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BOUNDS ON THE INFORMATION DIVERGENCE
FOR HYPERGEOMETRIC DISTRIBUTIONS

PETER HARREMOES AND FRANTISEK MATUS

The hypergeometric distributions have many important applications, but they have not had
sufficient attention in information theory. Hypergeometric distributions can be approximated
by binomial distributions or Poisson distributions. In this paper we present upper and lower
bounds on information divergence. These bounds are important for statistical testing and for
a better understanding of the notion of exchangeability.

Keywords: binomial distribution, hypergeometric distribution, information divergence, in-
equalities
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1. INTRODUCTION

If a sample of size n is taken from a population of size N that consist of K white balls
and NV — K black balls then the number of white balls in the sample has a hypergeometric
distribution that we will denote hyp (N, K,n). This type of sampling without replace-
ment is the standard example of an exchangeable sequence. The point probabilities

are

(2) (=)
()
The hypergeometric distribution also appears as the distribution of a count in a contin-
gency table with fixed marginal counts under the hypothesis of independence. Therefore
the hypergeometric distribution plays an important role for testing independence and
it was shown in [5] that the mutual information statistic for these distributions have
distributions that are closer to y2-distributions than the distribution of the classical
x2-statistics.

Hypergeometric distributions do not form an exponential family. For this and other
reasons one often try to approximate the hypergeometric distribution by a binomial dis-
tribution or a Poisson distribution. This technique was also used in [B]. In the literature
one can find many bounds on the total variation between hypergeometric distributions
and binomial distributions or Poisson distributions [I], but until recently there was only

Pr( X =2)=
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Fig. 1. Plot of the divergence of the hypergeometric distribution
hyp(200, K,101) from the binomial distribution bin(101; K/200) as a
function of the number of white balls K. The straight dashed lines are
the upper bound and the lower bound proved by Stam. The solid
lines are the upper bound and the lower bound proved in this paper.
The plot illustrates that a function that does not depend on K can
give a very precise lower bound for most values of K, but a good
upper bound should depend on K.

one paper by Stam [9] where the information divergence of a hypergeometric distribu-
tion from a binomial distribution is bounded. As we will demonstrate in this paper
the bounds by Stam can be improved significantly. Precise bounds are in particular
important for testing because the error probability is asymptotically determined by in-
formation divergence via Sanov’s Theorem [2, [3]. The bounds in this paper supplement
the bounds by Mats [§].

We are also interested in the multivariate hypergeometric distribution that can be
approximated by a multinomial distribution. Instead of two colors we now consider
the situation where there are C colors. Again, we let n denote the sample size and
we let N denote the population size. Now we may consider sampling with or without
replacement. Without replacement we get a multivariate hypergeometric distribution
and with replacement we get a multinomial distribution. Stam proved the following
upper bound on the divergence

n(n—1)
Vs -nwvons (1)

D (hypl| mult) < (C -

This bound is relatively simple and it does not depend on the number of balls of each
color. Stam also derived the following lower bound,

DOl = (€ -1 FE= - (545 o ey ) @

where @ is a positive constant depending on the number of balls of each color. If n/n is
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Fig. 2. The figure illustrates the lower bounds and the upper bounds.
The bounds given in this paper are solid while the the bounds given
by Stam are dashed. The bounds are calculated for large values of n
and N and the bounds are given as function of ¢ = »/~n. The bounds
of Stam are good for small values of ¢, but for values of ¢ close to 1

the bounds of Stam have been improved significantly.

not close to zero there is a significant gap between his lower bound and his upper bound.
Therefore it is unclear whether information divergence is close to his lower bound or close
to his upper bound. In this paper we will derive the correct asymptotic expression for
information divergence (Theorem [5.1). We will derive relatively simple lower bounds.
We have not achieved simple expressions for upper bounds that are asymptotically tight,
but we prove that our simple lower bounds are asymptotically tight. The problem with
complicated upper bounds seems to be unavoidable if they should be asymptotically
tight. At least the same pattern showed up for approximation of binomial distributions
by Poisson distributions [7].

Our upper bound on information divergence also leads to upper bounds on total
variation. Such bounds are important for the study of finite exchangeability compared
with infinite exchangeability [4], but this application will not be discussed in the present

paper.

2. LOWER BOUND FOR A POISSON APPROXIMATION

For any (positive) discrete measures P and ) information divergence is defined as
i
D(P|Q) =) pilnj —pi+ -
- K2
?

We note that the measures do not need to be probability measures, but information
divergence is not defined for signed measures. If the support of P is greater that the
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support of @ then information divergence is infinite by definition. The cases where P
and Q) are probaiblity measures and the support of P is a subset of the support of ) are
the most interesting ones, but we will formulate several of our result in more generality
when it simplifies a theorems or its proof.

Let Po(X) denote the Poisson distribution with mean value A. The Poisson distribu-
tions form an exponential family implying that if P is a discrete distribution with mean
value A > 0 then for any A’ > 0 the following identity holds.

D (P|[Po (X)) = D (P[[Po(X) + D (Po(A)[[Po(X)) .

In particular D (P||Po (X)) is minimal when X' = A, and this is also the maximum
likelihood estimate of the mean value parameter.
The hypergeometric distribution hyp(N, K, n) has mean value % and variance

nK (N —n)(N - K)
N2 (N -1)

If N is large compared with n and with K, we may approximate the hypergeometric

distribution by a Poisson distribution with mean %

Theorem 2.1. The divergence of the hypergeometric distribution hyp(N, K,n) from
the Poisson distribution Po (\) with A = % satisfies the following lower bound

2
D (hyp (N, K, m)]| Po (X)) > (W) .

Proof. If n=K = N then A = N and the inequality states that

D (hyp(N,N,N)|| Po(N)) > %

In this case the hypergeometric distribution attains the value N with probability 1 and
the divergence has value

(Y )

Y

NN
~ln (7'1/2NN+1/2 exp (—N) P (_N)>
In(7) + %ln(N)

>

NN -

In (7).

Here we have used the lower bound in the Stirling approximation and used 7 as short
for 2. In this special case the result follows because 7 > e.

Therefore we may assume that n < N or K < N. Harremoés, Johnson and Kontoy-
annis [6] have proved that if a random variable X satisfies F [X] = A and Var(X) < A

then
D(X|[Po(3) > (1 _ VA<X>)
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The variance of the hypergeometric distribution satisfies

nK (N —n)(N - K) (N—-n)(N-K)

N2 (N -1) = NN 1)
<A\
Now we get
DK o) = § (1 ()
1K+n7)\712
:2< N1 )

The lower bound can be rewritten as

/24 A a2
D (hyp (N, K, n)[[Po(A)) = 3 (W) :
- N

For a sequence of approximations with a fixed value of A, the lower bound will tend to
zero if and only if both n and K tend to infinity. If only one of the parameters n and
K tends to infinity and the other is bounded or perhaps even constant, then one would
approximate the hypergeometric distribution by a binomial distribution instead.

3. LOWER BOUND FOR A BINOMIAL APPROXIMATION

Let bin (n,p) denote the binomial distribution distribution with the number parameter
n and success probability p. For n fixed the binomial distributions form an exponential
family. Therefore, if P is a distribution on {0,1,2,...,n} with mean value np between
0 and n then for any p’ the following identity holds.

D (P|bin (n,p")) = D (P||bin (n,p)) + D (bin (n, p) |bin (n, p")) .

In particular D (P||bin (n,p’)) is minimal when p’ = p, and this is also the maximum
likelihood estimate of the success probability.

One may compare sampling without replacement by sampling with replacement. For
parameters N, K and n it means that one may compare the hypergeometric distribution
hyp(N, K,n) with the binomial distribution bin(n,p) with p = K/N. One can use the
same technique as developed in [6] to obtain a lower bound on information divergence.
This technique uses orthogonal polynomials. For 0 < p < 1 the Kravchuk polynomials
are orthogonal polynomials with respect to the binomial distribution bin (n, p) and are

given by k .
o500 (2)” ()6

Jj=0
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Remark 3.1. Often the parameter ¢ = —— is used instead of p to parametrize the

1-p
Kravchuk polynomials.

The Kravchuk polynomials satisfy

n

3 <?)pi (1—=p)" " K, (z;n,p) Ko (25n,p) = <1fp)r <7:> Ors ®)

i=0

The first three Kravchuk polynomials are

K0($§n,p):17
np—x
K1 (z5m,p) = ;
1 (z5n,p) 1
2
Kﬂxmjp):(2p—1)(x—np)+($—;zp) —np(l—p)

2(1—-p)
For a random variable X with mean value np one has

Var (X) —np(1-p)
2(1-p)?

so the second Kravchuk moment measures how much a random variable with mean np
deviates from having variance np (1 — p). We need to calculate moments of the Kravchuk
polynomials with respect to a binomial distribution. Let X denote a binomial random
variable with distribution bin(n,p). For r > 0 the first moment is easy

EKy (X;n,p)] =

E K, (X;n,p)] = 0.

The second moment can be calculated from Equation and is

E[K2(X;n,p)] = & (Z) .

For 0 < p <1 and n > 2 the normalized Kravchuk polynomial of order 2 is

(2p—1)(z—np)+(z—np)*—np(1—p)

~ 2(1—p)2
Ks (wsn.p) = T (1)
n
((1517)2 (2))
2p—1 (z—np)®
_ np(1-p) (« —np) + np(1—p) 1 (5)
(2n;1)1/2 ’

The minimum of the normalized Kravchuk polynomial is

(4-0)°
_ n;(l—p) +1

(29"
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If X is a hypergeometric random variable and p = K/~ then

i e I = (n(n—1)"

~ ) o np(l—p _ N-1 — —

E|:’C2 (X,n,p)} = (2@)1/2 - (2”7*1)1/2 - 21/2 (Nfl) .
n n

We note that E [I@g (X; n,p)} > 272 as long as n < N.

If Q is a fixed measure with finite support then the convex and lower semi-continuous
function D (P ||@ ) has a minimum under a linear constraint y , z;-p; = m. We introduce
a Lagrange multiplier 5 and the Lagrange function

L=D(P|Q) - (sz pl—m> (7)

At the minimum the partial derivative with respect to p; is zero.

oL
opr 0 (8)
Di
In (q) B =0 9)
pi =exp (8- x;) - qi (10)

and the value of 3 is determined by the equation

Zmiexp(ﬁ~xi)-qi:m

We introduce the moment generating function M (8) = Y ,exp (B-x;) - ¢;. If M®
denotes the k’th derivative of M then

MO (5) = Y atexp (8- - q

Theorem 3.2. For any binomial distribution bin(n;p) with 0 < p < 1 there exists an
€ > 0 such that for any measure P on R and with Ep |:I€2 (X; mp)} € ]—¢,0] one has

(Ep [162 (X;n,p)D2

D (P ||bin (n,p)) =

where

Proof. Let Qg denote the measure with

Qp (x) = exp (6 Ko (z; n,p)) bin (n,p, x) .
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Let M denote the moment generating function

M(B)=>_ Qs(x)
x=0

and let u be defined by u = M’ (3). We have
D (P ||bin (n,p)) = D (Qg[|bin (n,p))
=B-p—(M(B)-1)
so we want to prove that
p? (11)

for v € ]—¢,0]. We have

j—g =M"(B)= ;)Iag (z:n,p)*exp (B Ky (x;n,p)) bin (n,p,x) > 0, (12)

which implies that p is an increasing function of 5. Since we have p = 0 for = 0 we
just have to prove Inequality for 5 < 0. We have

=0 =0

Therefore Inequality [L1] holds with equality for § = 0, so we differentiate with respect
to B and see that the it is sufficient to prove that

d d
u+ﬁ-£fM’(6)§u~£,

G
B < p.

dp < dp

We differentiate once more with respect to 5 and see that it is sufficient to prove that

dp
1>-=.
> 15

Now g—g = M" (). Since M" (0) = 1 it is sufficient to prove that

M®(0)=E [(icg (X;n,p))s} >0

if X is binomial bin (n,p) .
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Up to a positive factor the third power of the Kravchuk polynomial is given by

(200 -p) K2 ( :v,p))3 = —n’p’ (1—p)° +30%p* (1 —p)* (2p — 1) (x — np)
+np(1—p) (4np(1 —p)—3(2p— 1)2> (& — np)?
+(2p—1)*((2p — 1) + 2np) (x — np)°
+3(2p=1° =np(1-p)) (@ =)'
+3(2p—1)(z —np)® + (x —np)°®.

Using the values of the first six central moments of the binomial distribution we get
3
E {(2 (1—p)? Ky (n;x,p)) ] =np? (1—p)* (8n—2+p (1 —p) (89n — 293n + 174)) .

If n > 2 we have 89n? — 293n + 174 > 0 so the whole expression becomes positive. For
n = 2 the last factor equals 14 — 56p (1 — p), which is positive except for p = /2 where
it equals zero. The special case where n = 2 and p = 1/2 can easily be proved by specific
calculations, but we will abstain from giving the details because it follows from Theorem

B3. O
For the hypergeometric distributions one gets the lower bound

(_ (n(n—1))"/2 ) ?

. K 2'/2(N—1)
b 2) ) > 2P )
o(n )= O

~ n(n—1)
= 74(]\[ — 1)2 . (13)

D(hyp(MK,n)

According to Theorem this inequality holds if N is sufficiently large, but later (The-
orem we shall see that this lower bound holds for hypergeometric distributions
for any value of NNV.

Theorem 3.3. Assume that the parameters of the binomial distribution bin(n,p) are
such that np is an integer and 0 < p < 1. Let X denote a random variable such that

—272 < E[Ky (X;n,p)] <O0.
Then )
(E [’62 (X;n,p)D

D (P |jbin (n,p)) > 5

where P denotes the distribution of X.

Proof. As in the proof of Theorem it is sufficient to prove that

M"(B) <1.
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The function
6= M"(8) =Y K (miz,p)* exp (8Ks (ni,p) ) bin (n,p,z)
=0

is convex in 3, so if we prove the inequality M” (8) < 1 for § =0 and for 8 = 3y < 0
then the inequality holds for any 8 € [Bo,0]. Let By denote the constant —2/c. We
observe that f3 is slightly less than —27"/2.

Consider the function f (z) = x2 exp (Bpz) with

' (z) = (2 + Box) xexp (Box) .

The function f is decreasing for x < 0, it has minimum 0 for x = 0, it is increasing for
0 <z < —2/g, = e, it has local maximum 1 for = e, and it is decreasing for z > e. We

have f (Bp) = exi2 exp (ex‘;2> < 1. Hence f (x) <1 for > So.
The graph of z — Ko (n;x,p) is a parabola. We note that

p—5+x—np
2
(1-p)
so as a function with real domain there is a stationary point at

%ICQ (x,n,p) =

1
—(n—1 -,
r=(n )p+2

Since a binomial distribution can only take integer values, the minimum is attained for
the integer in the interval [(n — 1) p, (n — 1) p + 1], but the integer np is the only integer
in this interval. Therefore for 2 € Z the minimum of K5 (x;n,p) is

- -1
K2 (np;n,p) = w

so the inequality holds as long as
-1

P E T

We isolate n in this inequality and get

1 8
n> = =13.0945 > 13.
e

— 1
-5z 8-

If n < 13 and np is an integer then there are only 78 cases because 0 < p < 1. In each
of these cases we can numerically check Inequality (14). O

Conjecture 3.4. We conjecture that Theorem holds without the conditions that
np is an integer.

From Equation [6] we see that the minimum of the Kravchuk polynomial tends to
—27"2  which is greater than 3y. Therefore for any fixed value of the success probability
p the conjecture holds for sufficiently large values of n. If np is not an integer then the
minimal value of Ko (x;n,p) for integers may be less that 8y, which means that much
more care is needed when making the bounds.
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4. IMPROVED BOUNDS ON INFORMATION DIVERGENCE
FOR MULTIVARIATE HYPERGEOMETRIC DISTRIBUTIONS

We consider the situation where there are N balls of C' different colors. Let k. denote
the number of balls of color ¢ € {1,2,...,C} and let p. = k</N. Let U, denote the
number of balls in different colors drawn without replacement in a sample of size n and
let V,, denote the number of balls for different colors drawn with replacement. Then U,
has a multivariate hypergeometric distribution and V,, has a multinomial distribution.
We are interested in bounds on information divergence that we, with a little abuse of
notation, will denote D (U, ||V, ). We consider U, as a function of X™ where

X" = (X17X27"'aX’ﬂ)

denotes a sequence colors in the sample drawn without replacement. Similarly we con-

sider V,, as a function of Y™ where Y = (Y1,Y5,...,Y},) denotes a sequence of colors
drawn with replacement. Let I(-,-|-) denote conditional mutual information defined
by
PX=z,Y=y|Z=%)
I(X,Y|Z2) PX=zY=yZ=2)I .
KEDS —ht Y Z>n(P(Xx|Zz)P(YyZz)

T,Y,2

Lemma 4.1. We have
n—1
D (Un[Va) = D (n =) 1 (X7, Xjp0 | X771,
Jj=1
Proof. Since all sequences with the same number of balls in each color have the same
probabilities both with and without replacement we have

D (Un||Vn) = D (X[ Y")

3
|
—

I (XmaXWH-l)

3 3
Lo
==

I

I (Xj7X7n+1 | inl) .
1

3

=1

Using exchangeability we get

n—1 m

D (Ul Va) = > T(X7, X | X7

m=1 j=1



1122 P. HARREMOES AND F. MATUS

We introduce the y2-divergence by

X (PQ) =) <§i1)2~q¢-

g

Stam used the inequality D (P[|Q) < x2 (P, Q) to derive his upper bound . From
Theorem and inequality we should aim at replacing the denominator

2(N-1)(N—-n+1)
by an expression closer to 4 (N — 1)2.
The bounds we have derived are based on the following sequence of inequalities that
are derived in Appendix A. We use ¢ () = zln(x) — (z — 1).

6(x) 20, (15)
o) < (-1, (16)
6@) 2 51— -1, a7)
@) <5 @-1P - @D+ g @1 (18)

The first inequality implies non-negativity of information divergence and mutual
information. The second inequality can be used to derive to Stam’s inequality ,
but the higher order terms are needed to get the asymptotics right.

Lemma 4.2. The mutual information is bounded as

C—1 . - c-1
3 <IT(X7, X | X)) < ———

2N =) LR (19)

Proof. Without loss of generality we may assume that j = 1. In this case the inequal-
ities follow directly from the Inequality and Inequality of Stam with n = 1. For
completeness we give the whole proof in Appendix B. a

Combining Lemma [4.1] with Lemma [4.2] leads to the inequalities

C—1 n—j L on—j
— <D(Un|[Vn) <(C-1) ) —.
2 ;(N*Jf ;(N—j)z’

We see that the lower bound and the upper bound are are off by a factor of 2. Figure
illustrates that this factor is unavoidable if we want bounds that do not depend on the
number of balls in each color.

The following simple lower bound is stronger than the lower bound by Stam for
n > N/a.

Theorem 4.3. For all n the following lower bound holds
n(n—1)

Dahuugz(c_n4UV_UT
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Proof. We have

C-132 n—j
D (Un V) = ;
2 EQ(N—Jf
c-1 ‘X
> . _
2(N —1)? Z}n 7)
J_

O

An even stronger lower bound can be derived. Later we will prove that the stronger
lower bound is asymptotically optimal.

Theorem 4.4. For all n < N the multivariate hypergeometric distribution satisfies the
following lower bound.

r—1—1In(r)

(21)

N—n+1

where r = =57

Proof. We use an integral to lower bound the sum.

C—1 n—j
D (Un||Vp) > :
2 Z;(N*Jf
-1 [ (N=)-(N-n)
2 j=1 (N_j)2
C—l n—1 1 n—1 N—?’l
= Z ‘_Z 2
2 j 1N_=7 j=1 (N_J)
c-1 1 Lt VAt S |
B U e Mo AP O

Each of the sums can be bounded by an integral
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N -1 N -1 N -1
_N—n—|—1 11 N-—-n+1
N_1 TN

Theorem 4.5. The following inequality holds.

N-—-n 1 N-—n
D(UnIIVn)S(C—l)( N _HNnH_ln<N1>)'

Proof. We have

! 1 N—-n
:(C_DZ<N—J'_<N—,7)Q>'

j=1

Now each of these terms can be bounded by an integral.

n—1 1 N —n n—1 1 n—1 1
2 (Nj . <N—j>2> IR SE R R =IO

j=1 j=1

noq n—1
S/l N_xdw—(N—n)/O 7(N_$)2dx.
The integrals can be calulated as follows
noq n—1 1
/1 Nizdx—(N—n)/o mdw

n(322) - by )

N—n—i—l—l_'_N—n_ln N —n
N-—-n+1 N N -1

_N—n_1+ 1 T N —n
Y N-n+1 N-1)/"
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5. ASYMPTOTIC RESULTS

The upper bounds are approximately achieved in the extreme case where K = 1 and
n = 2. In this case the hypergeometric distribution is given by Pr (U = 0) = 1—2/~5 and
Pr(U; = 1) = 2/n. The corresponding binomial distribution is given by Pr(V; =0) =
(1—1n)? and Pr(Vy = 1) = 2-1/N - (1 — I/~). Therefore the divergence is

2 1- 2 2 2

2 1 2
:—(I—N)ln<l+]\w> - =y

N%.D(Us||Va) = —1+2=1for N — oo.
The lower bound is

Therefore

1
2(N —1)*
Therefore we cannot have a distribution independent upper bound that is less than twice
the lower bound.
The lower bounds is tight in the sense that it has the correct asymptotic behavior

if N tends to infinity and 7/N converges. In order to prove this we have used the upper
bound with four terms . We will also use a slightly different expansion.

DUy ||Va) >

Theorem 5.1. Assume that ny, and N, are increasing sequences of natural numbers
such that ny < Ny and the number of colors C is fixed. Assume further that there exists
€ > 0 such that p. > € for all £. Assume finally that 1 — K,—‘; — 1 for £ — oco. Then

r—1—1In(r)

D (Une ”V’ﬂi) - (C - 1) 2

for ¢ — oo.

Proof. First we note that

D (Un||Vn) = D (X[ Y™)

n—1
=3 D (Xparl Yimgr |X™)
m=1
where
C
D(Xmiil| Vg1 |X™ =2) =Y R(m,c)
c=1
and

ke ke—=h
R(m,c) = ZPr(U(m,c) = h)ped (Np_m>

h=0 ¢
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and where U (m, ¢) is the number of balls of color ¢ in the sequence X™.
First we note that

bh ek -n
pe e
ke—h— 1\11;;+mpc — Pe
- Pe
_ mpe—h
Cpe(N—m)

Therefore

Zpr (m,¢) = h) peop (g%)

2
1 mp.—h
ke 2 <pc(N_m)) 3
— mpe—h
<> Pr(U(m,e)=h)p. | -1 (pc(ﬁr_m))
h=0 1 mpe.—h 4
+7 (pc(me))
PI’ = h) (h — mp. 2
2pc (N —m) 2 z_: )t .
Pr (U = h) (h —mp.)*
6pC (N —m) 3 Z a 7
PI‘ =h) (h — mp, 4~
3pC (N —m) 4 Z a )

These three terms are evaluated separately.
The second order term is

Pr (U = h) (h —mp.)?
2ch - z_: ) ( De)
1 N—-—m
= mp.(1—pg) ——
2pc (N —m)” Pell =P N

m (1 — pe)

2(N—-m)(N-1)
Summation over colors ¢ gives

m(C—1)
2(N—=m)(N-1)

Summation over m gives
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As N tends to infinity the sum can be approximated by the integral

n z N
/0 N_xdx:[—Nln(N—x)—m]O

N
Nln(N_n>n

co1 = om -1 Ni(F5)-n

I = 1
eLToz(N—l);N—m 2 ihe  N-1

Therefore

—1-1
=(C—1) r—1-In(r)
2
The third order term is
Pr (U = h) (h —mp.)*
PN ) Z )( Pe)
~ mpe (1 —pe) (1 —2pe) %
6p2 (N —m)’
_ (1—pc) (1—2p.) ' m (N — 2m)
6pe (N —m)*(N —1)(N —2)

Since p. > € we have

1
S a-w

C
3 (1 —pe) (1 —2p.)
6pc

c=1 c=1
Since m < n we have
z‘: m (N — 2m) "z‘:l nN
SN —mP (V) (Y = (N —n)? (N 1) (N —2)

n2N
(N—=n)>(N—1)(N—-2)

IN

We see that the third order term tends to zero as ¢ tends to oo.
The fourth term is

3 (N m4Z:Pr =h) (h—mp.)*.

Using the formula for the fourth central moment of the hypergeometric distribution we
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get
N(N—-1)—6m(N —m)
(N — 1) 6N2pc (1 _ pc) > N 9
6mpe (1 — pe) (N —m) (5N — 6) s (mpc (1-pc) Ni“f)
mpe (1 —p.) (N —m) (N —2) (N —3) 3p3 (N —m)*
( N3+ 30np. (1 — p.) N? ) m?p? (1 — pc)2
mpe (1 —pe) (N —n) (N =2) (N - 3) 3p3 (N —n)*

(N3 4 30np. (1 — pc) N?)m N m?
T3 (N-2)(N=3)(N—-n)"  p.(N—n)*
< nN?3 + 30n2N? n n?

T E2(N—-2)(N-3)(N-n)’ e(N—-n)"

Summation over ¢ and n has the effect of multiplying by (C' —1)(n —1). Since the
numerators are of lower degree than the denominators the fourth order term will tend
to zero as ¢ tend to oco. g

A. BOUNDING TAYLOR POLYNOMIALS

Let ¢ (z) = zln(z) — (z — 1) with the convention that ¢ (0) = 1. Then the derivatives
are

¢' (z) =In(z) ,
/! 1
¢ ('1:) - Ea
-1
¢(3) (I) F7
2
¢(4) (‘T) = E )
—6
¢ (z) = gl
Evaluations at z = 1 give
¢(1) =0,
¢/ (1) =0,
¢H (1) =1,
¢ (1) = -1,
oW (1) =2,
(1)
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Since the even derivatives are positive, the odd Taylor polynomials give lower bounds,
so we have

6() < 50— 17,
6@) < 5= =gl — 1+ o5 =1,

for £ > 1 and the reversed inequalities for x < 1. We will add a positive term to these
inequalities in order to get an upper bound that holds for all x > 0. The inequalities are

() < (x—1)%,
1 1

O@) < 5 @—17 =2 (

5 z—1)°+ < (z-1)".

We have to prove these inequalities in the interval [0, 1].

For the first inequality we define g (z) = (z — 1)> — f (z) , and have to prove that this
function is non-negative. We have ¢g(0) = g(1) = 0 so it is sufficient to prove that g is first
increasing and then decreasing, or equivalently that ¢ is first positive and then negative.
We have ¢’ () = 2(z — 1) —Ilnx so that ¢’ () — oo for z — 0 and ¢’ (1) = 0. Therefore
it is sufficient to prove that ¢’ is first decreasing and then increasing. ¢’ () = 2 — 1/a,
which is negative for < 1/2 and positive for > 1/2. The second inequality is proved
in the same way except that we have to differentiate four times.

B. PROOF OF LEMMA 4.2

For j = 1 we have

I(X7, X | X771 = 1(X1, Xo)

=D (Xz| Y2| X1).
Now
D (Xa|| Y2| X1) = ZPT (X1 =21) D (Xof Yol X1 = 21)

and

c

(Xol| V| X1 =21) =) R(1,¢)

c=1

where
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Using the upper bound we get

ke—h 2
R(1,¢) <ZPr (1,¢) = h) pe <N1—1>

Pe
~ DPc (1—pc)

Cpe(N —1)?
lfpc

(N -1)*

Summation over the colors gives

C-1

D( Xyl Vooy| X™) < —— =2
( Xengall Yonga| X™) N 17

In order to get the lower bound in Inequality [19| we calculate

= 2 = 3
Pr(U(1,¢)=h N T |
St - (1) 2 (2

(h _p6)2
2pc (N - 1)

(h _p0)3

:;Pr(U(LC):h) 6p2 (N —1)>

These terms will be evaluated separately.

As before
2 .
Zpr (1.6) = h) (h —pe) - (n—J)(l—Qpc)_
2pc(N_1) Q(N_l)
Summation over ¢ gives
n—1
n—j
(C-1)
; (N — )
The third term is
3 (N-1)(N—-2)
— pe (1 _pc) — 2pc
S Pr(U(1,e)=h) (h = pe) - = ( - ><N DIN=2)
6pZ (N — 1) 6p2 (N —1)°
_ (1 —pc) (1 —2pc)
6pe (N - 1)3
Summation over ¢ gives
Q

6(N—1)°
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where

We introduce

c=1
IR
02 c=1 De
so that
1
Q=C* (C,pc> +C?—3C+2
1
e () +(€-1(C -2
>0
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