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STABILITY OF PERTURBED DELAY HOMOGENEOUS
SYSTEMS DEPENDING ON A PARAMETER

Ines Ben Rzig and Thouraya Kharrat

In this paper, we analyze the stability of homogeneous delay systems based on the Lyapunov
Razumikhin function in the presence of a varying parameter. In addition, we show the stability
of perturbed time delay systems when the nominal part is homogeneous.
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1. INTRODUCTION

The time delay dynamical systems have attracted the attention of many researchers
because they were an interesting subject and very useful in many research areas such
as chemistry, engineering, mechanics, physics, biology, etc. Consequently, the modern
researches field show the strong presence of this type of systems in biological models
such as the Nicholson equation for blowfly population growth in [18], the food-chain
model in [11], the prey-predator model in [13]. In [12, 18], the authors considered the
Mackey-Glass equation for the regulation of hematopoiesis as modelling of nonlinear
systems. These mathematical models in biological population for a dynamical system
with a constant delay have been studied in [9, 10, 11, 12, 13], or with two time varying
delays such as [18]. Moreover, most of the authors considered the stochastic models
[3, 20] as an application of this kind of systems.

The major problem is to analyze the stability and the stabilization for dynamical
systems when the delay is dependent on time t.

A nonlinear time varying delay system can be described by the following form:

ẋ = f(t, x(t), x(t− α(t))), t ≥ 0, (1.1)

where the function α(t) ∈ [0, τ ], for τ > 0, is continuous and nonnegative, f : R× Rn ×
Rn −→ Rn is a continuously differentiable function, x(t) ∈ Rn is the state vector and
f(t, 0, 0) = 0, ∀t ≥ 0.

Some delay systems can be described by the equation (1.1) and have more than one
equilibrium point [11, 12, 13]. In the current work, we consider a class of time delay
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systems where the function f is continuously differentiable and the delay system (1.1)
has a unique equilibrium point which we look to study the stability behavior by using
the Lyapunov-Razumikhin method.

The basic stability Lyapunov conditions are already developed in the two approaches
of Lyapunov theory, the first one based on the Lyapunov Krasovskii functional [3, 5, 6, 16]
which is useful only in the case of constant delay. However the second method based on
the Lyapunov Razumikhin function [5, 6, 21] is more successful than the first one and is
useful in the both cases: constant or varying delay. It is based essentially on Lyapunov
functions satisfying additional conditions.

The parameterized families of dynamical systems hold an important position in prac-
tical and probably some authors choose to study the stability behavior by a Lyapunov
function depending on a parameter [17].

Our purpose is to analyze the stability behavior of parametric time delay systems
with a time-invariant parameter in a compact set which is described by the following
form

ẋ = f(x(t), x(t− α(t)), θ), t ≥ 0, θ ∈ Ω, (1.2)

where the function f : Rn×Rn×Ω −→ Rn; (x, y, θ) 7→ f(x, y, θ) is a continuous function,
locally Lipschitz with respect to (x, y) and homogeneous, x(t) ∈ Rn is the state vector,
the function α(t) is continuous nonnegative and bounded for t ≥ 0, θ is a time-invariant
parameter in a given compact set Ω ⊂ Rd and f(0, 0, θ) = 0, ∀θ ∈ Ω.

Recently, some works [10, 11] studied the local stability behavior of the original
delay system (1.1) by studying its linearization around the origin. Although, when the
linearized approximation is null there are some research areas bring the light for a new
notion for the dynamical systems and introduce one of the most important results based
on homogeneous approximation [2, 7, 8, 14, 19, 22].

This concept is developed to characterize the behavior of the trivial solution of ho-
mogeneous time delay systems with constant delay in [4] and with varying delay in
[1].

The purpose is to study the uniform asymptotic stability of the trivial solution of the
system (1.2) under the presence of homogeneity notion.

This work is presented as follow: in section 2, we recall some preliminary results
about time delay systems and the notion of homogeneity. In the third section, according
to some results introduced by Aleksandrov [1], we study the asymptotic stability of the
delay system (1.2) depending on a parameter θ which remains in a compact set Ω under
the homogeneous effect. Then, we consider the system

ẋ(t) = f(x(t), x(t− α(t)), θ) + g(x(t), x(t− α(t)), θ), (1.3)

where f and g are homogeneous functions of degree d0 and d1 respectively with respect
to the same dilation under the hypothesis d0 < d1. By introducing sufficient conditions
on the system ẋ(t) = f(x(t), x(t − α(t))), we prove the uniform asymptotic stability of
the trivial solution of the system (1.3).

In section 3, we study the stability of the perturbed time delay system with varying
parameter:

ẋ = f(x(t), x(t− α(t)), θ) +R(t, x(t− α(t)), θ) + P (t, x(t), θ), t ≥ 0, θ ∈ Ω, (1.4)
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where x ∈ Rn is the state vector, the function α(t) is continuous nonnegative and
bounded for t ≥ 0 and f is a continuous function, locally Lipschitz with respect to (x, y)
and homogeneous of degree d0 > 0.

We assume that R : R× Rn × Ω −→ Rn and P : R× Rn × Ω −→ Rn are continuous
functions. The obtained results are illustrated on numerical examples and we finish by
a conclusion.

2. PRELIMINARIES

Notations:

1) For x ∈ Rn, ‖x‖ = (
n∑
i=1

x2
i )

1
2 denotes the Euclidean norm on Rn.

2) Let x ∈ Rn, we denote ‖x‖1 =
n∑
i=1

|xi|.

3) Let C = C([−τ, 0],Rn) where τ > 0 the set of continuous mapping from [−τ, 0] to
Rn.

For ϕ : [−τ, 0] −→ Rn, a continuous map, we define the uniform norm

‖ϕ‖C = max
−τ≤t≤0

‖ ϕ(t) ‖ .

4) Let (r1, . . . , rn) a family of fixed positive reals where (r1, . . . , rn)T is the vector of
weight. Let the dilation map Λ defined by:

Λ : R∗+ × Rn −→ Rn (2.1)

(λ, x) −→ (λr1x1, . . . , λ
rnxn),

we denote Λ(λ, x) = Λλ(x).

5) For x ∈ Rn, we denote ρ(x) =
( n∑
i=1

‖ xi ‖
ε
ri

) 1
ε , ε ≥ max

1≤i≤n
ri, the homogeneous

norm.

6) For each p > 0, we denote Sp = {x ∈ Rn; ρ(x) = p} the homogeneous sphere.

In general, a varying time delay system can be described by:

ẋ = f(x(t), x(t− α(t))), t ≥ 0, (2.2)

where α(t) ∈ [0, τ ] for all t ∈ R+ is a continuous nonnegative function, x : [t0,+∞) −→
Rn and

xt : [−τ, 0] −→ Rn (2.3)

µ 7−→ x(t+ µ).
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In other words, for t0 ∈ R+, the initial condition in the state x(t) in [t0 − τ, t0] is the
function φ0 ∈ C such that

xt0 = φ0. (2.4)

In the next, we consider a class of nonlinear time delay systems

ẋ = f(x(t), x(t− α(t)), θ), t ≥ 0, (2.5)

where the function f : Rn × Rn × Ω −→ Rn is continuous and locally Lipschitz with
respect to (x, y), x(t) ∈ Rn is the state vector, α(t) is continuous and α(t) ∈ [0, τ ] for
t ≥ 0, τ > 0, θ ∈ Ω is a time-invariant parameter, f(0, 0, θ) = 0, ∀θ ∈ Ω and Ω ⊂ Rd is
a compact set.

Without loss of generality, the system (2.5) can be written as

ẋ = f(x(t), xt(µ), θ), t ≥ 0, θ ∈ Ω, µ ∈ [−τ, 0], (2.6)

where x(t) ∈ Rn is the vector state.
The corresponding free delay system can be written as:

ẋ = f(x(t), x(t), θ), t ≥ 0, θ ∈ Ω. (2.7)

In the following, we will recall some homogeneity definitions for differential systems.

Remark 2.1. The homogeneous norm ρ satisfies the following properties:

1) For x ∈ Rn \ {0}, we have ρ(Λλ(x)) = λρ(x), ∀ λ > 0.

2) For x ∈ S1, we have ρ(Λλ(x)) = λ, ∀ λ > 0.

Definition 2.2. We say that:

• The function h : Rn × Rn × Ω −→ R is homogeneous of degree k if:

h(Λλ(x),Λλ(y), θ) = λkh(x, y, θ), ∀x, y ∈ Rn, ∀λ > 0, ∀θ ∈ Ω.

• The function f : Rn × Rn × Ω −→ Rn is homogeneous of degree k if:

f(Λλ(x),Λλ(y), θ) = λkΛλ(f(x, y, θ)), ∀x, y ∈ Rn, ∀λ > 0, ∀θ ∈ Ω.

Definition 2.3. The vector function f(x, y, θ) = (f1(x, y, θ), . . . , fn(x, y, θ))T is called
locally Lipschitz with respect to (x, y) if for all (x0, y0) ∈ Rn × Rn, there exists V =
V(x0, y0) a neighborhood of (x0, y0), there exists a positive number L such that for all
((x′, y′), (x”, y”)) ∈ V2, one has

‖f(x′, y′, θ)− f(x”, y”, θ)‖1 ≤ L‖(x′, y′)− (x”, y”)‖1, ∀θ ∈ Ω.
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Definition 2.4. (Gu et al. [5]) The trivial solution of the system (2.2) is said to be:

• stable if ∀t0 ∈ R and ∀ε > 0, there exists δ = δ(t0, ε) > 0, such that

‖φ0‖C < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ t0,

• uniformly stable if ∀ε > 0, there exists δ = δ(ε) > 0 such that

‖φ0‖C < δ ⇒ ‖x(t)‖ < ε, ∀t0 ∈ R, ∀t ≥ t0,

• asymptotically stable if it is stable and ∀t0 ∈ R and ∀ε > 0, there exists δ =
δ(t0, ε) > 0 such that

‖φ0‖C < δ ⇒ lim
t−→∞

x(t) = 0, ∀t ≥ t0,

• uniformly asymptotically stable if it is uniformly stable and there exists δ > 0
such that for all η > 0, there exists T (δ, η), satisfying

‖φ0‖C < δ ⇒ ‖x(t)‖ < η, ∀t ≥ t0 + T (δ, η), ∀t0 ∈ R,

• globally (uniformly) asymptotically stable if it is (uniformly) asymptotically
stable and δ can be an arbitrarily large finite number.

Definition 2.5. The trivial solution of the delay system (2.6) is called:

1. uniformly stable with respect to the time-invariant parameter θ if for any ε > 0,
there exists δ = δ(ε) > 0 such that

‖φ0‖C < δ ⇒ ‖x(t)‖ < ε, ∀t0 ∈ R, ∀t ≥ t0, ∀θ ∈ Ω.

2. uniformly asymptotically stable with respect to the time-invariant parameter θ if
it is uniformly stable and there exists δ > 0 such that for all η > 0 there exists
T (δ, η) satisfying

‖φ0‖C < δ ⇒ ‖x(t)‖ < η, ∀t ≥ t0 + T (δ, η), ∀t0 ∈ R, ∀θ ∈ Ω.

The study of asymptotic stability concept with the above definitions is difficult. Con-
sequently, we recall other important theorems, called Lyapunov Razumikhin theorems
[5, 6, 21], which are extensions of Lyapunov theory [15] and will simplify our study.
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3. STABILITY OF TIME DELAY SYSTEMS DEPENDING ON A PARAMETER

3.1. Stability with homogeneous Lyapunov functions:

In the begging of this section, we recall the homogeneous Lyapunov function definition:

Definition 3.1. (Rosier [22]) Let V : Rn −→ R be a differentiable, positive definite
function (i.e. V (x) > 0, for x ∈ Rn \ {0} and V (0) = 0).
V is called homogeneous of degree k > 0 with respect to the dilation λ, if

V (Λλ(x)) = λkV (x), ∀λ > 0, ∀x ∈ Rn.

Proposition 3.2. (Sepulchre and Aeyels [23]) Let V be a positive definite function,
homogeneous of degree k.

Then for each s > 0, the following properties are satisfied:

a) The level set V s := {x such that V (x) = s} of V is homogeneous i. e. V s =
Λ
s

1
k

(V 1).

b) V s is homeomorphic to Sn−1.

c) For each i ∈ {1, . . . , n}, ∂V
∂xi is homogeneous of degree (k − ri) i. e. ∂V

∂xi (Λs(x)) =

sk−ri ∂V∂xi (x).

Proposition 3.3. (Zubov [24]) Let V : Rn −→ R be a C1-Lyapunov function. If V
is homogeneous of degree k > 0, then there exist positive constants a, b and γi, i =
1, . . . , n, such that the following estimations hold:

a ρ(x)k ≤ V (x) ≤ b ρ(x)k, ∀x ∈ Rn,

and ∣∣∣ ∂V
∂xi

(x)
∣∣∣ ≤ γi ρ(x)k−ri , i = 1, . . . , n, ∀x ∈ Rn.

Remark 3.4. The above results remain applicable for the Lyapunov function V : Rn×
Ω −→ R depending on the time-invariant parameter θ according to the study introduced
in [15, 17].

For homogeneous functions, the following result was proved independently by Rosier
in [2].

Lemma 3.5. Let V : Rn × Ω −→ R be a C1-Lyapunov function. If V is homogeneous
of degree k > 0 and f is homogeneous of degree d0 with respect to the same dilation Λ,
then, the derivative of V with respect to the system (2.7)

ωθ(x) =
〈
∇V (x, θ), f(x, x, θ)

〉
, x ∈ Rn, θ ∈ Ω,

is homogeneous of degree d0 + k.
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Lemma 3.6. If the system (2.7) is uniformly asymptotically stable, then there exists
m > 0 such that the estimation

ωθ(x) ≤ −m ρ(x)d0+k,

holds for all x ∈ Rn \ {0} and for all θ ∈ Ω.

P r o o f .
Let Λ : R∗+ × Rn −→ Rn the dilation map. The system (2.7) is uniformly asymp-

totically stable, then there exists an homogeneous Lyapunov function of degree k,
V : Rn × Ω → R of class C1. Using the homogeneous fact of f and V , we deduce
the following:
for x 6= 0 is given, there exists a unique y ∈ S1 such that x = Λλ(y).

The derivative of V along the trajectories of the system (2.7) is

ωθ(x) =
〈
∇V (x, θ), f(x, x, θ)

〉
= 〈∇V (Λλ(y), θ), f(Λλ(y),Λλ(y), θ)〉
= 〈λkA−1(λ)∇V (y, θ), λd0A(λ)f(y, y, θ)〉
= λk+d0〈∇V (y, θ), f(y, y, θ)〉 = λk+d0ωθ(y),

where A−1(λ) = diag(λ−r1 , . . . , λ−rn).
The uniform asymptotic stability of the system (2.7) implies that ωθ(y) < 0, ∀θ ∈ Ω.
Under the assumptions that ∇V and f are continuous functions and S1×Ω is a com-

pact set, we conclude that the constant m defined by

m = min
y∈S1,θ∈Ω

|ωθ(y)|

is positive. The fact ωθ(y) < 0, ∀θ ∈ Ω and y ∈ S1 implies that ωθ(y) ≤ −m.
Hence,

ωθ(x) ≤ −mλk+d0 , ∀θ ∈ Ω.

By the result that ρ(Λλ(y)) = λρ(y) and since y ∈ S1, we get ρ(x) = ρ(Λλ(y)) = λ.
Therefore,

ωθ(x) ≤ −mρ(x)k+d0 , ∀θ ∈ Ω, x ∈ Rn \ {0}.

This completes the proof. �

Now, we recall the Lyapunov Razumikhin Theorem which will be useful in the next:

Theorem 3.7. (Gu et al. [5]) Let f : Rn × Rn −→ Rn. Suppose that ψ1, ψ2, ψ3 :
R+ −→ R+ are continuous nondecreasing functions, and ψ1(s), ψ2(s) are positive for
s > 0, ψ1(0) = ψ2(0) = 0 and ψ2 is strictly increasing.

If there exists a continuous function

V : Rn −→ R+,

such that
ψ1(‖x(t)‖) ≤ V (x(t)) ≤ ψ2(‖x(t)‖), ∀t ≥ 0,∀x ∈ Rn, (3.1)



148 I. BEN RZIG AND T. KHARRAT

and the derivative of V along the solutions x(t) of the system (2.2) satisfies

V̇ (x(t)) ≤ −ψ3(‖x(t)‖) whenever V (x(ξ)) ≤ V (x(t)), ∀t ≥ 0, ∀ξ ∈ [t− τ, t], (3.2)

then the system (2.2) is uniformly stable.
If in addition, ψ3(s) > 0,∀s > 0 and there exists a continuous and nondecreasing

function p(s) > s, ∀s > 0 such that the condition (3.2) is strengthened to

V̇ (x(t)) ≤ −ψ3(‖x(t)‖) whenever V (x(ξ)) ≤ p(V (x(t))), ∀t ≥ 0, ∀ξ ∈ [t− τ, t], (3.3)

then the system (2.2) is uniformly asymptotically stable.
Moreover, if lim

s→+∞
ψ1(s) = +∞, then system (2.2) is globally uniformly asymptoti-

cally stable.

To prove the stability behavior of the delay system (2.6), we need to introduce the
following assumption.

Assumption A1. The trivial solution of the system (2.7) is uniformly asymptotically
stable with respect to the parameter θ.

Theorem 3.8. Let f : Rn×Rn×Ω −→ Rn a continuous, locally Lipschitz with respect
to (x, y) and homogeneous function of degree d0 > 0 with respect to the dilation Λ.

If the assumption A1 is fulfilled, then the trivial solution of the system (2.6) is locally
uniformly asymptotically stable.

P r o o f . By assumption A1, the trivial solution of the system ẋ = f(x, x, θ) is
uniformly asymptotically stable, then by the Lyapunov converse Theorem there exists
V : Rn×Ω −→ R a C1-Lyapunov homogeneous function of degree k with respect to the
dilation Λ and satisfying that there exists positive constants a, b and γi, i = 1, . . . , n,
such that:

a ρ(x)k ≤ V (x, θ) ≤ b ρ(x)k and
∣∣∣ ∂V
∂xi

(x, θ)
∣∣∣ ≤ γi ρ(x)k−ri ,

for i = 1, . . . , n, ∀x ∈ Rn, ∀θ ∈ Ω.
To study the stability behavior of the time delay system, we need to prove that V sat-
isfies all conditions of the theorem 3.7. We choose positive numbers δ and σ such that
σ > 1 and we suppose that, for x(t) is a solution of the system (2.6), ρ(x(ξ)) < δ and
the Razumikhin condition (3.3) that we are introduced as

V (x(ξ), θ) ≤ σV (x(t), θ), ∀t ≥ 0, x ∈ Rn, θ ∈ Ω, (3.4)

are fulfilled ∀ξ ∈ [t− τ, t], τ = sup
t≥0

α(t).

Differentiating V with respect to the system (2.6), we get

V̇ (x(t), θ) = ωθ(x(t))+

n∑
i=1

∂V

∂xi
(x(t), θ)

[
fi(x(t), xt(µ), θ)−fi(x(t), x(t), θ)

]
. (3.5)

By the homogeneity of V , one has the first result of the proposition 3.3 and by applying
to estimation (3.4), we deduce

a ρ(x(ξ))k ≤ V (x(ξ), θ) ≤ σV (x(t), θ) ≤ σb ρ(x(t))k.
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Hence, it is easy to get

ρ(x(ξ)) ≤ (
σb

a
)

1
k ρ(x(t)), ∀ξ ∈ [t− τ, t], x ∈ Rn.

Let B = {x ∈ Rn : ρ(x) ≤ (σba )
1
k }.

For x, xt ∈ Rn \{0}, we denote x̃ = (x̃1, . . . , x̃n)T and ỹ = (ỹ1, . . . , ỹn)T two vector fields
defined by:

x̃i(t) =
xi(t)

ρ(x(t))ri
and ỹi(t) =

xit(µ)

ρ(x(t))ri
, µ ∈ [−α(t), 0], t ≥ 0,

where i = {1, . . . , n} and (r1, . . . , rn) ∈ [0,+∞) is the vector of weight.

It is clear that ρ(x̃(t)) = 1 and ρ(ỹ(t)) ≤ (σba )
1
k .

Through the homogeneity of the both functions V and f and by results given in propo-
sition 3.3 and in lemma 3.6, we get:

V̇ (x(t), θ)

≤ −m ρ(x(t))d0+k +

n∑
i=1

γiρ(x(t))k−ri
∣∣∣fi(x(t), xt(µ), θ)− fi(x(t), x(t), θ)

∣∣∣
≤ −m ρ(x(t))d0+k +

n∑
i=1

γiρ(x(t))k−riρ(x(t))d0+ri
∣∣∣fi(x̃(t), ỹ(t), θ)− fi(x̃(t), x̃(t), θ)

∣∣∣
≤ −m ρ(x(t))d0+k +

n∑
i=1

n∑
j=1

γiρ(x(t))k+d0L
∣∣∣ỹj(t)− x̃j(t)∣∣∣

≤ −m ρ(x(t))d0+k +

n∑
i=1

n∑
j=1

γiρ(x(t))k+d0Lρ(x(t))−rj
∣∣∣xjt (µ)− xj(t)

∣∣∣.
By applying the mean value theorem, we get:∣∣∣xjt (µ)− xj(t)

∣∣∣ = α(t)
∣∣∣ẋj(εj(t))∣∣∣,

where εj(t) ∈]t− α(t), t[. Thus, we obtain:

V̇ (x(t), θ)

≤ −m ρ(x(t))d0+k +

n∑
i=1

n∑
j=1

Lγi ρ(x(t))k+d0−rjα(t)
∣∣∣ẋj(εj(t))∣∣∣

≤ −m ρ(x(t))d0+k +

n∑
i=1

n∑
j=1

Lγiρ(x(t))d0+k−rjτ
∣∣∣fj(x(εj(t)), x(εj(t)− α(εj(t))), θ)

∣∣∣
≤ −m ρ(x(t))d0+k +

n∑
i=1

n∑
j=1

Lγiρ(x(t))d0+k−rjτρ(x(t))d0+rj
∣∣∣fj(x̃(εj(t)), ỹ(εj(t)), θ)

∣∣∣
≤ −m ρ(x(t))d0+k +

n∑
i=1

n∑
j=1

Lγiτρ(x(t))2d0+k b̃

≤ (−m + ã ρ(x(t))d0)ρ(x(t))d0+k,
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where ã = nτLb̃
n∑
i=1

γi and b̃ are positive real constants.

Let ε1 = m
2 be a positive real constant, there exists η̃1 where η̃1 ∈ [0, δ] such that

ã ρ(x(t))d0 ≤ ε1.

Therefore

V̇ (x(t), θ) ≤ −m
2
ρ(x(t))d0+k.

Hence, the solution of the system (2.6) is locally uniformly asymptotically stable with
respect to θ. �

3.2. Application to the stability of time delay systems depending on a
parameter:

We consider the following system:

ẋ(t) = f(x(t), x(t− α(t)), θ) + g(x(t), x(t− α(t)), θ), θ ∈ Ω, t ≥ 0, (3.6)

where f : Rn × Rn × Ω −→ Rn; (x, y, θ) 7→ f(x, y, θ) and g : Rn × Rn × Ω −→
Rn; (x, y, θ) 7→ g(x, y, θ) are continuous, locally Lipschitz with respect to (x, y) and
homogeneous functions of degree d0 > 0 and d1 > 0 respectively with respect to the
dilation Λ where d0 < d1. The function α(t) is continuous, nondecreasing and bounded
with α(t) ∈ [0, τ ] for all t ≥ 0, for a given τ > 0.

To simplify, denote the system (3.6) by

ẋ(t) = f(x(t), xt(µ), θ) + g(x(t), xt(µ), θ), µ ∈ [−τ, 0], θ ∈ Ω, t ≥ 0. (3.7)

The corresponding free delay system is:

ẋ(t) = f(x(t), x(t), θ) + g(x(t), x(t), θ), θ ∈ Ω, t ≥ 0. (3.8)

Lemma 3.9. Let V : Rn × Ω −→ R be a C1-Lyapunov function and homogeneous of
degree k > 0 with respect to the dilation Λ.

If g : Rn × Rn × Ω −→ Rn is a continuous and homogeneous function of degree
d1 > 0 with respect to the dilation Λ and

φθ(x) = 〈∇V (x, θ), g(x, x, θ)〉.

Then,

|φθ(x)| ≤ ϕρ(x)d1+k, ∀θ ∈ Ω, x ∈ Rn \ {0},

where ϕ is a nonnegative real constant.
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P r o o f . Let Λ : R∗+×Rn −→ Rn the dilation map and suppose that the both functions
V and g are homogeneous of degree k and d1 respectively with respect to Λ.

For every fixed x 6= 0, there exists a unique y ∈ S1 such that x = Λλ(y) and for all
θ ∈ Ω, we have

φθ(x) = 〈∇V (x, θ), g(x, x, θ)〉 = 〈∇V (Λλ(y), θ), g(Λλ(y),Λλ(y), θ)〉
= 〈λkA−1(λ)∇V (y, θ), λd1A(λ)g(y, y, θ)〉
= λk+d1〈∇V (y, θ), g(y, y, θ)〉,

where A−1(λ) = diag(λ−r1 , . . . , λ−rn).

Since the continuity of the both functions ∇V and g and the compactness of S1×Ω,
then there exists a nonnegative number ϕ satisfying

ϕ = sup
y∈S1,θ∈Ω

∣∣∣〈∇V (y, θ), g(y, y, θ)〉
∣∣∣.

On the other hand, the fact that ρ(Λλ(y)) = λρ(y) and y ∈ S1 implies that ρ(x) = λ.
Then, we deduce that∣∣∣φθ(x)

∣∣∣ ≤ ∣∣∣λk+d1〈∇V (y, θ), g(y, y, θ)〉
∣∣∣

≤ λk+d1ϕ

≤ ρ(x)k+d1ϕ, ∀θ ∈ Ω, ∀x ∈ Rn.

�

Assumption A2. The trivial solution of the original system (2.6) is locally uniformly
asymptotically stable with respect to θ.

Theorem 3.10. Let f : Rn × Rn × Ω −→ Rn and g : Rn × Rn × Ω −→ Rn.

If the assumption A2 is fulfilled, then the system (3.7) is locally uniformly asymptot-
ically stable.

P r o o f . Let V : Rn × Ω −→ R a C1-Lyapunov function and homogeneous of degree
k > 0 with respect to the dilation Λ for the system (2.6). In the same way that we shown
in the proof of theorem 3.8, we choose positive numbers δ and σ such that σ > 1 and we
suppose that, for x(t) is a solution of the system (2.6), ρ(x(ξ)) < δ and the Razumikhin
condition

V (x(ξ), θ) ≤ σV (x(t), θ), ∀t ≥ 0, x ∈ Rn, θ ∈ Ω,

are fulfilled ∀ξ ∈ [t− τ, t], τ = sup
t≥0

α(t).
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Differentiating V with respect to the system (3.7), we get

V̇ (x(t), θ) =
〈
∇V (x(t), θ), f(x(t), xt(µ), θ)

〉
+
〈
∇V (x(t), θ), g(x(t), x(t), θ)

〉
+

n∑
i=1

∂V

∂xi
(x(t), θ)

(
gi(x(t), xt(µ)θ)− gi(x(t), x(t), θ)

)
=

〈
∇V (x(t), θ), f(x(t), xt(µ), θ)

〉
+ φθ(x(t))

+

n∑
i=1

∂V

∂xi
(x(t), θ)

(
gi(x(t), xt(µ), θ)− gi(x(t), x(t), θ)

)
.

The assumption A2 implies that there exists a positive real constant c̃ such that〈
∇V (x(t), θ), f(x(t), xt(µ), θ)

〉
≤ −c̃ ρ(x(t))d0+k, ∀ t ≥ 0, x ∈ Rn, θ ∈ Ω.

As the proof of theorem 3.8, under the hypothesis that g is locally Lipschitz with respect
to (x, y) and homogeneous of degree d1 and applying lemma 3.9, we obtain:

V̇ (x(t), θ)

≤ −c̃ ρ(x(t))d0+k + ϕρ(x(t))d1+k +

n∑
i=1

γiρ(x(t))k−ri
∣∣∣gi(x(t), xt(µ), θ) − gi(x(t), x(t), θ)

∣∣∣
≤ −c̃ ρ(x(t))d0+k + ϕρ(x(t))d1+k +

n∑
i=1

γiρ(x(t))k+d1
∣∣∣gi(x̃(t), ỹ(t), θ) − gi(x̃(t), x̃(t), θ)

∣∣∣
≤ −c̃ ρ(x(t))d0+k + ϕρ(x(t))d1+k +

n∑
i=1

n∑
`=1

γiρ(x(t))k+d1L′
∣∣∣ỹ`(t) − x̃`(t)

∣∣∣
≤ −c̃ ρ(x(t))d0+k + ϕρ(x(t))d1+k +

n∑
i=1

n∑
`=1

γiρ((x(t))k+d1L′ρ(x(t))−r`
∣∣∣x`t(µ) − x`(t)

∣∣∣
≤ −c̃ ρ(x(t))d0+k + ϕρ(x(t))d1+k +

n∑
i=1

n∑
`=1

L′γi ρ(x(t))k+d1−r`α(t)
∣∣∣ẋ`(ε`(t))∣∣∣

≤ −c̃ ρ(x(t))d0+k + ϕρ(x(t))d1+k

+

n∑
i=1

n∑
`=1

L′γiρ(x(t))d1+k−r`τ
∣∣∣g`(x(ε`(t)), x(ε`(t) − α(ε`(t))), θ)

∣∣∣
≤ −c̃ ρ(x(t))d0+k + ϕρ(x(t))d1+k

+
n∑

i=1

n∑
`=1

L′γiρ(x(t))d1+k−r`τρ(x(t))d1+r`
∣∣∣g`(x̃(ε`(t)), ỹ(ε`(t)), θ)

∣∣∣
≤ ρ(x(t))k+d0(−c̃+ ϕρ(x(t))d1−d0) +

n∑
i=1

nL′γiτ c̃1ρ(x(t))2d1+k

≤ ρ(x(t))k+d0(−c̃+ ϕρ(x(t))d1−d0 + ã1ρ(x(t))2d1−d0),

where ã1 = nL′τ c̃1

n∑
i=1

γi and c̃1 are positive real constants.

Let ε2 = c̃
2 > 0, there exists η̃2 where η̃2 ∈ [0, δ] such that

ϕρ(x(t))d1−d0 + ã1ρ(x(t))2d1−d0 ≤ ε2.
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This implies that

V̇ (x(t), θ) ≤ − c̃
2
ρ(x(t))d0+k.

Therefore, this completes the proof. �

4. STABILITY OF PERTURBED TIME DELAY SYSTEMS WITH VARYING
PARAMETER

In this part, we will look for conditions of the asymptotic stability of the solution when
the original system (2.5) has some perturbations.

We consider the following perturbed system

ẋ = f(x(t), x(t− α(t)), θ) +R(t, x(t− α(t)), θ) + P (t, x(t), θ), t ≥ 0, θ ∈ Ω, (4.1)

where x ∈ Rn is the state vector, the function α(t) is continuous nonnegative and
bounded for t ≥ 0, f is a continuous, locally Lipschitz with respect to (x, y) and homo-
geneous of degree d0 > 0 with respect to the dilation Λ, R : R × Rn × Ω −→ Rn and
P : R× Rn × Ω −→ Rn.

Assumption A3. Suppose that R(t, z, θ) = (R1(t, z, θ), . . . , Rn(t, z, θ))T is a continu-
ously differentiable function satisfying the following estimation:∣∣∣Ri(t, z, θ)∣∣∣ ≤ Γi max

ξ∈[t−τ,t]
ρ(z(ξ))µ̃+ri , i = 1, . . . , n, ∀θ ∈ Ω, ∀z ∈ Rn,

where Γi > 0, µ̃ > d0 > 0 and τ = sup
t≥0

α(t).

Assumption A4. Let P : (t, x, θ) 7→ P (t, x(t), θ) = (P1(t, x(t), θ), . . . , Pn(t, x(t), θ))T ,
θ ∈ Ω, x ∈ Rn and t ≥ 0, a continuous function.

We assume that

lim
λ→0

∣∣∣Pi(t,Λλ(y), θ)
∣∣∣

λd0+ri
= 0, ∀t ≥ 0,

uniformly on S1 × Ω.

Theorem 4.1. If the assumptions A2, A3 and A4 are fulfilled, then the trivial solution
of the perturbed system (4.1) is locally uniformly asymptotically stable.

P r o o f . Consider the C1−Lyapunov and homogeneous function V : Rn × Ω −→ R of
degree k with respect to θ which is constructed for time delay system (2.6).

Under assumption A2, we have the trivial solution of the system ẋ = f(x, xt, θ) is
locally uniformly asymptotically stable, then as in the proof of theorem 3.8, V satisfies
that there exists positive constants γi and c̃, i = 1, . . . , n such that:∣∣∣ ∂V
∂xi

(x, θ)
∣∣∣ ≤ γi ρ(x)k−ri and V̇ (x, θ)|(2.6) ≤ −c̃ ρ(x(t))d0+k, ∀x ∈ Rn, ∀θ ∈ Ω.
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Hence, the derivative of V with respect to the perturbed system (4.1) is described by

V̇ (x(t), θ) =
〈
∇V (x(t), θ), f(x(t), xt(µ), θ)

〉
+

n∑
i=1

∂V

∂xi
(x(t), θ)Ri(x(t), xt(µ), θ)

+

n∑
i=1

∂V

∂xi
(x(t), θ)Pi(t, x(t), θ)

≤ −c̃ ρ(x(t))d0+k +

n∑
i=1

γiρ(x(t))k−riΓi max
ξ∈[t−τ,t]

ρ(x(ξ))µ̃+ri

+

n∑
i=1

γiρ(x(t))k−ri
∣∣∣Pi(t, x(t), θ)

∣∣∣.
We choose a positive number δ such that, for all x(t) a solution of the system (2.6), the
inequality ρ(x(ξ)) < δ is fulfilled ∀ ξ ∈ [t− τ, t] and τ = supt≥0 α(t).

Thus, it can be seen that

V̇ (x(t), θ) ≤ −c̃ ρ(x(t))d0+k +

n∑
i=1

γiΓiρ(x(t))k+µ̃ +

n∑
i=1

γiρ(x(t))k+d0

∣∣∣Pi(t, x(t), θ)
∣∣∣

ρ(x(t))d0+ri
.

For x ∈ Rn \ {0} is given, there exists a unique y ∈ S1 such that x = Λλ(y).

As y ∈ S1, we get ρ(y) = 1 and on the other side, one has ρ(Λλ(y)) = λρ(y),
consequently ρ(x) = λ.

So, we obtain

V̇ (x(t), θ) ≤ −c̃ ρ(Λλ(y(t)))d0+k +

n∑
i=1

γiΓiρ(Λλ(y(t)))k+µ̃

+

n∑
i=1

γiρ(Λλ(y(t)))k+d0

∣∣∣Pi(t,Λλ(y(t)), θ)
∣∣∣

ρ(Λλ(y(t)))d0+ri

≤ −c̃ λd0+k + ã2λ
µ̃+k +

n∑
i=1

γiλ
k+d0

∣∣∣Pi(t,Λλ(y(t)), θ)
∣∣∣

λd0+ri
.

Since

lim
λ→0

∣∣∣Pi(t,Λλ(y(t)), θ)
∣∣∣

λd0+ri
= 0, ∀t ≥ 0,∀θ ∈ Ω,

uniformly on S1, so for all β > 0, there exists λ̃ > 0 where λ ∈ [0, λ̃], such that one has∣∣∣Pi(t,Λλ(y(t)), θ)
∣∣∣

λd0+ri
< β, ∀t ≥ 0,∀θ ∈ Ω.
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Then

V̇ (x(t), θ) ≤ −c̃ λd0+k + ã2λ
µ̃+k +

n∑
i=1

γiλ
k+d0β

≤ −c̃ ρ(x(t))d0+k + ã2ρ(x(t))k+µ̃ + ã3ρ(x(t))k+d0

≤
(
− c̃ + ã2ρ(x(t))µ̃−d0 + ã3

)
ρ(x(t))d0+k,

where ã2 =
n∑
i=1

γiΓi and ã3 = β

n∑
i=1

γi are positive real constants for γi, β and Γi, i =

1, . . . , n are positive numbers.
For β sufficiently small, let ε3 be a positive constant and defined by the following

equality

ε3 =
c̃

2
− 2ã3,

there exists η̃3 ∈ [0, δ] such that

ã2ρ(x(t))µ̃−d0 ≤ ε3.

Consequently, we deduce

V̇ (x(t), θ) ≤ −ñ ρ(x(t))d0+k,

where ñ = c̃
2 + ã3 > 0.

Finally, the system (4.1) is locally uniformly asymptotically stable with respect to θ. �

5. EXAMPLES

Example 5.1. Let the time delay system described by

ẋ(t) = −4(2− θ)2x3(t) + x3(t)x2(t− τ)− (sin (θ) + 2)2x5(t). (S1)

Denote
f(x, y, θ) = −4(2− θ)2x3, (S2)

and
g(x, y, θ) = x3y2 − (sin (θ) + 2)2x5, (S3)

where θ ∈ [−3
2 ,

3
2 ] = Ω, (x, y) ∈ R2 and τ > 0.

The function f (respectively g) is homogeneous of degree 3 (respectively 5) with
respect to the standard dilation i. e.:
f(λx, λy, θ) = λ3f(x, y, θ), ∀(x, y, θ) ∈ R2 × Ω;
g(λx, λy, θ) = λ5g(x, y, θ), ∀(x, y, θ) ∈ R2 × Ω.
Let V (x, θ) = 1

2x
2 be an homogeneous function of degree 2 with respect to the standard

dilation.
For a given σ > 1, we choose ψ1(s) = (2σ − 1)s, ψ2(s) = es

2 − 1 and p(s) = 2s
∀s > 0. It is clear that ψ1 and ψ2 satisfy the condition (3.1) and p satisfies that
p(V (x(t), θ)) ≥ V (x(ξ), θ), for all t ≥ 0, θ ∈ Ω and ξ ∈ [t− τ, t].
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For all x ∈ Rn \ {0}, the derivative of V along the trajectories of the time delay
system (S2) is

〈∇V (x, θ), f(x(t), x(t− τ), θ)〉 = −4(2− θ)2x4 < 0.

In addition 〈∇V (x, θ), f(x, y, θ)〉 = 0 implies that x = 0.

Then by the theorem 3.10, the system (S1) is locally uniformly asymptotically stable
with respect to θ.

The following figure illustrates the above example for θ = −π
2 , τ = 0.1 and t ∈ [0, 1].

Fig. 1.

Example 5.2. Consider the following perturbed delay system depending on a param-
eter:

(S4)



ẋ1(t) = −x3
1(t)− x2(t)x2

1(t− α(t)) + cos(θ)x1(t)x2
2(t) + 2θx3

1(t− α(t))
+(cos(θ) + (1 + θ)2)x4

3(t)

ẋ2(t) = x1(t)x2
1(t− α(t))− x3

2(t)− cos(θ)x2
1(t)x2(t) +

x2
2(t− α(t))

(θ − 1)2

+(2− sin(θ))2x3
2(t)x1(t)

ẋ3(t) = −x5
3(t) +

√
(sin2( θ2 ) + 2)3x2

3(t− α(t)) + (θ + 1)2x4
1(t)

We can rewrite the system (S4) in the following form:

ẋ = f(x, y, θ) +R(t, y, θ) + P (t, x, θ),

where
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f(x, y, θ) =

 −x3
1 − x2y

2
1 + cos(θ)x1x

2
2

x1y
2
1 − x3

2 − cos(θ)x2
1x2

−x5
3

 , R(t, y, θ) =



2θy3
1

y2
2

(θ − 1)2√
(sin2( θ2 ) + 2)3y2

3


,

P (t, x, θ) =

 (cos(θ) + (1 + θ)2)x4
3

(2− sin(θ))2x3
2x1

(θ + 1)2x4
1

 ,

where x = (x1, x2, x3) ∈ R3, y = (y1, y2, y3) ∈ R3, λ > 0 and θ ∈ [− 1
2 ,

1
2 ] = Ω.

The function f is homogeneous of degree 2 with respect to the dilation Λλ(x) =

(λx1, λx2, λ
1
2x3).

Let V (x, θ) = 1
2x

2
1 + 1

2x
2
2 + 1

4x
4
3 which is a C1-Lyapunov function and homogeneous

of degree 2 with respect to the dilation Λ.

Let ψ1, ψ2 and p be continuous and nondecreasing functions such that for a given
σ > 1, ψ1(s) = (σ − 1)s, ψ2(s) = (2σ − 1)s2 and p(s) = 2s, ∀s > 0.

It is clear that ψ1 and ψ2 satisfy the condition (3.1) and p(V (x(t), θ)) ≥ V (x(ξ), θ),
for t ≥ 0, θ ∈ [− 1

2 ,
1
2 ] and ξ ∈ [t− τ, t].

One has 〈∇V (x, θ), f(x, y, θ)〉 = −x4
1 − x4

2 − x8
3 ≤ 0 and 〈∇V (x, θ), f(x, y, θ)〉 = 0

implies that x1 = x2 = x3 = 0. Therefore, the assumption A2 is fulfilled.

As r = (1, 1, 1
2 ), the homogeneous norm is given by ρ(y) = (|y1|ε + |y2|ε + |y3|2ε)

1
ε for

ε ≥ 1, y ∈ R3 and as we known that for x ∈ R3 \ {0} there exists a unique z ∈ S1 such

that x = Λλ(z) = (λz1, λz2, λ
1
2 z3).

Let µ̃ = 3 and Γ = (|1 + θ|, 4(θ+ 1), (| θ2 |+ 2)2), then we deduce that R and P satisfy
assumptions A3 and A4 for t ≥ 0, λ > 0 and θ ∈ [− 1

2 ,
1
2 ].

By applying to theorem 4.1, one has that the system (S4) is locally uniformly asymp-
totically stable with respect to θ.

6. CONCLUSION

In this paper, we have studied the asymptotic stability of time varying delay systems
with presence of varying parameter. This work has been improved basically by the
use of Razumikhin theorem and the homogeneous property of the considered system.
The major importance of the resulting theorems is that we study the stability behavior
of the time delay system depending on a parameter, which is in a compact set, by
introducing hypothesis on a compact set S1. Moreover, we have studied the stability
of perturbed time delay systems depending on a parameter assuming some inequalities
on the perturbation term. We finish by numerical examples which illustrate the given
results.

(Received June 21, 2019)



158 I. BEN RZIG AND T. KHARRAT

R E F E R E N C E S

[1] A. Yu. Aleksandrov and A. .P. Zhabko: Delay-independent stability of homogeneous sys-
tems. Appl. Math. Lett. 34 (2014), 43–50. DOI:10.1016/j.aml.2014.03.016

[2] A. Bacciotti and L. Rosier: Lyapunov Functions and Stability in Control Theory. Springer
2005.

[3] Y. Cao, R. Samidurai, and R. Sriraman: Stability and sissipativity analysis for neutral
type stochastic Markovian jump static neural networks with time delays. J. Artif. Intell.
Soft Comput. Res. 9 (2019), 3, 189–204. DOI:10.2478/jaiscr-2019-0003

[4] D. Efimov, W. Perruquetti, and J. P. Richard: Development of homogeneity con-
cept for time-delay systems. SIAM J. Control Optim. 52 (2014), 3, 1547–1566.
DOI:10.1137/130908750

[5] K. Gu, V. L. Kharitonov, and J. Chen: Stability of Time-Delay Systems. Birkhauser,
Boston 2003.

[6] J. K. Hale and L. S. M. Verduyn: Introduction to Functional-Differential Equations.
Springer-Verlag, New York 1993.

[7] H. Hermes: Asymptotically stabilizing feedback controls. J. Different. Equations 92 (1991),
1, 76–89. DOI:10.1016/0022-0396(91)90064-G

[8] H. Hermes: Homogeneous coordinates and continuous asymptotically stabilizing feedback
controls. Differential Equations Stability Control 109 (1991), 1, 249–260.

[9] H. Hu, X. Yuan, L. Huang, and C. Huang: Global dynamics of an SIRS model with
demographics and transfer from ifectious to susceptible on heterogeneous networks. Math.
Biosciences Engrg. 16 (2019), 5729–5749. DOI:10.3934/mbe.2019286

[10] C. Huang, J. Cao, F. Wen, and X. Yang: Stability Analysis of SIR Model
with Distributed Delay on Complex Networks. Plo One 08 (2016), 11, e0158813.
DOI:10.1371/journal.pone.0158813

[11] C. Huang, Y. Qiao, L. Huang, and R. Agarwal: Dynamical behaviors of a Food–Chain
model with stage structure and time delays. Adv. Difference Equations 186 (2018), 12.
DOI:10.1186/s13662-018-1589-8

[12] C. Huang, Z. Yang, T. Yi, and X. Zou: On the basins of attraction for a class of delay
differential equations with non-monotone bistable nonlinearities. J. Differential Equations
256 (2014), 2101–2114. DOI:10.1016/j.jde.2013.12.015

[13] C. Huang, H. Zhang, J. Cao, and H. Hu: Stability and Hopf bifurcation of a delayed
prey–predator model with disease in the predator. Int. J. Bifurcation Chaos 29 (2019), 7,
1950091–23. DOI:10.1142/s0218127419500913

[14] M. Kawski: Homogeneous stabilizing feedback laws. Control Theory Advanced Technol.
6 (1990), 4, 497–516.

[15] K. H. Khalil: Nonlinear Systems. (Third edition) Prentice-Hall, Upper Saddle River, NJ
2002.

[16] N. N. Krasovskii: Stability of Motion. Applications of Lyapunov’s Second Method to
Differential Systems and Equations with Delay. Stanford University Press, Stanford 1963.

[17] Y. Lin, E. D. Sontag, and Y. Wang: Input to State Stabilizability for Parametrized
Families of Systems. Int. J. Robust Nonlinear Control 5 (1995), 3, 187–205.
DOI:10.1002/rnc.4590050304

https://doi.org/10.1016/j.aml.2014.03.016
https://doi.org/10.2478/jaiscr-2019-0003
https://doi.org/10.1137/130908750
https://doi.org/10.1016/0022-0396(91)90064-G
https://doi.org/10.3934/mbe.2019286
https://doi.org/10.1371/journal.pone.0158813
https://doi.org/10.1186/s13662-018-1589-8
https://doi.org/10.1016/j.jde.2013.12.015 
https://doi.org/10.1142/s0218127419500913 
https://doi.org/10.1002/rnc.4590050304


Stability of delay homogeneous systems 159

[18] X. Long and S.Gong: New results on stability of nicholson’s blowflies equation
with multiple pairs of time-varying delays. Appl. Math. Lett. 100 (2019), 9, 106027.
DOI:10.1016/j.aml.2019.106027

[19] J. L. Massera: Contributions to stability theory. Ann. Math.Second Series 64 (1958), 7,
182–206.

[20] R. Raja, U. Karthik Raja, R. Samidurai, and A. Leelamani: Dissipativity of discrete-time
BAM stochastic neural networks with Markovian switching and impulses. J. Franklin Inst.
350 (2013), 10, 3217–3247. DOI:10.1016/j.jfranklin.2013.08.003

[21] B. S. Razumikhin: The application of Lyapunov’s method to problems in the stability of
systems with delay. Automat. Remote Control 21 (1960), 515–520.

[22] L. Rosier: Homogeneous Lyapunov function for homogeneous continuous vector fields.
Systems Control Lett. 19 (1992), 6, 467–473. DOI:10.1016/0167-6911(92)90078-7

[23] R. Sepulchre and D. Aeyels: Homogeneous Lyapunov functions and necessary
conditions for stabilization. Math. Control Signals Systems 9 (1996), 3, 34–58.
DOI:10.1007/BF01211517

[24] V. I. Zubov: Mathematical Methods for the Study of Automatic Control Systems. Perg-
amon Press, New York – Oxford – London – Paris; Jerusalem Academic Press, Jerusalem
1962.

Ines Ben Rzig, University of Sfax, Faculty of Sciences of Sfax–Tunisia, Soukra Road,
km 3.5, 3000 Sfax. Tunisia.

e-mail: benrzigines@gmail.com

Thouraya Kharrat, University of Sfax, Faculty of Sciences of Sfax–Tunisia, Soukra
Road, km 3.5, 3000 Sfax. Tunisia.

e-mail: thouraya.kharrat@fss.rnu.tn

https://doi.org/10.1016/j.aml.2019.106027
https://doi.org/10.1016/j.jfranklin.2013.08.003 
https://doi.org/10.1016/0167-6911(92)90078-7
https://doi.org/10.1007/BF01211517

	Introduction
	Preliminaries
	Stability of time delay systems depending on a parameter
	Stability with homogeneous Lyapunov functions:
	Application to the stability of time delay systems depending on a parameter:

	Stability of perturbed time delay systems with varyingparameter
	Examples
	Conclusion

