposition 2.28-(iii) and
Remark 2.30-(ii) of [18]), also since ∗ϑ ≤ ∧, (X,F, ∗ϑ) is a fuzzy metric space.
Equation (17) implies that

θ(−1)(θ(ϕ′(Tx)) ∗ θ(Fx,Tx(t))) ≥ ϕ′(x), ∀x ∈ X, t > 0,

or
ϕ′(Tx) ∗θ Fx,Tx(t) ≥ ϕ′(x), ∀x ∈ X, t > 0.

Thus, Theorem 2.3-(i) concludes that T has a fixed point in X.
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(iv) It follows from Theorem 2.3-(ii) and similar to the previous one.

�

Remark 2.8. (i) In Theorem 2.7 it is enough to consider fuzzy metric space (X,F, ∗)
such that Archimedean t-norm ∗ϑ induced by ϑ satisfies in ∗ϑ ≤ ∗. Also, more
information about comparison of t-norms may be found in [17, 18, 20].

(ii) Note that composition of two u.s.c. (or l.s.c.) functions is not necessarily u.s.c.
(or l.s.c.), but if one of the following hold then ϑ−1 ◦ ϕ is u.s.c., see also [24] for
further results.

(a) ϑ(t) = (1− t)p or 1− tp, p > 0 and ϕ is a l.s.c.

(b) ϑ is increasing and u.s.c. and ϕ is an u.s.c. function.

and if one of the following hold then ϑ−1 ◦ ϕ is l.s.c.

(c) ϑ(t) = (1− t)p or 1− tp, p > 0 and ϕ is a u.s.c.

(d) ϑ is decreasing and l.s.c. and ϕ is a l.s.c. function.

The following metric fixed point Corollary is deduced from Theorem 2.7 and Remark
2.8. This Corollary provides a partial answer to Kirk’s problem in ordinary metric space.

Corollary 2.9. Let (X, d) be a complete metric space and let T be a mapping from X
into itself. If one of the following holds,

(i) Let φ be a l.s.c. function from X into [0,+∞] and η : [0,+∞] → [0,+∞] be a
strictly increasing l.s.c. function such that η(0) = 0, ∗η(− ln(s)) ≤ ∗p and Rang(ϕ) ⊆
Rang(η). Moreover, assume that (14) holds.

(ii) Let d < 1 and φ be a l.s.c. function from X into [0,+∞] and η : [0, 1] → [0,+∞]
be a strictly increasing l.s.c. function such that η(0) = 0, ∗η(1−s) ≤ ∗L1 and
Rang(ϕ) ⊆ Rang(η). Moreover, assume that (14) holds.

Then T has a fixed point in X.

P r o o f . (i) Set ϑ(s) = η(− ln(s)), s ∈ [0, 1] and Fx,y(t) = e−d(x,y), for all x, y ∈ X, t >
0. Then (F,M, ∗p) is a complete PM-space, ϑ is u.s.c. function, Rang(ϕ) ⊆ Rang(η) =
Rang(ϑ) and inequality (15) obtains from inequality (14). Also since η−1 is a continuous

strictly increasing function, η−1 ◦ϕ is a l.s.c. function, so, ϑ−1 ◦ϕ = e−η
−1◦ϕ is an u.s.c.

function, thus, Theorem 2.7-(i) and Remark 2.8 imply the existence of a fixed point.
(ii) Set ϑ(s) = η(1 − s), s ∈ [0, 1] and Fx,y(t) = 1 − d(x, y), for all x, y ∈ X, t > 0.

Then (F,M,L1) is a complete PM-space (see [10]), ϑ is u.s.c. and Rang(ϕ) ⊆ Rang(η) =
Rang(ϑ) and inequality (15) obtains from inequality (14). Also since η−1 is a l.s.c.
strictly increasing function, η−1 ◦ ϕ is a l.s.c. function, so, ϑ−1 ◦ ϕ = 1 − η−1 ◦ ϕ is
an u.s.c. function, thus, Theorem 2.7-(i) and Remark 2.8 imply the existence of a fixed
point. �
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Remark 2.10. The same argument in [1] can be applied to deduce Ekeland’s varia-
tional principle, Takahashi’s maximization theorem and equivalences among them in
PM-spaces. Since the proof of them are similar to [1] except the following, we only state
and prove the next theorem (for comparison see [1, Theorem 3.9]).

Theorem 2.11. (Ekeland’s variational principle in complete PM-space) Let (X,F, ∗)
be a complete PM-space endowed with a right continuous and Archimedean t-norm, F
be right continuous and that ϕ is a non-trivial and u.s.c. fuzzy set of X. Consider v ∈ X
such that ϕ(v) 6= 0. Then there exists u ∈ X such that for every t > 0,

(i) ϕ(u) ∗ Fv,u(t) ≥ ϕ(v),

(ii) ϕ(x) ∗ Fu,x(t) < ϕ(u) for all x ∈ X,x 6= u.

P r o o f . For any x ∈ X denote the equivalence classes of x by

[x] = {y ∈ X : x 4 y} = {y ∈ X : ϕ(y) ∗ Fy,x(t) ≥ ϕ(x),∀t > 0}.

Define inductively a sequence (xn)n≥0 in X, stating with x0 = v, suppose that xn is
known, then the defination of supremum allows us to choose xn+1 ∈ [xn] such that

2ϕ(xn+1)− ϕ(xn) ≥ sup
z∈[xn]

ϕ(z). (18)

The same argument in the proof of Theorem 2.3-(i), can be applied to the increas-
ing sequence (xn)n≥0 for proving the existence of upper bound u ∈ X such that
limn→+∞ xn = u. Since u ∈ [x0], condition (i) holds, on the other hands, we need to show
that if x 6= u then x /∈ [u]. Suppose it is not, as x ∈ [u], we have ϕ(x) ∗ Fu,x(t) ≥ ϕ(u),
for all t > 0, so Archimedean condition implies that ϕ(x) > ϕ(u). Indeed for all n ∈ N,
xn 4 u and so it must be x ∈ [xn], consequently ϕ(x) ≤ supz∈[xn] ϕ(z). Also from (18)
we obtain

ϕ(x) > ϕ(u) ≥ lim sup
n→+∞

ϕ(xn) ≥ lim inf
n→+∞

(2ϕ(xn+1)− ϕ(xn))

≥ lim inf
n→+∞

( sup
z∈[xn]

ϕ(z)) ≥ ϕ(x),

a contradiction, so condition (ii) holds too. �

3. CONCLUSION

Caristi’s fixed point theorem and its equivalent theorems are very well-known theorems in
nonlinear analysis and have extensive applications in various fields in mathematics, such
as optimization, control theory, global analysis and geometric theory of Banach space.
A number of generalizations of these results have been obtained by several authors. We
have presented a generalization of Caristi’s fixed point theorem, Ekeland’s variational
principle theorem in probabilistic metric spaces for the class of right continuous and
Archimedean t-norms. Natural question arises in this article:
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Question: Is there any non- Archimedean or non right continuous t-norm such that
Theorem 2.3 remains true? notice that Example 3.8 in [1] shows that the answer is no
for t-norm ∗∧.

(Received January 26, 2020)
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