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EXPONENTIAL STABILITY OF NONLINEAR SYSTEMS
WITH EVENT-TRIGGERED SCHEMES
AND ITS APPLICATION

Li Zhang, Gang Yu, and Yanjun Shen

In this paper, we discuss exponential stability for nonlinear systems with sampled-data-
based event-triggered schemes. First, a framework is proposed to analyze exponential stability
for nonlinear systems under some different triggering conditions. Based on these results, output
feedback exponential stabilization is investigated for a class of inherently nonlinear systems
under a kind of event-triggered strategies. Finally, the rationality of the theoretical work is
verified by numerical simulations.
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1. INTRODUCTION

The extensive applications of the network not only produces a large number of cyber-
physical systems, but also introduces new problems such as limited bandwidth, trans-
mission delay, and data packet loss to the control system [30,31]. Recently, the sampled-
data-based event-triggered strategies were proposed and discussed widely for networked
control systems. In this scheme, the systems are monitored only at sampling instants.
Thus, it is absolute to avoid Zeno behavior and more suitable for application to large-
scale digital communication networks such as microgrid systems [3]. Until now, re-
searchers have been in great enthusiasm in sampled-data-based event-triggered stability
analysis and controller design, for example, feedback control, consensus, H∞ filter-
ing [9, 16,17,24,25,29,34].

Although research on event-triggered strategies is in the ascendant, existing works
still have some shortcomings. Consider the sampled-data-based event-driven system
expressed as

ẋ(t) = Ψ(x(t), x(hm)), t ∈ [hm, hm+1), (1)

where x(t) ∈ Rn is the state, Ψ(·) is a continuous nonlinear function, {hm|m = 0, 1, . . .}
and {tk|k = 0, 1, . . .} are two sets of triggering instants and sampling instants, respec-
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tively. In the published reports, the event-triggered system is often transformed into
Model 1 through an error function [2, 8, 28], i. e.,

Model 1

ẋ(t) = Φ1(x(t), x(tk)), t ∈ [tk, tk+1),

where Φ1(·) is a continuous nonlinear function. Then, stability analysis for (1) is trans-
formed into stability analysis for Model 1. Obviously, Model 1 is a standard sampled-
data system. It is a hot topic to analyze its stability. Researchers have proposed some
stability analysis methods, for example, input delay method [6], continuous and discrete
analysis [4, 33] and so on. Unfortunately, not all event-triggered systems can be con-
verted to Model 1. This is because that Model 1 requires that all event-triggered design
must be related to the sampling period, which sets a limit on the design process. It
is worth mentioning that exponential stability of this model and its applications have
discussed in [4, 12,32,33].

Another widely used model is proposed in [34]. By introducing a piecewise continuous
linear function η(t), the event-triggered system will be modeled as the following time
delay system finally.

Model 2

ẋ(t) = Φ2(x(t), x(t− η(t))), t ∈ [hm, hm+1),

where Φ2(·) is a continuous nonlinear function. Then, by combing with LMI approach,
it is easy to obtain asymptotical stable results. We think that Model 2 still has the
characteristics of sampled-data system. By an abuse of terminology, there is only one
discrete variable in interval [hm, hm+1). It can be regarded as an extension of the time-
delay method for sampled-data system [6]. However, this method is generally used for
linear systems. It is not flexible enough for complex nonlinear systems.

In this paper, we give a new Model 3, which can be described as

Model 3

ẋ(t) = Φ3(x(t), x(tk), x(hm)), t ∈ [tk, tk+1),

where hm is the last triggering instant before the sampling instant tk, Φ3(·) is a continu-
ous nonlinear function. We call it as a sampled-data-like system, which can be regarded
as a promotion of Model 1. It can be seen that in each sampling period [tk, tk+1),
the system is not only related to the current sampling state x(tk), but also to the most
recent event triggering state x(hm). It must be pointed out that Model 3 is a general
case which can bring more flexibility to system analysis and synthesis. For instance,
in this case, an event-triggered system is allowed to have discrete states that are not
directly involved in triggering conditions, but are driven by the triggered mechanism.
In other words, these discrete states are passively triggered. In this article, we try to
build a framework of stability analysis for this system as described above.
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Hereafter, we consider the event-driven output feedback control for a class of inher-
ently nonlinear systems,

żi(t) = δi(t)z
pi
i+1(t) + %i(zi(t)), i = 1, . . . , n− 1,

żn(t) = δn(t)u(t) + %n(zn(t)), y(t) = z1(t), (2)

where zi(t) is the system’s state, the nonlinear function %i(z1) is in a lower-triangular
from, i. e. %i(zi(t)) = %i(z1(t), . . . , zi(t)), δi(t) is an unknown time-varying coefficient,
y(t) is the measurable output function, u(t) is the control input. pi ≥ 1 is a positive odd
integer and p0 = 1. This system is also called p-normal, which has been widely studied
in the past twenty years [18, 21, 22, 26]. Many physical systems such as underactuated
mechanical systems [21] can be modeled in this form. Since there is an uncontrollable
unstable linearization around the origin, the smooth feedback controllers is impossible
to stabilize the system (2). In [21], the adding a power integrator was proposed to
construct a continuous non-smooth control law for this system. The problem of output
feedback control for a class of inherently nonlinear systems was investigated in [18].
Recently, sampled-data technique was introduced [5, 10, 12, 19]. However, sampled-data
control will lead to unnecessary redundant calculations and bandwidth usage, especially
in networked control systems. To the best knowledge of the authors, employing the
event-triggered control is an efficient solution to these problems. But related work in
this area is absent, which inspired our research.

The main contributions of this study are summarized as follows: 1) A new model of
event-triggered system is proposed based on aperiodic sampled-data, which can bring
more flexibility in system analysis and synthesis. Then, we investigate exponential stabil-
ity of the event-triggered system. 2) A novel event-triggered condition with nonuniform
sampled-data is presented. Under the proposed event-triggered condition, output feed-
back stabilization is discussed for a class of inherently nonlinear systems. The rest of
this paper is organized as follows. Section 2 gives some preliminaries of this paper. Ex-
ponential stable analysis is presented for a class of event-triggered nonlinear systems in
Section 3. Then, the problem of event-triggered stabilization is discussed for a class of
inherently nonlinear systems in Section 4. In Section 5, simulation examples illustrate
our algorithms. At last, this paper is concluded in Section 6.

2. PRELIMINARIES

We firstly introduce the following assumptions and lemmas which will be used later.

Assumption 2.1. (Li et al. [12], Qian and Lin [22], Polendo and Qian [18]) For the
nonlinear function %i(zi(t)), there exists l ≥ 0 such that

|%i(zi(t))| ≤ l(|z1|
1

p1...pi−1 + |z2|
1

p2...pi−1 + . . .+ |zi|).

Assumption 2.2. (Li and Zhao [14]) The unknown time-varying control coefficients

δi(t)(i = 1, . . . , n) are derivable, and there exist constants δ > 0, δ̄ > 0, δ̆ and δ̃, such
that

δ ≤ δi(t) ≤ δ̄, δ̆ ≤ δ̇i(t) ≤ δ̃.
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Lemma 2.3. (Qian and Lin [20, 21]) For any p ≥ 1 and any g, h ∈ R, we have the
following inequalities

|g − h|p ≤ 2p−1 |gp − hp| ≤ 2p−1p |g − h|
∣∣gp−1 + hp−1

∣∣ ,
≤ c |g − h|p + c |g − h| |h|p−1

,

∣∣∣g 1
p − h

1
p

∣∣∣ ≤ 21− 1
p |g − h|

1
p ,

where c is a positive constant.

Lemma 2.4. (Qian and Lin [20]) For any real numbers g1, . . . , gn and p > 0,

(g1 + . . .+ gn)p ≤ max{np−1, 1}(gp1 + . . .+ gpn).

Lemma 2.5. (Qian and Lin [20]) There exist positive constants m,n, φ and g, h ∈ R
such that the following inequality

|g|m|h|n ≤ m

m+ n
φ|g|m+n

+
n

m+ n
φ−

m
n |h|m+n

holds.

We also have the following results.

Lemma 2.6. Let {V (k)} denote a positive sequence. If there exist three real numbers
0 < θ, Υ < 1, ς ≥ 0, and positive integers k ≥ p, r(k − p) ≥ k − p satisfy the following
inequality

V (k) ≤ θV (k − p) + ςΥr(k−p), (3)

then, limk→∞ V (k) = 0, that is, the sequence {V (k)} is convergent.

P r o o f . From (3), it follows that V (k) ≤ θV (k− p) + ςΥr(k−p) ≤ θV (k− p) + ςΥk−p ≤

θ2(V (k− 2p)− ςΥ
k−2p

Υp − θ
) +

1

Υp − θ
ςΥk . . . ≤ θ[ kp ](V (k− [

k

p
]p)− ςΥ

k−[ kp ]p

Υp − θ
) +

1

Υp − θ
ςΥk,

where [kp ] is the integer part of k
p .

For any positive integer k, there exist two integers q, and 1 ≤ k0 ≤ p − 1, such that

k = qp+ k0. Then, we have V (k) ≤ θq(V (k0)− ςΥk0

Υp−θ ) + 1
Υp−θ ςΥ

k. Since 0 < θ, Υ < 1,
then

lim
q→∞

θq(V (k0)− ςΥk0

Υp − θ
) +

1

Υp − θ
ςΥqp+k0 = 0.

Simultaneously, note that V (qp + k0) > 0. Therefore, limk→∞ V (k) = 0. The proof is
completed. �
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3. EXPONENTIAL STABILITY FOR A CLASS
OF EVENT-TRIGGERED NONLINEAR SYSTEMS

In this section, we discuss exponential stability for a class of event-triggered nonlinear
systems, which is the basis of the next section. Consider the following nonlinear system

ẋ(t) = f(x(t), u(t)), y(t) = g(x(t)), (4)

where x(t) ∈ Rn , y(t) ∈ Rm and u(t) ∈ Rp are the state, the output and the input,
respectively. The nonlinear functions f(·) and g(·) are continuous and f(·) satisfies
f(0, 0) = 0. We establish an event-based dynamic output feedback controller described
by

˙̂x(t) = Γ(x̂(t), x̂(hm), y(hm)), x̂(t) ∈ Rn,
u(t) = Π(x̂(t), x̂(hm), y(hm)), t ∈ [tk, tk+1), (5)

where Γ(·) and Π(·) are two continuous functions, and hm is the last event-triggering
instant before the sampling instant tk. The event-triggering condition is rewritten as

‖e(tk)‖2 ≤ E1(y(tk), y(hm), Υm), (6)

where Υ ≥ 0, and E1(·) is a nonlinear function. The condition E1(y(tk), y(hm),Υm) in-
cludes two typical cases: state dependent condition E1(y(tk), y(hm, 0) and time depen-
dent condition E1(0, 0, Υm). We will discuss them separately later. The error function is
defined as e(tk) = y(hm)−y(tk). Different from those works in [8,28], the event-triggered
strategy is based on nonperiodic sampled-data. We define the sampling instants as an
increasing sequence {tk}. Let Tk = tk+1 − tk denote the time-varying sampling period
which is bounded by 0 < Tmin ≤ Tk ≤ Tmax. The positive constant Tmin absolutely
avoids Zeno behavior for the event-triggered system. We assume that the number of
sampling intervals in each event-triggered interval [hi, hi+1) is si, (i = 0, 1, . . .), and
set the initial time t0 = h0. The event-triggered scheme is shown in Figure 1.

Fig. 1. The event-triggered scheme.

We make the following assumption on si.
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Assumption 3.1. There exists a positive integer s∗ such that

s∗ ≥ si, for all i = 0, 1, 2, . . . .

In what follows, for the sake of simplicity, we will abbreviate the continuous state
x(t) as x, and still mark the sampling state and the event-triggering state as x(tk) and
x(hm), respectively. Similar variables have the same meaning.

From (4), (5) and the triggering condition (6), the following closed-loop system can
be constructed, 

ẋ = f(x, u(hm)), t ∈ [tk, tk+1),
e(tk) = y(tk)− y(hm),

‖e(tk)‖2 ≤ E1(y(tk), y(hm),Υm),
hm = max

hj

{hj ≤ tk}, x(hm+1) = lim
t→h−

m+1

x(t).

(7)

Obviously, the closed-loop system (7) can be expressed as Model 3 rather than Model
1 and 2 because there exists the passively triggered discrete variable x̂(hm) in (5),
which remains constant in the event interval [hm, hm+1). Next, the following sufficient
conditions are proposed to ensure global exponential stability.

Theorem 3.2. The event-triggered nonlinear system (7) is globally exponentially sta-
ble, if there exist positive constants α, β, Υ, and γ ≥ 0, ω ≥ 0, and a positive definite
and radially unbounded function V (t) defined on [t0,+∞), satisfying the following con-
ditions

V̇ (t) ≤ −αV (t) + βV (tk) + γV (hm) + ωΥm, (8)

α > β + s∗γ, 0 < Υ < 1, t ∈ [tk, tk+1), (9)

and the sampling periods satisfy

1− e−αTmin

1− e−αTmax
>
β + s∗γ

α
. (10)

P r o o f . First, from (8), we have

V (t) ≤
(
β

α
(1− eα(tk−t)) + eα(tk−t)

)
V (tk) +

γ

α
(1− eα(tk−t))V (hm) +

ω

α
Υm, t ∈ [tk, tk+1).

Since x(t) is continuous in the event interval [hm, hm+1), the continuity still holds
at each sampling instant. Then, we have

V (tk+1) = lim
t→tk+1

V (t) ≤
(
β

α
(1− e−αTk) + e−αTk

)
V (tk) +

γ

α
(1− e−αTk)V (hm) +

ω

α
Υm.

Next, dividing the event interval as [hm, hm+1) = ∪i=j+sm−1
i=j [ti, ti+1), we can obtain

the following inequalities in different intervals

V (ti+1) ≤
(
β

α
(1− e−αTi) + e−αTi

)
V (ti) +

γ

α
(1− e−αTi)V (hm) +

ω

α
Υm, t ∈ [ti, ti+1).

(11)
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Since Ti ≤ Tmax, we have 1 − e−αTi ≤ 1 − e−αTmax . Then, superimposing (11) from
i = j to i = j + sm − 1, we have

V (tj+1) + . . .+ V (tj+sm) ≤ $(V (tj) + . . .+ V (tj+sm−1)) +
smω

α
Υm, t ∈ [hm, hm+1),

where $ = max{βα (1−e−αTj )+e−αTj + smγ
α (1−e−αTmax), βα (1−e−αTj+1)+e−αTj+1 , . . . ,

β
α (1− e−αTj+sm−1) + e−αTj+sm−1}.

From (9) and (10), it is obvious that $ < 1. Since V (hm) = V (tj), V (hm+1) =
V (tj+sm), then,

V (hm+1) ≤ $V (hm) +
smω

α
Υm ≤ $V (hm) +

s∗ω

α
Υm.

Finally, by using Lemma 2.6 with k = m, p = 1, r(k − p) = m− 1, we have

V (hm) ≤ $m(V (h0)− s∗ω

α(Υ−$)
) +

s∗ω

α(Υ−$)
Υm.

Then,

V (t) ≤ (s∗ + 1)V (hm) +
s∗ω

α
Υm

≤ (s∗ + 1)e( t
s∗Tmax

−1) ln$

(
V (h0)− s∗ω

α(Υ−$)

)
+ e( t

s∗Tmax
−1) ln Υ

(
(s∗ + 1)s∗

Υ−$
+ 1

)
ω

α
,

which indicates the event-triggered system (7) is globally exponentially stable.
�

Remark 3.3. Based on the continuous and discrete analysis, exponential stability was
obtained for a kind of sampled-data systems [4, 12, 33] by proving V (tk+1) < V (tk).
In Theorem (3.4), we extend the continuous and discrete analysis from sampled-data
systems to event-driven systems. By setting γ = 0, ω = 0, Theorem 3.2 will be reduced
to the results obtained in [4, 12,33].

The results in Theorem 3.2 can be reduced to the following output feedback control

˙̂x = Γ(x̂, y(hm)), x̂ ∈ Rn,
u(hm) = Π(x̂, y(hm)), t ∈ [tk, tk+1), (12)

with the state-dependent triggering condition defined by

‖e(t)‖2 ≤ E2(y(tk), y(hm)), t ∈ [tk, tk+1), (13)

where E2(y(tk), y(hm)) = E1(y(tk), y(hm), 0), which can be the one proposed in [9,17,
29], or the triggering conditions designed in [16, 24, 34], or the mixed event-triggering
conditions investigated recently in [7].

From (12), the following closed-loop system can be obtained,
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ẋ = f(x, u(hm)), t ∈ [tk, tk+1),

e(tk) = y(tk)− y(hm),
‖e(tk)‖2 ≤ E2(y(tk), y(hm)),

hm = max
hj

{hj ≤ tk}, x(hm+1) = lim
t→h−

m+1

x(t).

(14)

Corollary 3.4. The event-triggered system (14) is globally exponentially stable, if there
exist positive constants α, β, γ ≥ 0 and a positive definite and radially unbounded
function V (t) defined on [t0,+∞) such that

V̇ (t) ≤ −αV (t) + βV (tk) + γV (hm), t ∈ [tk, tk+1), (15)

α > β + s∗γ, (16)

and the sampling periods satisfy (10).

Due to simplicity of design and implementation, time-dependent (or state-independent)
triggering conditions have been extensively studied in [2,25,28]. Now, we discuss expo-
nential stability for the nonlinear system (4) with the time-varying triggering condition

‖e(tk)‖2 ≤ µΥk, (17)

where µ > 1, 0 < Υ < 1 [2], or

‖e(tk)‖2 ≤ ε−αkT , (18)

where ε > 1, 0 ≤ α < 1 [25,28]. It is not difficult to verify that the conditions (17) and
(18) are substantially the same. We denote it as E3(Υk) = E1(0, 0, Υk). Under this
scheme, the following closed-loop system can be established,

ẋ = f(x, u(hm)), t ∈ [tk, tk+1),
e(tk) = y(tk)− y(hm), ‖e(tk)‖2 ≤ E3(Υk),

hm = max
hj

{hj ≤ tk}, x(hm+1) = lim
t→h−

m+1

x(t).
(19)

Corollary 3.5. The event-triggered system (19) is globally exponentially stable, if there
exist positive constants α, β, ω, Υ and a positive definite and radially unbounded
function V (t) defined on [t0,+∞) such that

V̇ (t) ≤ −αV (t) + βV (tk) + ωΥk, t ∈ [tk, tk+1),

α > β, 0 < Υ < 1.

Remark 3.6. In practical applications, the triggering conditions (17) and (18) will not
work if Υ is selected too small. Then, the event-triggered mechanism becomes almost a
time-triggered mechanism. This is because (17) and (18) decay rapidly in each sampling
interval, which also results in a large number of invalid calculations. In the framework
of Model 3, a new time-dependent triggering condition will be generated

‖e(tk)‖ ≤ µΥm. (20)
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It can be seen that (20) is just updated on each event interval. Actually, with the
help of Lemma 1, the parameter m can be modified to any positive integer r(m) which
satisfies r(m) ≥ m (including k). It should be pointed out that when r(m) is larger,
the exponential convergence rate of the closed-loop system will be faster. However, the
triggered scheme will decay faster simultaneously. These two points need to be balanced
in practical applications.

4. EVENT-TRIGGERED STABILIZATION OF A CLASS
OF INHERENTLY NONLINEAR SYSTEMS

In this section, we discuss the event-triggered stabilization of a class of inherently non-
linear systems (2). By employing the following change of coordinates

x1 = z1, xi = δ
1

p1...pi−1

1 . . . δ
1

pi−1

i−1 zi,

the system (2) becomes

ẋi = xpii+1 + %̄i(zi), i = 1, . . . , n− 1,

ẋn = δu+ %̄n(zn), y = z1, (21)

where %̄i(zi) =
d(δ

1
p1...pi−1
1 ...δ

1
pi−1
i−1 )

dt
xi

δ

1
p1...pi−1
1 ...δ

1
pi−1
i−1

+ δ
1

p1...pi−1

1 . . . δ
1

pi−1

i−1 %i(zi),

δ = δ
1

p1...pi−1

1 . . . δ
1

pn−1

n−1 δn.

Lemma 4.1. Under Assumption 2.1 and 2.2, there exists a positive constant l̄ satisfying
the following inequality

%̄i(zi) ≤ l̄(|y|
1

p1...pi−1 + |x2|
1

p2...pi−1 + . . .+ |xi|).

Then, the following virtual state feedback controller can be designed for the system (21)
recursively

u∗ = −(κnx
p1...pn−1
n + κn−1x

p1...pn−2

n−1 + . . .+ κ1x1)
1

p1...pn−1 ,

where κ1, . . . , κn are positive gains. Moreover, there exist a positive real number ρ and
a Lyapunov function Vn such that

V̇n ≤ −ρ
n∑
i=1

ξ2
i + δξ

2− 1
p1...pn−1

n (u− x∗pnn+1).

P r o o f . First, the upper bound of nonlinear is straightforward. Then, as in [18], we
construct the following virtual controllers x∗k, (k = 1, . . . , n),

x∗1 = 0, ξ1 = y − x∗1,
x∗k

p1...pk−1 = −λk−1ξk−1, ξk = x
p1...pk−1

k − x∗k
p1...pk−1 , k = 2, . . . , n,
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where λk, (k = 1, . . . , n− 1) are positive constants, the results can be derived. �

Next, the event-triggered reduced-order observer is constructed.

˙̂
φi = −bi−1φ̂i − b2i−1x̂i−1(hm), i = 2, . . . , n, (22)

where x̂1 = y, x̂i = (φ̂i + bi−1x̂i−1)
1

pi−1 , and b1, . . . , bn−1 are the observer gains to be
determined later. The event-triggered scheme is given by (20) in Section 2. Based on
the observer (22) and the event-triggered scheme (20), the control input is designed as

u(hm) = −(κnx̂
p1...pn−1
n (hm) + κn−1x̂

p1...pn−2

n−1 (hm) + . . .

+ κ1x1(hm))
1

p1...pn−1 , t ∈ [tk, tk+1). (23)

Remark 4.2. The design of the dynamic output feedback controller (22) and (23) still
follows our idea in Section 3, the update instants of other discrete variables in controller
depend on the event-triggered scheme which is set for the output y.

Theorem 4.3. There exist positive constants Tmin and Tmax such that for any 0 <
Tmin ≤ Tk ≤ Tmax, the closed-loop system composed of (21), (22) and (23) is globally
exponentially stable under the event-triggered scheme (20).

P r o o f . Let φi = x
pi−1

i − bi−1xi−1, and the estimation error

εi = (x
pi−1

i − x̂pi−1

i )
p1...pi−2 .

Define

V̂i(xi−1, xi, φ̂i) =

∫ x
2p1...pi−1−pi−1
i

η
2p1...pi−2−1

i

(s
1

2p1...pi−2−1 − ηi) ds,

where ηi = φ̂i + bi−1xi−1 (i = 2, . . . , n).
Calculating the derivative of V̂i with respect to t yields

˙̂
V i =

∂V̂i
∂xi−1

(x
pi−1

i + %̄i−1(zi−1)) +
∂V̂i
∂xi

ẋi +
∂V̂i

∂φ̂i
(−bi−1x̂

pi−1

i + b2i−1(x̂i−1 − x̂i−1(hm))).

(24)

We estimate each term of (24) in the following derivation, for i = 1, . . . , n, then

∂V̂i
∂xi−1

= −bi−1(x
2p1...pi−1−pi−1

i − η2p1...pi−2−1
i ),

∂V̂i

∂φ̂i
= −(x

2p1...pi−1−pi−1

i − η2p1...pi−2−1
i ).
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Based on Lemma 2.3, the following inequalities hold

|xi − x̂i| ≤ 2
1− 1

pi−1 |εi|
1

p1...pi−1 , (25)∣∣∣φi − φ̂i∣∣∣ ≤ |εi| 1
p1...pi−2 + bi−12

1− 1
pi−2 |εi−1|

1
p1...pi−2 . (26)

According to (25), (26), Lemmas 2.3 and 2.4, we get

∂V̂i
∂xi−1

x
pi−1

i − bi−1
∂V̂i

∂φ̂i
x̂
pi−1

i ≤ −(ci,2bi−1 − 1)ε2
i + ξ2

i + ξ2
i−1 + ci,1(bi−1)ε2

i−1, (27)

where ci,1(bi−1) is a positive constant with respect to bi−1, ci,2 = 22−2p1...pi−2 . Next,
the following inequality will be established

∂V̂i
∂xi−1

%̄i−1(zi−1) ≤
i∑

j=1

ξ2
j + ε2

i + ci,3(bi−1)ε2
i−1, (28)

where ci,3(bi−1) is a positive constant with respect to bi−1.
Then, for i = 2, . . . , n− 1, we can easily obtain

∂V̂i
∂xi

ẋi ≤
i+1∑
j=1

ξ2
j + ci,4ε

2
i + ci,5(bi−1)ε2

i−1, (29)

where ci,4 is a positive constant, ci,5(bi−1) is a positive constant with respect to bi−1.
Note that

δu(hm) ≤ ci,6

(
n∑
i=1

|ξi(hm)|
1

p1...pn−1 +

n∑
i=2

|εi(hm)|
1

p1...pn−1

)
,

where ci,6 is a positive constant. Thus, for i = n, we also have

∂V̂n
∂xn

ẋn ≤
n∑
i=1

ξ2
i + cn,4ε

2
n + cn,5(bn−1)ε2

n−1 +

n∑
i=1

ξ2
i (hm) +

n∑
i=2

ε2
i (hm), (30)

where cn,4 is a positive constant, cn,5(bi−1) is a positive constant with respect to bi−1.
Moreover,

b2i−1

∂V̂i

∂φ̂i
(x̂i−1 − x̂i−1(hm)) ≤ ξ2

i + ξ2
i−1 + ε2

i + ci,7(bi−1)ε2
i−1

+ (y − y(hm))
2

+
(
φ̂i−1 − φ̂i−1(hm)

)2p1...pi−3

+ . . .+
(
φ̂2 − φ̂2(hm)

)2

, (31)

where ci,7(bi−1) is a positive constant respects to bi−1. Then, it follows from Hölder’s
inequality and Lemma 2.5 that(

φ̂i − φ̂i(hm)
)2p1...pi−2

≤
(∫ t

t−s∗Tmax

˙̂
φi(s) ds

)2p1...pi−2

≤ 22p1...pi−2−1(s∗Tmax)
2p1...pi−2b

4p1...pi−2

i−2 x̂
2p1...pi−2

i−1 (hm)

+ 22p1...pi−2−1(s∗Tmax)
2p1...pi−2−1

b
2p1...pi−2

i−1

∫ t

t−s∗Tmax

F1(s) ds, (32)
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(y − y(hm))
2 ≤ ϑ1s

∗Tmax

∫ t

t−s∗Tmax

F2(s) ds, (33)

where ϑ1 = 2 max(1, l̄), F1 = φ̂2
2 + . . .+ φ̂

2p1...pn−2
n , F2 = x

2p1...pn−1
n + . . .+ y2.

Then, substituting (32) and (33) into (31), we have

b2i−1

∂V̂i

∂φ̂i
(x̂i−1 − x̂i−1(hm)) ≤ ε2

i + ξ2
i + ξ2

i−1 + ci,7(bi−1)ε2
i−1 + ψ1(Tmax)F3(hm)

+ ψ2(Tmax)

∫ t

t−s∗Tmax

F1(s) ds+ ϑ1s
∗Tmax

∫ t

t−s∗Tmax

F2(s) ds, (34)

where ψ1(Tmax) = max
i
{22p1...pi−2−1(s∗Tmax)

2p1...pi−2b
4p1...pi−2

i−2 }, ψ2(Tmax) =

max
i
{22p1...pi−2−1(s∗Tmax)

2p1...pi−2−1
b
2p1...pi−2

i−1 }, F3 = x̂
2p1...pn−2

n−1 + . . .+ x̂2p1
2 + x2

1

According to (25), Lemmas 2.3 and 2.4, we can deduce that

δξ
2− 1

p1...pn−1
n (u(hm)− u∗) ≤ g1

n∑
i=1

ξ2
i +

n∑
i=2

ε2
i (hm)

+ (xn − xn(hm))
2p1...pn−1 + . . .+ (x1(hm)− x1)

2
, (35)

where g1 is a positive constant. Similarly to (32) and (33), the following inequalities can
be established

(xi − xi(hm))
2p1...pi−1 ≤ ϑi(s∗Tmax)

2p1...pi−1−1
∫ t

t−s∗Tmax

F2(s) ds,

i = 2, . . . , n− 1, (36)

(xn − xn(hm))
2p1...pn−1 ≤ g2T

2p1...pn−1
max F2(hm)

+ ϑn(s∗Tmax)
2p1...pn−1−1

∫ t

t−s∗Tmax

F2(s) ds+

n∑
i=2

ε2
i (hm), (37)

where g2, ϑi, (i = 2, . . . , n) are positive constants.

Consequently, from (35) – (37), we have

δξ
2− 1

p1...pn−1
n (u(hm)− u∗) ≤ g1

n∑
i=1

ξ2
i +

n∑
i=2

ε2
i (hm)+

g2T
2p1...pn−1
max F2(hm) + ψ3(Tmax)

∫ t

t−s∗Tmax

F2(s) ds, (38)

where ψ3(Tmax) = max
i
{ϑi(s∗Tmax)

2p1...pi−1−1}.
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Let U = Vn+
n∑
i=2

V̂i. According to (27) – (30), (34) and (38), and selecting the observer

gains bi in following order

bn−1 =
1

cn,2
(σ + cn,4 + 3),

bi =
1

ci+1,2
(σ + ci+1,4 + 3 + ci+2,8(bi+1)), i = n− 2 , . . . , 1,

where ci,8(bi−1) = ci,1(bi−1)+ci,3(bi−1)+ci,5(bi−1)+ci,7(bi−1), σ is a positive constant,
we arrive at

U̇ ≤ −(ρ− 4(n− 1)− g1)

n∑
i=1

ξi − σ
n∑
i=2

ε2
i +

n∑
i=2

ξ2
i (hm) + 2

n∑
i=2

ε2
i (hm)

+ ψ4(Tmax)F4(hm) + (n− 1)ψ2(Tmax)

∫ t

t−s∗Tmax

F1(s) ds

+ (n− 1)ψ3(Tmax)

∫ t

t−s∗Tmax

F2(s) ds,

where ψ4(Tmax) = max{(n− 1)ψ1(Tmax), g2T
2p1...pn−1
max }, F4(hm) = F2(hm) + F3(hm).

Construct the following functions

Mi =

∫ t

t−s∗Tmax

∫ t

s

Fi(ρ) dρds, i = 1, 2,

and differentiate Mi with respect to t,

Ṁi = s∗TmaxF1 −
∫ t

t−s∗Tmax

Fi(s) ds, i = 1, 2.

At the same time, we also have

Mi ≤ s∗Tmax

∫ t

t−s∗Tmax

Fi(s) ds, i = 1, 2.

Let N = M1 +M2 + U , then,

Ṅ ≤ −(ρ− 4n+ 4− g1)

n∑
i=1

ξi − σ
n∑
i=2

ε2
i +

n∑
i=2

ξ2
i (hm) + 2

n∑
i=2

ε2
i (hm)

+ ψ4(Tmax)F4(hm) + s∗TmaxF5 − (1− (n− 1)ψ2(Tmax))

∫ t

t−s∗Tmax

F1(s) ds

− (1− (n− 1)ψ3(Tmax))

∫ t

t−s∗Tmax

F2(s) ds.

where F5 = F1 + F2.
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Next, based on the weighted homogeneity theory [1, 11, 23], we can build some in-
equalities. Define the vector

χ = (y, x2, . . . , xn, x̂2, . . . , x̂n),

and choose the dilation weight

Ω = (1,
1

p1
, . . . ,

1

p1 . . . pn−1
,

1

p1
, . . . ,

1

p1 . . . pn−1
).

Define F6 = ξ2
1 + . . . + ξ2

n + ε2
2 + . . . + ε2

n. It is easily to verify that F4, F5, F6 are
homogeneous of degree 2. Then, there exist positive constants g3, g4, g5, g6 such that

F4(hm) ≤ g3F6(hm), F5 ≤ g4F6, g5F6 ≤ U ≤ g6F6.

We also have

Mi ≤ s∗Tmax

∫ t

t−s∗Tmax

Fi(s) ds, i = 1, 2.

Consider the error function y(hm) = e(tk) + y(tk) in the interval [tk, tk+1), the
following inequalities finally hold

Ṅ ≤ −ρ̄F6 + (2 + ψ4(Tmax)g3)F6(hm) + g4s
∗TmaxF6

+ 2(2 + g3ψ4(Tmax))(e2(tk) + y2(tk))

− 1

s∗Tmax
(1− (n− 1)ψ2(Tmax))M1 −

1

s∗Tmax
(1− (n− 1)ψ3(Tmax))M2

≤ − 1

g6
(ρ̄− g4s

∗Tmax)U +
2

g5
(2 + ψ4(Tmax)g3)U(tk)

− 1

s∗Tmax
(1− (n− 1)ψ2(Tmax))M1 −

1

s∗Tmax
(1− (n− 1)ψ3(Tmax))M2

+
1

g5
(2 + g3ψ4(Tmax))U(hm) + 2(2 + g3ψ4(Tmax))µΥm

≤ −αN + βN(tk) + γN(hm) + ωΥm,

where

ρ̄ = max{ρ− 4n+ 4− g1, σ},

α = min{ 1

g6
(ρ̄− g4s

∗Tmax),
1

s∗Tmax
(1− (n− 1)ψ2(Tmax)),

1

s∗Tmax
(1− (n− 1)ψ3(Tmax))},

β =
2

g5
(2 + ψ4(Tmax)g3), γ =

1

g5
(2 + g3ψ4(Tmax)), ω = 2(2 + g3ψ4(Tmax))µ.

Note that ψi(Tmax), (i = 2, 3, 4) are increasing functions with respect to Tmax, and
satisfy ψi(0) = 0. There exists 0 < Tmax < T ∗ such that α > β+s∗γ holds. Then, based
on Theorem 3.2, we can determine Tmin such that the closed-loop system is globally
exponentially stable. �



188 L. ZHANG, G. YU, AND Y. SHEN

5. NUMERICAL SIMULATIONS

Consider the famous benchmark system shown in [5] with an unknown time-varying
control coefficient δ.

ż1 = z3
2 + 0.5z1, ż2 = δu,

where the unknown time-varying control coefficients δ = 1 + 0.1 sin t. We employ the
reduced-order observer (22) and the discrete-time control input (23), and set b1 =
6.2, κ1 = 42.9, κ2 = 77.1. The parameters of the event-triggered scheme are set as
µ = 50, Υ = 0.9. The initial values are set as (x1, x2, φ̂2) = (12, − 10, 0). The
time-varying sampling periods are randomly generated on the interval [0.03s, 0.05s].
The simulation results under different triggering conditions (17) and (20) are shown in
Figures 2 – 3 and Table 1 below. Clearly, under the same initial conditions, the date-
releasing rate of the proposed triggered strategy is much lower than that of the strat-
egy (17) investigated in [2, 25, 28], which implies that our event-triggered scheme (20)
can effectively reduce the computing resource. At the same time, comparing Figure 1
and 2, we can notice that the slower the threshold decays, the slower the convergence
rate of the closed-loop system. This is consistent with our conclusion in Section 3.
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Fig. 2. The simulation results with the triggering condition (17).
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Fig. 3. The simulation results with the triggering condition (20).

Triggering
condition

Number of
sampling times

Date-releasing
rate

Maximum
release intervals

(17) 300 86.67% 0.2335s
(20) 300 40.67% 0.4507s

Tab. 1. Comparison with triggering condition (17).

6. CONCLUSION

In this paper, exponential stability for sampled-data-based event-triggered system was
discussed. A general framework for designing these strategies was presented. Then,
we applied the developed theory to the problem of stabilization of a class of inherently
nonlinear systems. A novel event-triggered strategy with nonuniform sampled-data and
a fully discretized dynamic output controller were designed. Finally, the rationality of
the theory was verified by numerical simulations.
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