GAUSSIAN APPROXIMATION OF GAUSSIAN SCALE MIXTURES

Gérard Letac and Hélène Massam*

For a given positive random variable $V>0$ and a given $Z \sim N(0,1)$ independent of V, we compute the scalar t_{0} such that the distance in the $L^{2}(\mathbb{R})$ sense between $Z V^{1 / 2}$ and $Z \sqrt{t_{0}}$ is minimal. We also consider the same problem in several dimensions when V is a random positive definite matrix.

Keywords: mormal approximation, Gaussian scale mixture, Plancherel theorem
Classification: $62 \mathrm{H} 17,62 \mathrm{H} 10$

1. INTRODUCTION

Let $Z \sim N\left(0, I_{n}\right)$ be a standard Gaussian random variable in \mathbb{R}^{n}. Consider an independent random positive definite matrix V of order n with distribution μ. We call the distribution of $V^{1 / 2} Z$ a Gaussian scale mixture, where $V^{1 / 2}$ is the unique positive definite matrix such that $\left(V^{1 / 2}\right)^{2}=V$. Denote by f the density of $V^{1 / 2} Z$ in \mathbb{R}^{n}. In many practical circumstances, μ is not very well known, and f is complicated. On the other hand, for $n=1$, and

$$
\begin{equation*}
f(x)=\int_{0}^{\infty} e^{-\frac{x^{2}}{2 v}} \frac{\mu(\mathrm{~d} v)}{\sqrt{2 \pi v}} \tag{1}
\end{equation*}
$$

we note that, as the logarithm of a Laplace transform, $\log f(\sqrt{x})$ is convex and thus the histogram of the symmetric density (1) looks like that of a normal distribution. The central aim of the present paper is to say something of the best normal approximation $N\left(0, t_{0}\right)$ of f in the sense of $L^{2}\left(\mathbb{R}^{n}\right)$.

In Section 2, we recall some known facts and examples about the pair (f, μ) when $n=1$. In Section 3, our main result, for $n=1$, is Theorem 3.1 in which we show the existence of t_{0}, its uniqueness and the fact that $t_{0}<\mathbb{E}(V)$. This theorem also gives the equation, see 11, that has to be solved to obtain t_{0} when μ is known. In Section 4 we consider the case $n \geq 2$ and investigate the fact that several distributions of the random positive definite matrix V can give the same Gaussian mixture $V^{1 / 2} Z$. In Section 5, we consider the problem of the Gaussian approximation of a Gaussian mixture in the more difficult case $n \geq 2$. In that case, t_{0} is a positive definite matrix, and in Theorem 5.2,
*Hélène Massam passed away on August 22d, 2020.
we show the existence of t_{0}. Proposition 5.3 considers the particular case where V is concentrated on the multiples of I_{n}. A basic tool we use in this paper is the Plancherel identity.

2. THE UNIDIMENSIONAL CASE: A REVIEW

A probability density f on \mathbb{R} is called a discrete Gaussian scale mixture if there exist numbers $0<v_{1}<\cdots<v_{n}$ and $p_{1}, \ldots, p_{n}>0$ such that $p_{1}+\cdots+p_{n}=1$ and

$$
f(x)=\sum_{i=1}^{n} p_{i} \frac{1}{\sqrt{2 \pi v_{i}}} e^{-\frac{x^{2}}{2 v_{i}}}
$$

It is easy to see that if $V \sim \sum_{i=1}^{n} p_{i} \delta_{v_{i}}$ is independent of $Z \sim N(0,1)$ then the density of $Z V^{1 / 2}$ is f. A way to see this is to observe that for all $s \in \mathbb{R}$ we have

$$
\int_{-\infty}^{\infty} e^{s x} f(x) \mathrm{d} x=\sum_{i=1}^{n} p_{i} e^{\frac{s^{2}}{2} v_{i}}=\mathbb{E}\left(\mathbb{E}\left(e^{s Z V^{1 / 2}} \mid V\right)\right)=\mathbb{E}\left(e^{s Z V^{1 / 2}}\right)
$$

More generally, we will say that the density f is a Gaussian scale mixture if there exists a probability distribution $\mu(\mathrm{d} v)$ on $(0, \infty)$ such that (1) holds. As in the finite mixture case, if $V \sim \mu$ is independent of $Z \sim N(0,1)$ the density of $Z V^{1 / 2}$ is f. To see this denote

$$
\begin{equation*}
L_{V}(u)=\int_{0}^{\infty} e^{-u v} \mu(\mathrm{~d} v) \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{s x} f(x) \mathrm{d} x=L_{V}\left(-s^{2} / 2\right)=\mathbb{E}\left(e^{s Z V^{1 / 2}}\right) \tag{3}
\end{equation*}
$$

For instance if $a>0$ and if

$$
\begin{equation*}
f(x)=\frac{a}{2} e^{-a|x|} \tag{4}
\end{equation*}
$$

is the double exponential density, then for $|s|<a$ we have

$$
\int_{-\infty}^{\infty} e^{s x} f(x) \mathrm{d} x=\frac{a^{2}}{a^{2}-s^{2}}=L_{V}\left(-s^{2} / 2\right)
$$

where

$$
L_{V}(u)=\frac{a^{2}}{a^{2}+2 u}=\frac{a^{2}}{2} \int_{0}^{\infty} e^{-v u-\frac{a^{2}}{2} v} \mathrm{~d} v
$$

This means that the mixing measure $\mu(\mathrm{d} v)$ is an exponential distribution with mean $2 / a^{2}$.

There are other examples of pairs $(f, \mu) \sim\left(Z V^{1 / 2}, V\right)$ in the literature. For instance, [7] offer an interesting list of univariate mixing measures, containing also some examples with $n>1$. Another such list can be found in [2]. Note that if f is known then the distribution of $\log Z^{2}+\log V$ is known and finding the distribution μ or the distribution of $\log V$ is a problem of deconvolution. If its solution exists, it is unique, as shown for instance by (3).

An example of such a deconvolution is given by 9 who extends (4) to $f(x)=$ $C e^{-a|x|^{2 \alpha}}$ where $0<\alpha<1$ as follows: he recalls that for $A>0$ and $0<\alpha<1$, see [1], p. 424, there exists a probability density g, called a positive stable law, such that, for $\theta>0$,

$$
\begin{equation*}
\int_{0}^{\infty} e^{-t \theta} g(t) \mathrm{d} t=e^{-A \theta^{\alpha}} \tag{5}
\end{equation*}
$$

If in the equality above we make the change of variable $t \rightarrow v=1 / t$, let $\theta=x^{2} / 2$ and define $\mu(\mathrm{d} v)=C \sqrt{2 \pi} g(1 / v) v^{-3 / 2} \mathrm{~d} v$, where C is such that $\mu(\mathrm{d} v)$ is a probability, we obtain

$$
\begin{equation*}
\int_{0}^{\infty} e^{-\frac{1}{2} \frac{x^{2}}{v}} \frac{1}{\sqrt{2 \pi v}} \mu(\mathrm{~d} v)=C e^{-2^{-\alpha} A|x|^{2 \alpha}} \tag{6}
\end{equation*}
$$

Integrating both sides of (6) with respect to x from $-\infty$ to $+\infty$, we obtain

$$
C=\alpha \frac{A^{\frac{1}{2 \alpha}}}{\sqrt{2}} \frac{1}{\Gamma\left(\frac{1}{2 \alpha}\right)}
$$

If $V \sim \mu$, its Laplace transform L_{V} cannot be computed except for $\alpha=1 / 2$. For $\alpha=1 / 2$ and A arbitrary, one can verify that (5) is satisfied for

$$
g(t)=\frac{A}{2 \sqrt{\pi}} t^{-3 / 2} e^{-\frac{A^{2}}{4 t}}
$$

Then

$$
\mu(\mathrm{d} v)=\frac{A^{2}}{4} e^{-\frac{A^{2}}{4} v} \mathbf{1}_{(0,+\infty)}(v) \mathrm{d} v
$$

that is the mixing distribution is an exponential distribution again.
Another elegant example of deconvolution is given by [8] and [6] with the logistic distribution

$$
\begin{equation*}
f(x)=\frac{e^{x}}{\left(1+e^{x}\right)^{2}}=\sum_{n=1}^{\infty}(-1)^{n+1} n e^{-n|x|} \tag{7}
\end{equation*}
$$

Using the representation of (4) as an exponential mixture of scale Gaussians, i. e.

$$
\frac{a}{2} e^{-a|x|}=\int_{0}^{+\infty} \frac{e^{-\frac{x^{2}}{2 v}}}{\sqrt{2 \pi v}} \frac{a^{2}}{2} e^{-\frac{a^{2} v}{2}} \mathrm{~d} v
$$

and applying it to $a=n$ in (7) above, we obtain

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty}(-1)^{n+1} n^{2} \int_{0}^{+\infty} \frac{e^{-\frac{x^{2}}{2 v}}}{\sqrt{2 \pi v}} e^{-\frac{n^{2} v}{2}} \mathrm{~d} v \tag{8}
\end{equation*}
$$

and thus, if μ exists here, it must be

$$
\begin{equation*}
\mu(\mathrm{d} v)=\left(\sum_{n=1}^{\infty}(-1)^{n+1} n^{2} e^{-\frac{n^{2}}{2} v}\right) \mathbf{1}_{(0,+\infty)}(v) \mathrm{d} v \tag{9}
\end{equation*}
$$

which indeed exists since this is the Kolmogorov distribution (4) , also called KolmogorovSmirnov distribution. A direct proof that (9) defines a probability on $(0,+\infty)$ relies on the following Jacobi formula (see [3]):

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1-q^{2 n-1}\right)^{2}\left(1-q^{2 n}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n^{2}} \tag{10}
\end{equation*}
$$

Taking $q=e^{-x / 2}, 10$ yields

$$
\prod_{n=1}^{\infty}\left(1-e^{-(2 n-1) x / 2}\right)^{2}\left(1-e^{-n x}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} e^{-n^{2} x / 2}:=F(x)
$$

We observe that $F(0)=0, F(+\infty)=1$, and F is increasing as the product of increasing positive factors. Moreover,

$$
F^{\prime}(x)=-\frac{1}{2} \sum_{n-\infty}^{+\infty}(-1)^{n} n^{2} e^{-n^{2} x ? 2}=\sum_{n=1}^{+\infty}(-1)^{n+1} n^{2} e^{-n^{2} x / 2}
$$

is the density of (9).

3. THE NORMAL APPROXIMATION TO THE GAUSSIAN SCALE MIXTURE

The mixture f as defined in (1) keeps some characteristics of the normal distribution: It is a symmetric density, $f(x)=e^{-\kappa\left(\frac{x^{2}}{2}\right)}$ where $u \mapsto \kappa(u)$ is convex since

$$
e^{-\kappa(u)}=\int_{0}^{\infty} e^{-u / v} \frac{\mu(\mathrm{~d} v)}{\sqrt{2 \pi v}}=\int_{0}^{\infty} e^{-u w} \nu(\mathrm{~d} w)
$$

is the Laplace transform of the positive measure $\nu(d w)$ defined as the image of $\frac{\mu(\mathrm{d} v)}{\sqrt{2 \pi v}}$ by the map $u \mapsto w=1 / v$.

As said in the introduction, in some practical applications, the distribution of V is not very well known, and it is interesting to replace f by the density of an ordinary normal distribution $N\left(0, t_{0}\right)$. The $L^{2}(\mathbb{R})$ distance is well adapted to this problem. See [5] for an example of the utilisation of this idea. We are going to prove the following result.

Theorem 3.1. If f is defined by (1), then

1. $f \in L^{2}(\mathbb{R})$ if and only if

$$
\mathbb{E}\left(\frac{1}{\sqrt{V+V_{1}}}\right)<\infty
$$

when V and V_{1} are independent with the same distribution μ.
2. If $f \in L^{2}(\mathbb{R})$, there exists a unique $t_{0}=t_{0}(\mu)>0$ which minimizes

$$
t \mapsto I_{V}(t)=\int_{-\infty}^{\infty}\left[f(x)-\frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}}\right]^{2} \mathrm{~d} x
$$

3. The scalar $y_{0}=1 / t_{0}$ the unique positive solution of the equation

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\mu(\mathrm{d} v)}{(1+v y)^{3 / 2}}=\frac{1}{2^{3 / 2}} \tag{11}
\end{equation*}
$$

In particular, if μ_{λ} is the distribution of λV, then $t^{\prime}=t_{0}\left(\mu_{\lambda}\right)=\lambda t_{0}(\mu)$.
4. The value of $I_{V}\left(t_{0}\right)$ is

$$
I_{V}\left(t_{0}\right)=\sqrt{\frac{2}{\pi}}\left(\mathbb{E}\left(\frac{1}{\sqrt{V+V_{1}}}\right)-2 \mathbb{E}\left(\frac{1}{\sqrt{V+t_{0}}}\right)+\frac{1}{\sqrt{2 t_{0}}}\right)
$$

and

$$
\begin{equation*}
I_{\lambda V}\left(t^{\prime}\right)=\frac{1}{\sqrt{\lambda}} I_{V}\left(t_{0}\right) \tag{12}
\end{equation*}
$$

5. Finally $t_{0} \leq \mathbb{E}(V)$.

Proof. Recall that if $g \in L^{2}(\mathbb{R}) \cap L^{1}(\mathbb{R})$ and if $\hat{g}(s)=\int_{-\infty}^{\infty} e^{i s x} g(x) \mathrm{d} x$, then Plancherel theorem says that

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\infty}^{\infty}|\hat{g}(s)|^{2} d s=\int_{-\infty}^{\infty}|g(x)|^{2} \mathrm{~d} x \tag{13}
\end{equation*}
$$

Furthermore if $g \in L^{1}(\mathbb{R})$, then $g \in L^{2}(\mathbb{R})$ if and only if $\hat{g} \in L^{2}(\mathbb{R})$.
Let us apply (13) first to $g=f$. From (1) and (3), we have $\hat{f}(s)=L_{V}\left(s^{2} / 2\right)$. Then

$$
\begin{aligned}
\int_{-\infty}^{\infty} \hat{f}^{2}(s) \mathrm{d} s & =\int_{-\infty}^{\infty} L_{V}^{2}\left(s^{2} / 2\right) d s=\sqrt{2} \int_{0}^{\infty} L(u)^{2} \frac{\mathrm{~d} u}{\sqrt{u}} \\
& =\sqrt{2} \int_{0}^{\infty} \mathbb{E}\left(e^{-u\left(V+V_{1}\right)}\right) \frac{\mathrm{d} u}{\sqrt{u}}=\sqrt{2 \pi} \mathbb{E}\left(\frac{1}{\sqrt{V+V_{1}}}\right)
\end{aligned}
$$

where the last equality is obtained by recalling that $\int_{0}^{+\infty} e^{-u v} \frac{\mathrm{~d} v}{\sqrt{v}}=\frac{\sqrt{\pi}}{\sqrt{u}}$. Thus statement 1. of the theorem is proved.

To prove 2., 3. and 4., we apply (13) to $g(x)=f(x)-\frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}}$ for which $\hat{g}(s)=$ $L\left(s^{2} / 2\right)-e^{-t s^{2} / 2}$. As a consequence

$$
I_{V}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[L_{V}\left(s^{2} / 2\right)-e^{-t s^{2} / 2}\right]^{2} \mathrm{~d} s=\frac{1}{\pi} \int_{0}^{\infty}\left[L_{V}(u)-e^{-t u}\right]^{2} \frac{\mathrm{~d} u}{\sqrt{2 u}}
$$

and

$$
\begin{equation*}
I_{V}^{\prime}(t)=\frac{\sqrt{2}}{\pi} \int_{0}^{\infty}\left[L_{V}(u)-e^{-t u}\right] e^{-t u} \sqrt{u} \mathrm{~d} u \tag{14}
\end{equation*}
$$

Since $\int_{0}^{\infty} e^{-2 t u} \sqrt{u} \mathrm{~d} u=\frac{\Gamma(3 / 2)}{(2 t)^{3 / 2}}$ and since

$$
\int_{0}^{\infty} L_{V}(u) e^{-t u} \sqrt{u} \mathrm{~d} u=\int_{0}^{\infty} \int_{0}^{\infty} e^{-u(v+t)} \sqrt{u} \mathrm{~d} u \mu(\mathrm{~d} v)=\Gamma(3 / 2) \int_{0}^{\infty} \frac{\mu(\mathrm{d} v)}{(t+v)^{3 / 2}}
$$

then $I_{V}^{\prime}(t)=0$ if and only if $\int_{0}^{\infty} \frac{\mu(\mathrm{d} v)}{(t+v)^{3 / 2}}=\frac{1}{(2 t)^{3 / 2}}$. We can rewrite this equation in t as $F(1 / t)=1 / 2^{3 / 2}$ where $F(y)=\int_{0}^{\infty} \frac{\mu(\mathrm{d} v)}{(1+v y)^{3 / 2}}$. Thus (14) can be rewritten

$$
\begin{equation*}
I_{V}^{\prime}(t)=\frac{\sqrt{2}}{\pi} \frac{\Gamma(3 / 2)}{t^{3 / 2}}\left[F\left(\frac{1}{t}\right)-\frac{1}{2^{3 / 2}}\right] . \tag{15}
\end{equation*}
$$

Since $0<1 / 2^{3 / 2}<1, F(0)=1, \lim _{y \rightarrow \infty} F(y)=0$ and

$$
F^{\prime}(y)=-\frac{3}{2} \int_{0}^{\infty} \frac{v \mu(\mathrm{~d} v)}{(1+v y)^{5 / 2}}<0
$$

it follows that I_{V}^{\prime} has only one zero t_{0} on $(0, \infty)$ and from (15), it is easy to see from the sign of I_{V}^{\prime} that I_{V} reaches its minimum at t_{0}.

To show 5 ., we will apply Jensen inequality $f(\mathbb{E}(X)) \leq \mathbb{E}(f(X))$ to the convex function $f(x)=x^{-3 / 2}$ and to the random variable $X=1+y_{0} V$. From

$$
\frac{1}{\left(1+y_{0} \mathbb{E}(V)\right)^{3 / 2}} \leq \mathbb{E}\left(\frac{1}{\left(1+y_{0} V\right)^{3 / 2}}\right)=\frac{1}{2^{3 / 2}}
$$

it follows that $2 \leq 1+y_{0} \mathbb{E}(V)$ and $t_{0}=1 / y_{0}<\mathbb{E}(V)$.

Example 1. Suppose that $\operatorname{Pr}(V=1)=\operatorname{Pr}(V=2)=1 / 2$. Let us compute t_{0} and $I\left(t_{0}\right)$. With the help of Mathematica, we see that the solution of

$$
\frac{1}{2(1+t)^{3 / 2}}+\frac{1}{2(2+t)^{3 / 2}}=\frac{1}{(2 t)^{3 / 2}}
$$

is $t_{0}=1.39277$. Finally

$$
I_{V}\left(t_{0}\right)=\sqrt{\frac{2}{\pi}}\left(\frac{1}{4 \sqrt{2}}+\frac{1}{2 \sqrt{3}}+\frac{1}{8}-\frac{1}{\sqrt{1+t_{0}}}-\frac{1}{\sqrt{2+t_{0}}}+\frac{1}{\sqrt{2 t_{0}}}\right)=0.00019
$$

which is very small.

Example 2. Suppose that V is uniform on $(0,1)$ Then

$$
t_{0}=0.36678, I_{V}\left(t_{0}\right)=0.0182
$$

If V is uniform on $[0, a]$, then from Part 4 of Proposition 3.1, we have $t_{0}=a \times 0.36678$.

Example 3. If V follows the standard exponential distribution with density $f(v)=$ $e^{-v} \mathbf{1}_{(0,+\infty)}(v)$, then

$$
t_{0}=0.524, I_{V}\left(t_{0}\right)=0.0207
$$

4. SCALE MIXTURES IN THE EUCLIDEAN CASE AND NON IDENTIFIABILITY

Denote by \mathcal{S} the linear space of symmetric real matrices of dimension n equipped with the scalar product $\left\langle s, s_{1}\right\rangle=\operatorname{trace}\left(s s_{1}\right)$ and by \mathcal{P} the convex cone of real positive definite matrices of order n. Thus the norm of s is $\|s\|=\sqrt{\operatorname{trace} s^{2}}$. We denote by $\mathrm{d} v$ the Lebesgue measure on \mathcal{S} associated to its Euclidean structure, namely such that the mass of a unit cube is one.

We use the symbol a^{*} for the transposed matrix of any matrix a. As said before, if $v \in$ \mathcal{P} we denote by $v^{1 / 2}$ the unique element of \mathcal{P} whose square is v. It is sometimes considered that any non singular matrix a such that $v=a a^{*}$ should be called a generalized square root of v. The Cholesky decomposition $v=t t^{*}$ of v into a product of a upper triangular matrix t with positive coefficients on the diagonal with its transposed matrix t^{*} offers an example of such a generalized square root. It can be remarked that in practice the calculation of t is easier than the calculation of $v^{1 / 2}$. We denote by $\mathbb{O}(n)$ the orthogonal group of $n \times n$ matrices u such that $u^{*} u=I_{n}$.

In this section we define the scale mixtures of the standard normal distribution in \mathbb{R}^{n} and we observe the phenomena of non identifiability: that is, different distributions of V can give the same mixture.

4.1. Scale mixtures of the normal distribution in \mathbb{R}^{n}.

A scaled Gaussian mixture f on \mathbb{R}^{n} is the density of a random variable X on \mathbb{R}^{n} of the form $X=V^{1 / 2} Z$ where $V \sim \mu$ is a random matrix in \mathcal{P} independent of the standard random Gaussian variable $Z \sim N\left(0, I_{n}\right)$. In the following proposition, we give properties of a mixture of the form $X=V^{1 / 2} Z$ where Z is invariant by rotation but not necessarily Gaussian.

Proposition 4.1. Let A be a random nonsingular square matrix of order n, independent of $Z \in \mathbb{R}^{n} \backslash\{0\}$ and such that $u Z \sim Z$ for all $u \in \mathbb{O}(n)$. Let $V=A A^{*}$. Then the following holds.

1. $A Z \sim V^{1 / 2} Z$, that is, if we replace $V^{1 / 2}$ by any generalized square root A of V, the distribution of $A Z$ remains the same.
2. If $A Z \sim Z$ then $\operatorname{Pr}\left(V=I_{n}\right)=1$. In other terms, $A Z \sim Z$ if and only if $\operatorname{Pr}\left(A A^{*}=\right.$ $\left.I_{n}\right)=1$, i.e $A \in \mathbb{O}(n)$ almost surely.

Proof. To prove 1., observe that $U=V^{-1 / 2} A$ is in the orthogonal group $\mathbb{O}(n)$. Let $\mu(d v) K(v, d u) \nu(d z)$ denote the joint distribution of (V, U, Z).

Then if h is a bounded function on \mathbb{R}^{n},

$$
\begin{align*}
\mathbb{E}(h(A Z)) & =\mathbb{E}\left(h\left(V^{1 / 2} U Z\right)\right) \\
& =\int_{\mathcal{P}} \mu(\mathrm{d} v) \int_{\mathbb{O}(n)} K(v, d u) \int_{\mathbb{R}^{n}} h\left(v^{1 / 2} u z\right) \nu(\mathrm{d} z) \\
& =\int_{\mathcal{P}} \mu(\mathrm{d} v) \int_{\mathbb{O}(n)} K(v, \mathrm{~d} u) \int_{\mathbb{R}^{n}} h\left(v^{1 / 2} z_{1}\right) \nu\left(\mathrm{d} z_{1}\right) \tag{16}
\end{align*}
$$

$$
\begin{equation*}
=\int_{\mathcal{P}} \mu(\mathrm{d} v) \int_{\mathbb{R}^{n}} h\left(v^{1 / 2} z_{1}\right) \nu\left(\mathrm{d} z_{1}\right)=\mathbb{E}\left(h\left(V^{1 / 2} Z\right)\right) \tag{17}
\end{equation*}
$$

where in 16, $z_{1}=u z$, and 17) follows from $\int_{\mathbb{O}(n)} K(v, \mathrm{~d} u)=1$.
To prove 2., consider also $\varphi(s)=\mathbb{E}\left(e^{i\langle s, Z\rangle}\right)$. Since $u Z \sim Z$ for all $u \in \mathbb{O}(n)$ there exists a real function g defined on $[0, \infty)$ such that $\varphi(s)=g\left(\|s\|^{2}\right)$. Since $Z \sim A Z$ we can write

$$
\begin{equation*}
g\left(\|s\|^{2}\right)=\mathbb{E}\left(g\left(s^{*} V s\right)\right) \tag{18}
\end{equation*}
$$

Next, let us show that if $R \geq 0$ is independent of $Z=\left(Z_{1}, \ldots, Z_{n}\right)$ and if $Z_{1} R \sim Z_{1}$ then $\operatorname{Pr}(R=1)=1$. Indeed, for $t \geq 0$ we have that $\mathbb{E}\left(\left|Z_{1}\right|^{i t}\right)=\mathbb{E}\left(\left|Z_{1}\right|^{i t}\right) \mathbb{E}\left(R^{i t}\right)$. Since there exists $0<t_{0} \leq \infty$ such that $\mathbb{E}\left(\left|Z_{1}\right|^{i t}\right) \neq 0$ for $0 \leq t<t_{0}$, it holds that $\mathbb{E}\left(R^{i t}\right)=1$ for $0 \leq t<t_{0}$. This implies that $\operatorname{Pr}(R>0)=1$ and $0=1-\Re\left(\mathbb{E}\left(R^{i t}\right)\right)=$ $\mathbb{E}(1-\cos (t \log R))$ or $\operatorname{Pr}(t \log R \in 2 \pi \mathbb{Z})=1$ for $0 \leq t<t_{0}$. We deduce easily that $\operatorname{Pr}(R=1)=1$.

Now denote $V=\left(V_{i j}\right)_{1 \leq i, j \leq n}$ and apply the above observation to $R=\sqrt{V_{11}}$ by taking $s=(t, 0, \ldots, 0)$ in 18). We obtain

$$
\mathbb{E}\left(e^{i t Z_{1}}\right)=\varphi((t, 0, \ldots, 0))=g\left(t^{2}\right)=\mathbb{E}\left(g\left(t^{2} V_{11}\right)\right)=\mathbb{E}\left(e^{i t \sqrt{V_{11}} Z_{1}}\right)
$$

which implies $Z_{1} \sim V_{11} Z_{1}$ and $\operatorname{Pr}\left(V_{11}=1\right)=1$. Similarly $\operatorname{Pr}\left(V_{i i}=1\right)=1$ for all $i=2, \cdots, n$.

Finally, we consider $R=\sqrt{1+V_{12}}$ and we take $s=(t / \sqrt{2}, t / \sqrt{2}, \ldots, 0)$ in (18). Using the fact that $\left(Z_{1}+Z_{2}\right) / \sqrt{2} \sim Z_{1}$ we write

$$
\begin{aligned}
\mathbb{E}\left(e^{i t Z_{1}}\right) & =\mathbb{E}\left(e^{i t\left(Z_{1}+Z_{2}\right) / \sqrt{2}}\right)=\varphi((t / \sqrt{2}, t / \sqrt{2}, \ldots, 0)) \\
& =\mathbb{E}\left(g\left(\frac{1}{2} t^{2}\left(V_{11}+V_{22}+2 V_{12}\right)\right)=\mathbb{E}\left(g\left(t^{2}\left(1+V_{12}\right)\right)\right.\right. \\
& =\mathbb{E}\left(e^{i t Z_{1} \sqrt{1+V_{12}}}\right)
\end{aligned}
$$

and we get $\operatorname{Pr}\left(V_{12}=0\right)=1$. Similarly $\operatorname{Pr}\left(V_{i j}=0\right)=1$ for $i \neq j$ and finally $\operatorname{Pr}(V=$ $\left.I_{n}\right)=1$ as desired.

4.2. Nonidentifiability

In Example 4 below, we show that for $n \geq 2$, the measure μ which generates a given f as in (11) may not be unique. Theorem 4.2 gives a more general result. We denote by ω the uniform probability, or Haar probability, on $\mathbb{O}(n)$ and by \mathcal{D} the set of diagonal matrices $b=\operatorname{diag}\left(b_{1}, \ldots, b_{n}\right)$ such that $0<b_{1} \leq b_{2} \leq \ldots \leq b_{n}$. It is a well known fact that if $V=U^{*} B U$ with $U \in \mathbb{O}(n)$ and $B \in \mathcal{D}$ then $u^{*} V u \sim V$ for all $u \in \mathbb{O}(n)$ if and only if $U \sim \omega$ and B are independent (in this case, the distribution of V is determined by the distribution of its set of eigenvalues determined by B). While the 'if' part is clear, a short proof of the 'only if ' part is as follows: consider $\alpha(d b) K(b, d u) \sim(B, U)$ and $\mu \sim V$. For any h bounded continuous on \mathcal{P} and any $u_{0} \in \mathbb{O}(n)$ we write

$$
\int_{\mathcal{P}} h(v) \mu(\mathrm{d} v)=\int_{\mathcal{P}} h\left(u_{0}^{*} v u_{0}\right) \mu(\mathrm{d} v)
$$

$$
\begin{aligned}
& =\int_{\mathcal{D}}\left(\int_{\mathbb{O}(n)} h\left(u_{0}^{*} u^{*} b u u_{0}\right) K(b, \mathrm{~d} u)\right) \alpha(d b) \\
& =\int_{\mathcal{D}}\left(\int_{\mathbb{O}(n)} h\left(u^{*} b u\right) K\left(b, \mathrm{~d}\left(u u_{0}^{*}\right)\right) \alpha(\mathrm{d} b)\right.
\end{aligned}
$$

This shows that, α almost surely, the probability $K(b, d u)$ on $\mathbb{O}(n)$ is invariant by $u \mapsto u u_{0}^{*}$ for all $u_{0} \in \mathbb{O}(n)$ and is equal to ω by uniqueness of the Haar probability on $\mathbb{O}(n)$.

Finally, for $a_{1}, \ldots a_{n}>0$ given, we recall the definition of the Dirichlet distribution $\left.D\left(a_{1}, \ldots, a_{n}\right)\right)$ of the variable $\left(X_{1}, \ldots, X_{n}\right)$ on the simplex

$$
T_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in(0, \infty)^{n} ; x_{1}+\cdots+x_{n}=1\right\}:
$$

the density of $\left(X_{2}, \ldots, X_{n}\right)$ is proportional to

$$
\left(1-\left(x_{2}+\cdots+x_{n}\right)^{a_{1}-1} x_{2}^{a_{2}-1} \ldots x_{n}^{a_{n}-1}\right.
$$

Theorem 4.2. Suppose that a probability $\mu(d v)$ on \mathcal{P} is invariant by the transformations $v \mapsto u v u^{*}$ for any $u \in \mathbb{O}(n)$. Then we have the following.

1. Let $V \sim \mu$. Then there exists a unique probability $\nu_{\mu}(d \lambda)$ on $(0, \infty)$ such that if $\Lambda \sim \nu_{\mu}$ and if V and Λ are independent of $Z \sim N\left(0, I_{n}\right)$, then

$$
V^{1 / 2} Z=\Lambda^{1 / 2} Z
$$

2. In the special case where $b=\operatorname{diag}\left(b_{1} \ldots, b_{n}\right) \in \mathcal{D}$ is fixed let μ_{b} be the distribution in \mathcal{P} of $U^{*} b U$ where $U \sim \omega$. For $\left(X_{1}, \ldots, X_{n}\right) \sim D\left(\frac{1}{2}, \frac{1}{2}, \ldots, \frac{1}{2}\right)$, denote by $\rho_{b}(d \lambda)$ the distribution of $b_{1} X_{1}+\cdots+b_{n} X_{n}$. Then

$$
\begin{equation*}
\rho_{b}=\nu_{\mu_{b}} \tag{19}
\end{equation*}
$$

3. If $\alpha(d b)$ is a probability on \mathcal{D}, denote by μ the distribution of $V=U^{*} B U$ where $B \sim \alpha$ and $U \sim \omega$ are independent. Then

$$
\begin{equation*}
\nu_{\mu}(d \lambda)=\int_{\mathcal{D}} \alpha(\mathrm{d} b) \rho_{b}(\mathrm{~d} \lambda) \tag{20}
\end{equation*}
$$

Proof. We begin with a remark. Consider the Fourier transform of $V^{1 / 2} Z$ defined for $s \in \mathbb{R}^{n}$ by $\varphi(s)=\mathbb{E}\left(e^{i s^{*} V^{1 / 2} Z}\right)=\mathbb{E}\left(e^{-\frac{1}{2} s^{*} V s}\right)$. For $u \in \mathbb{O}(n)$ the fact that $u^{*} V u \sim V$ implies that $\varphi(u s)=\varphi(s)$. This implies in turn that $\varphi(s)$ is a function of $\|s\|$ only, or that there exists a function L such that $\varphi(s)=L\left(\frac{1}{2}\|s\|^{2}\right)$. Recall that we intent to show the existence of a positive random variable Λ such that $L\left(\frac{1}{2}\|s\|^{2}\right)=\mathbb{E}\left(e^{-\frac{1}{2} \Lambda\|s\|^{2}}\right)$ that is, that L is a Laplace transform. Actually this point is not immediate, and we start the proof of the theorem by showing 19 first.

Let $V=U^{*} b U$ with $U \sim \omega$ and consider the Fourier transform $\varphi(s)$ of $V^{1 / 2} Z$, namely

$$
\begin{equation*}
\varphi(s)=\mathbb{E}\left(e^{-\frac{1}{2}(U s)^{*} b U s}\right)=\mathbb{E}\left(e^{-\frac{1}{2}\left(b_{1}(U s)_{1}^{2}+\cdots+b_{n}(U s)_{n}^{2}\right)}\right) \tag{21}
\end{equation*}
$$

where $U s=\left((U s)_{1}, \ldots,(U s)_{n}\right)$. Now we observe that $(U s) /\|s\|$ is uniformly distributed on the unit sphere of \mathbb{R}^{n}. If $Y=\left(Y_{1}, \ldots, Y_{n}\right) \sim N\left(0, I_{n}\right)$ then $Y /\|Y\|$ is also uniformly distributed on the sphere and it is a classical fact that

$$
\left(X_{1}, \ldots, X_{n}\right)=\frac{\left(Y_{1}^{2}, \ldots, Y_{n}^{2}\right)}{Y_{1}^{2}+\cdots+Y_{n}^{2}} \sim D\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)
$$

Therefore

$$
\frac{1}{\|s\|^{2}}(U s)^{*} b(U s) \sim b_{1} X_{1}+\cdots+b_{n} X_{n} \sim \rho_{b}
$$

and $\varphi(s)=\int_{0}^{\infty} e^{-\frac{1}{2}\|s\|^{2} \lambda} \rho_{b}(\mathrm{~d} \lambda)$, which is a reformulation of 19$)$. Note that in this particular case where $V=U^{*} b U$ then L is the Laplace transform of ρ_{b}.

To prove 3 ., we simply condition by B and use (19) to obtain

$$
\varphi(s)=\mathbb{E}\left(e^{-\frac{1}{2}(U s)^{*} B(U s)}\right)=\int_{\mathcal{D}}\left(\int_{0}^{\infty} e^{-\frac{1}{2}\|s\|^{2} \lambda} \rho_{b}(\mathrm{~d} \lambda)\right) \alpha(\mathrm{d} b)
$$

which proves 20).
Recall that any random variable V on \mathcal{P} such that $u^{*} V u \sim V$ for all $u \in \mathbb{O}(n)$ has the above form $U^{*} B U$ where $B \sim \alpha(d b)$ is random and independent of $U \sim \omega$. This shows that 3. implies 1 .

Corollary 4.3. If $V \sim u V u^{*}$ for any $u \in \mathbb{O}(n)$ and has distribution μ then the density f of $V^{1 / 2} Z$ where $Z \sim N\left(0, I_{n}\right)$ is independent of V has the form $f(x)=L_{1}\left(\|x\|^{2} / 2\right)$. More specifically

$$
\begin{equation*}
f(x)=\int_{0}^{\infty} e^{-\frac{\|x\|^{2}}{2 \lambda}} \frac{\nu_{\mu}(\mathrm{d} \lambda)}{\sqrt{2 \pi \lambda}} \tag{22}
\end{equation*}
$$

Remarks.

1. Note that in Corollary 4.3 the function L_{1} is the Laplace transform of the image $m(d y)$ of the measure $\frac{\nu_{\mu}(d \lambda)}{\sqrt{2 \pi \lambda}}$ by the map $\lambda \mapsto y=1 / 2 \lambda$. Since in general 20 is not easy to apply, this offers, in some cases, a way to compute $\nu_{\mu}(d \lambda)$, when f and L_{1} are known, and when m is obvious. Example 4 below will be obtained by this technique with $L_{1}(s)=(1+2 s)^{-p}$ with $p>n / 2$.
2. For $n \geq 3$ it is difficult to give the density of $\rho_{b}(d \lambda)$ explicitly. For $n=2$ it is the image of the beta distribution on $(0,1)$ with parameters $(1 / 2,1 / 2)$ by the affinity $t \mapsto \lambda=(1-t) b_{1}+t b_{2}:$

$$
\rho_{b}(d \lambda)=\frac{1}{\pi \sqrt{\left(b_{2}-\lambda\right)\left(\lambda-b_{1}\right)}} 1_{\left(b_{1}, b_{2}\right)}(\lambda) d \lambda
$$

For instance if $\alpha\left(d b_{1}, d b_{2}\right)=\alpha_{1}\left(d b_{1}\right) K\left(b_{1}, d b_{2}\right)$ is the joint distribution of $B=$ $\operatorname{diag}\left(B_{1}, B_{2}\right)$, formula 20) implies $\nu_{\mu}(d \lambda)$ has density

$$
\frac{1}{\pi} \int_{0}^{\lambda}\left(\int_{\lambda}^{\infty} \frac{K\left(b_{1}, \mathrm{~d} b_{2}\right)}{\sqrt{b_{2}-\lambda}}\right) \frac{\alpha_{1}\left(\mathrm{~d} b_{1}\right)}{\sqrt{\lambda-b_{1}}}
$$

3. Another approach to formula 19 is possible using zonal polynomials.

Indeed for any symmetric matrices a and b of order n we can write

$$
\int_{\mathbb{O}(n)} e^{\operatorname{trace} u^{*} b u a} \omega(\mathrm{~d} u)=\sum_{\kappa} \frac{C_{\kappa}(a) C_{\kappa}(b)}{|\kappa|!C_{\kappa}\left(I_{n}\right)}
$$

Equality (21) suggests to apply this identity to the matrices $a=-s s^{*} / 2$ and $b \in \mathcal{D}$. Fortunately the zonal polynomials are simple when computed on a, a matrix of rank one. More specifically $C_{\kappa}(a)=0$ except when $\kappa=(m, 0,0, \ldots, 0)$ where m is a non negative integer. In this case, by a reasoning similar to that in the proof of (19), we have

$$
\frac{C_{\kappa}(a)}{|\kappa|!C_{\kappa}\left(I_{n}\right)}=\frac{(-1)^{m}}{2^{m} m!} \int_{\mathbb{O}(n)}(u s)_{1}^{2 m} \omega(\mathrm{~d} u)=\frac{(-1)^{m}\|s\|^{2 m}}{2^{m} m!} \mathbb{E}\left(X_{1}^{m}\right)
$$

where $X_{1} \sim \beta\left(\frac{1}{2}, \frac{1}{2}(n-1)\right)$. However, the computation of

$$
c_{m}\left(b_{1}, \ldots, b_{n}\right)=C_{(m, 0,0, \ldots, 0)}\left(\operatorname{diag}\left(b_{1}, \ldots, b_{n}\right)\right)
$$

is the real difficulty and using the Pochhammer symbol $(x)_{n}=\Gamma(n+x) / \Gamma(x)$, one can only write

$$
\mathbb{E}\left(e^{-\frac{1}{2}(U s)^{*} b U s}\right)=\sum_{m=0}^{\infty} \frac{(-1)^{m}\|s\|^{2 m}(1 / 2)_{m}}{2^{m}(n / 2)_{m} m!} c_{m}\left(b_{1}, \ldots, b_{n}\right) .
$$

4. An interesting question is the following: suppose that more generally $V \sim \mu$ and $V_{1} \sim \mu_{1}$ in \mathcal{P} are such that $V^{1 / 2} Z \sim V_{1}^{1 / 2} Z$ with $Z \sim N\left(0, I_{n}\right)$ independent of V and V_{1}. We do not assume here that μ and μ_{1} are invariant by $\mathbb{O}(n)$. Consider the Laplace transforms $L_{\mu}(a)=\int_{\mathcal{P}} e^{-\operatorname{trace}(a v)} \mu(\mathrm{d} v)$ and $L_{\mu_{1}}$ defined at least on the closed convex cone $\overline{\mathcal{P}}$ of the semi positive definite matrices of order n. Then $V^{1 / 2} Z \sim V_{1}^{1 / 2} Z$ implies that for any $s \in \mathbb{R}^{n}$ we have

$$
L_{\mu}\left(\frac{1}{2} s s^{*}\right)=L_{\mu_{1}}\left(\frac{1}{2} s s^{*}\right)
$$

which means that L_{μ} and $L_{\mu_{1}}$ coincide on the matrices $a \in \overline{\mathcal{P}}$ of rank one. As we have just seen in Theorem 4.2 it does not imply $\mu=\mu_{1}$. This raises the following problem: given μ, describe the extreme points of the convex set of probabilities μ_{1} such that L_{μ} and $L_{\mu_{1}}$ coincide on the matrices $a \in \overline{\mathcal{P}}$ of rank one.

4.3. An explicit example of non identifiability.

We will now give an example of two different measures μ_{1} and μ_{2} giving the same scale mixture of Gaussian variables.

Example 4. Let $p>n / 2$ and consider the probability on \mathbb{R}^{n} with density

$$
\begin{equation*}
f(x)=\frac{C}{\left(1+\|x\|^{2}\right)^{p}}, \tag{23}
\end{equation*}
$$

where C will be computed below. Then consider two probability measures μ_{1} and μ_{2}. The first is

$$
\begin{equation*}
\mu_{1}(d v)=\frac{(\operatorname{det}(v))^{-p+\frac{1}{2}-\frac{n+1}{2}}}{2^{n\left(p-\frac{1}{2}\right)} \Gamma_{\mathcal{P}}\left(p-\frac{1}{2}\right)} \exp \left\{-\frac{1}{2} \operatorname{trace}\left(v^{-1}\right)\right\} \mathbf{1}_{\mathcal{P}} d v \tag{24}
\end{equation*}
$$

where $\Gamma_{\mathcal{P}}(t)=(2 \pi)^{\frac{1}{2} n(n-1)} \prod_{j=1}^{d} \Gamma\left(t-\frac{j-1}{2}\right)$. Therefore V^{-1} follows a Wishart distribution with shape parameter $p-\frac{1}{2}$. The second is defined by $\mu_{2}(d v) \sim \Lambda I_{n}$ where Λ has density

$$
\frac{\lambda^{-p+\frac{n}{2}-1}}{2^{p-\frac{n}{2}} \Gamma\left(p-\frac{n}{2}\right)} e^{-\frac{1}{2 \lambda}} \mathbf{1}_{(0,+\infty)}(\lambda),
$$

i.e. Λ^{-1} follows a Gamma distribution, with shape parameter $p-\frac{1}{2} n$. For $x \in \mathbb{R}^{n}$ and $i=1,2$, we now show that

$$
\begin{equation*}
\int_{\mathcal{P}} \frac{e^{-\frac{x^{*} v^{-1} x}{2}}}{(2 \pi)^{n / 2}(\operatorname{det} v)^{1 / 2}} \mu_{i}(\mathrm{~d} v)=f(x) \tag{25}
\end{equation*}
$$

where f is defined by 23). For $i=1$, making the change of variable $y=v^{-1}$, the left-hand side of (25) becomes

$$
\begin{aligned}
& \int_{\mathcal{P}} \frac{(\operatorname{det} y)^{1 / 2} e^{-\frac{x^{*} y x}{2}}}{(2 \pi)^{n / 2}} \frac{(\operatorname{det}(y))^{p-\frac{1}{2}-\frac{n+1}{2}}}{2^{n\left(p-\frac{1}{2}\right)} \Gamma_{\mathcal{P}}\left(p-\frac{1}{2}\right)} \exp \left\{-\frac{1}{2} \operatorname{trace} y\right\} \mathrm{d} y \\
= & \int_{\mathcal{P}} \frac{(\operatorname{det}(y))^{p-\frac{n+1}{2}}}{(2 \pi)^{n / 2} 2^{n\left(p-\frac{1}{2}\right)} \Gamma_{\mathcal{P}}\left(p-\frac{1}{2}\right)} e^{-\frac{1}{2} \operatorname{trace}\left(y, I_{n}+x x^{*}\right)} \mathrm{d} y \\
= & \frac{2^{n p} \Gamma_{\mathcal{P}}(p)}{(2 \pi)^{n / 2} 2^{n\left(p-\frac{1}{2}\right)} \Gamma_{\mathcal{P}}\left(p-\frac{1}{2}\right)} \operatorname{det}\left(I_{n}+x x^{*}\right)^{-p} \\
= & \frac{2^{n p} \Gamma_{\mathcal{P}}(p)}{(2 \pi)^{n / 2} 2^{n\left(p-\frac{1}{2}\right)} \Gamma_{\mathcal{P}}\left(p-\frac{1}{2}\right)} \frac{1}{\left(1+\|x\|^{2}\right)^{p}} \\
= & \frac{1}{(2 \pi)^{n / 2}} \frac{\Gamma(p)}{2^{-\frac{n}{2}} \Gamma\left(p-\frac{n}{2}\right)} \frac{1}{\left(1+\|x\|^{2}\right)^{p}}
\end{aligned}
$$

yielding $C=\frac{1}{(2 \pi)^{n / 2}} \frac{\Gamma(p)}{2^{-\frac{n}{2}} \Gamma\left(p-\frac{n}{2}\right)}$. For $i=2$, making the change of variable $y=\frac{1}{\lambda}$, the left-hand side of 25 becomes

$$
\begin{align*}
& \int_{0}^{+\infty} \frac{e^{-\frac{x^{t} x}{2 \lambda}}}{(2 \pi)^{n / 2} \lambda^{\frac{n}{2}}} \frac{\lambda^{-p+\frac{n}{2}-1}}{2^{p-\frac{n}{2}} \Gamma\left(p-\frac{n}{2}\right)} e^{-\frac{1}{2 \lambda}} \mathbf{1}_{(0,+\infty)}(\lambda) \\
= & \frac{1}{(2 \pi)^{n / 2} \Gamma\left(p-\frac{n}{2}\right)} \int_{0}^{+\infty} \frac{\lambda^{-p-1}}{2^{p-\frac{n}{2}}} e^{-\frac{1}{2 \lambda}\left(1+\|x\|^{2}\right)} \mathrm{d} \lambda \\
= & \frac{1}{(2 \pi)^{n / 2} \Gamma\left(p-\frac{n}{2}\right)} \int_{0}^{+\infty} \frac{y^{p-1}}{2^{p-\frac{n}{2}}} e^{-\frac{y}{2}\left(1+\|x\|^{2}\right)} \mathrm{d} y \\
= & \frac{\Gamma(p)}{(2 \pi)^{n / 2} 2^{-\frac{n}{2}} \Gamma\left(p-\frac{n}{2}\right)} \frac{1}{\left(1+\|x\|^{2}\right)^{p}} \tag{26}
\end{align*}
$$

Therefore, with the notation of Theorem 4.2 we have proved that if $\mu_{2} \sim \Lambda I_{n}$ then $\Lambda \sim \nu_{\mu_{1}}$.

5. EXISTENCE OF THE BEST NORMAL APPROXIMATION IN THE EUCLIDEAN CASE

In this section, we study the conditions that the distribution $\mu(d v)$ on \mathcal{P} must satisfy to garantee that the density f of $V^{1 / 2} Z$ is in $L^{2}\left(\mathbb{R}^{n}\right)$ when $V \sim \mu$ and $Z \sim N\left(0, I_{n}\right)$ are independent. We also find a Gaussian law $N\left(0, t_{0}\right)$ on \mathbb{R}^{n} which is the closest to f in the $L^{2}\left(\mathbb{R}^{n}\right)$ sense. We consider also the particular case where $V^{1 / 2} Z=\Lambda^{1 / 2} Z$ where Λ is a random scalar.

5.1. Best approximation

We first recall two simple formulas.

Lemma 5.1. Let $A \in \mathcal{P}$. Then

$$
\int_{\mathbb{R}^{n}} e^{-\frac{1}{2} s^{*} A s} \mathrm{~d} s=\frac{(2 \pi)^{n / 2}}{\sqrt{\operatorname{det} A}}, \quad \int_{\mathbb{R}^{n}} e^{-\frac{1}{2} s^{*} A s} s s^{*} \mathrm{~d} s=\frac{(2 \pi)^{n / 2}}{\sqrt{\operatorname{det} A}} A^{-1}
$$

Proof. Without loss of generality, we may assume that A is diagonal, and the proof is obvious in this particular case.

We next state that there exists a matrix $v=t_{0}$ such that the L^{2} distance between the multivariate Gaussian mixture $f(x)$ and the Gaussian distribution $N\left(0, t_{0}\right)$ is minimum.

Theorem 5.2. Let $\mu(d v)$ be a probability distribution on the convex cone \mathcal{P}. Let $f(x)$ denote the density of the random variable $X=V^{1 / 2} Z$ of \mathbb{R}^{n} where $V \sim \mu$ is independent of $Z \sim N\left(0, I_{n}\right)$. Then

1. $f \in L^{2}\left(\mathbb{R}^{n}\right)$ if and only if $\mathbb{E}\left(\frac{1}{\operatorname{det} \sqrt{V+V_{1}}}\right)<\infty$ where V and V_{1} are independent with the same distribution μ.
2. For $f \in L^{2}\left(\mathbb{R}^{n}\right)$, consider the function I defined on \mathcal{P} by

$$
\begin{equation*}
t \mapsto I(t)=\int_{\mathbb{R}^{n}}\left[f(x)-\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} t}} e^{-\frac{1}{2} x^{*} t^{-1} x}\right]^{2} \mathrm{~d} x \tag{27}
\end{equation*}
$$

Then I reaches its minimum at some t_{0}, and this t_{0} is a solution in \mathcal{P} of the following equation in $t \in \mathcal{P}$:

$$
\begin{equation*}
\int_{\mathcal{P}} \frac{(v+t)^{-1}}{\sqrt{\operatorname{det}(v+t)}} \mu(\mathrm{d} v)=\frac{1}{2^{1+\frac{1}{2} n}} \frac{t^{-1}}{\sqrt{\operatorname{det} t}} \tag{28}
\end{equation*}
$$

Proof. We have

$$
\begin{equation*}
\hat{f}(s)=\int_{\mathbb{R}^{n}} e^{i\langle s, x\rangle} f(x) \mathrm{d} x=\mathbb{E}\left(e^{i\left\langle V^{1 / 2} Z, s\right\rangle}\right)=\mathbb{E}\left(e^{-\frac{1}{2} s^{*} V s}\right) \tag{29}
\end{equation*}
$$

Now using Plancherel Theorem and Lemma 5.1, we prove part 1. as follows:

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} f^{2}(x) d x=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \hat{f}(s)^{2} \mathrm{~d} s= & \frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \mathbb{E}\left(e^{-\frac{1}{2} s^{*}\left(V+V_{1}\right) s}\right) \mathrm{d} s \\
& =\frac{1}{(2 \pi)^{n / 2}} \mathbb{E}\left(\frac{1}{\operatorname{det} \sqrt{V+V_{1}}}\right)
\end{aligned}
$$

To prove part 2, we use Plancherel theorem again for the function

$$
g(x)=f(x)-\frac{e^{-\frac{x^{*} t^{-1} x}{2}}}{(2 \pi)^{n / 2}(\operatorname{det} t)^{1 / 2}}
$$

and obtain

$$
I(t)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}}\left[\hat{f}(s)-h_{t}(s)\right]^{2} \mathrm{~d} s
$$

where $h_{t}=e^{-\frac{1}{2} s^{*} t s}$. From Lemma 4.1 applied to $A=2 t$ we have $\left\|h_{t}\right\|^{2}=\pi^{n / 2} / \sqrt{\operatorname{det} t}$. Expanding the square in $I(t)$ we obtain

$$
(2 \pi)^{n} I(t)-\|\hat{f}\|^{2}=\frac{(\pi)^{n / 2}}{\sqrt{\operatorname{det} t}}-2\left\langle\hat{f}, h_{t}\right\rangle:=I_{1}(t)
$$

where $h_{t}=e^{-\frac{1}{2} s^{*} t s}$. We now want to show that the minimum of $I_{1}(t)$ is reached at some $t_{0} \in \mathcal{P}$.

We show that

$$
K_{1}=\left\{y \in \mathcal{P} ; I_{1}\left(y^{-1}\right) \leq 0\right\}
$$

is non empty and compact. Writing

$$
I_{2}(y)=\left\langle\hat{f}, h_{y^{-1}}\right\rangle \frac{1}{(2 \pi)^{n / 2} \sqrt{\operatorname{det} y}}
$$

we see that $y \in K_{1}$, i. e. $I_{1}\left(y^{-1}\right) \leq 0$ if and only if $\frac{1}{2^{1+\frac{1}{2} n}} \leq I_{2}(y)$. From 29, the definition of $h_{t}(s)$ and Lemma 4.1, we have that

$$
\begin{aligned}
I_{2}(y) & =\frac{1}{(2 \pi)^{n / 2} \sqrt{\operatorname{det} y}} \int_{\mathbb{R}^{n}} \mathbb{E}\left(e^{-\frac{s^{*} V s}{2}}\right) e^{-\frac{s^{*} y^{-1} s}{2}} \mathrm{~d} s=\frac{1}{(2 \pi)^{n / 2} \sqrt{\operatorname{det} y}} \mathbb{E}\left(\int_{\mathbb{R}^{n}} e^{\frac{s^{*}\left(V+y^{-1}\right) s}{2}} \mathrm{~d} s\right) \\
& =\frac{1}{\sqrt{\operatorname{det} y}} \mathbb{E}\left(\frac{1}{\sqrt{\operatorname{det}\left(V+y^{-1}\right)}}\right)=\int_{\mathcal{P}} \frac{\mu(\mathrm{d} v)}{\sqrt{\operatorname{det}\left(I_{n}+v y\right)}}
\end{aligned}
$$

For $0<C \leq 1$ let us show that

$$
K_{2}=\left\{y \in \mathcal{P} ; I_{2}(y) \geq C\right\}
$$

is compact. Note that $K_{1}=K_{2}$ for $C=1 / 2^{1+\frac{1}{2} n}$. Since I_{2} is continuous, K_{2} is closed. The set K_{2} is not empty since $I_{2}(y) \geq 1$. Let us prove that K_{2} is bounded. Recall $\|y\|=\left(\operatorname{trace} y^{2}\right)^{1 / 2}$. Suppose that $y^{(k)} \in K_{2}$ is such that $\left\|y^{(k)}\right\| \rightarrow_{k \rightarrow \infty} \infty$ and let us show that for such a $y^{(k)}, I_{2}\left(y^{(k)}\right) \rightarrow 0$, which is a contradiction.

Indeed, trace $\left(v y^{(k)}\right) \rightarrow_{k \rightarrow \infty} \infty$ if $v \in \mathcal{P}$. To see this, assume that $v=\operatorname{diag}\left(v_{1}, \ldots, v_{n}\right)$. Then

$$
\begin{aligned}
\operatorname{trace}\left(v y^{(k)}\right) & =v_{1} y_{11}^{(k)}+\cdots+v_{n} y_{n n}^{(k)} \\
& \geq \operatorname{trace}\left(y^{(k)}\right) \times \min _{i} v_{i} \geq\left\|y^{(k)}\right\| \times \min _{i} v_{i} \rightarrow_{k \rightarrow \infty} \infty
\end{aligned}
$$

where the last inequality is due to the fact that if $\lambda_{1}, \ldots, \lambda_{n}$ are positive, then $\sqrt{\lambda_{1}^{2}+\ldots,+\lambda_{n}^{2}} \leq \lambda_{1}+\ldots+\lambda_{n}$. Moreover, if $\left(\lambda_{1} \ldots, \lambda_{n}\right)$ are the eigenvalues of $v y^{(k)}$, $\operatorname{det}\left(I_{n}+v y^{(k)}\right)=\left(1+\lambda_{1}\right) \ldots\left(1+\lambda_{n}\right) \geq 1+\lambda_{1}+\cdots+\lambda_{n}=1+\operatorname{trace}\left(v y^{(k)}\right) \rightarrow_{k \rightarrow \infty} \infty$

By dominated convergence, it follows that $I_{2}\left(y^{(k)}\right) \rightarrow_{k \rightarrow \infty} 0$ and this proves that K_{2} is bounded. We have therefore shown that K_{1} is compact. This proves that the minimum of $I_{1}(t)$ and thus of $I(t)$ is reached at some point t_{0} of \mathcal{P}.

The last task is to show that t_{0} is a solution of equation 28 . Since $I(t)$ is differentiable and reaches its minimum on the open set \mathcal{P}, the differential of $I(t)$ must cancel at t_{0}. The differential of I is the following linear form on \mathcal{S}

$$
h \in \mathcal{S} \mapsto I^{\prime}(t)(h)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}}\left[\hat{f}(s)-e^{-\frac{1}{2} s^{*} t s}\right] e^{-\frac{1}{2} s^{*} t s} s^{*} h s \mathrm{~d} s
$$

The equality $I^{\prime}(t)=0$ is equivalent to

$$
\int_{\mathbb{R}^{n}} \hat{f}(s) e^{-\frac{1}{2} s^{*} t s} s s^{*} d s=\int_{\mathbb{R}^{n}} e^{-s^{*} t s} s s^{*} \mathrm{~d} s
$$

Using the second formula in Lemma 4.1 and the fact that $\hat{f}(s)=\mathbb{E}\left(e^{-\frac{1}{2} s^{*} V s}\right)$, we obtain

$$
\int_{\mathcal{P}} \frac{(v+t)^{-1}}{\sqrt{\operatorname{det}(v+t)}} \mu(\mathrm{d} v)=\frac{(2 t)^{-1}}{\sqrt{\operatorname{det}(2 t)}}=\frac{1}{2^{1+\frac{1}{2} n}} \frac{t^{-1}}{\sqrt{\operatorname{det} t}}
$$

which proves 28).

Remarks.

1. We note that 28) can also be written in terms of $y=t^{-1}$ as

$$
\int_{\mathcal{P}} \frac{(1+v y)^{-1}}{\sqrt{\operatorname{det}(1+v y)}} \mu(\mathrm{d} v)=\frac{1}{2^{1+\frac{n}{2}}} I_{n}
$$

2. While it is highly probable that the value t_{0} at which $I(t)$ reaches its minimum is unique, it is difficult to show for $n \geq 2$ that equation (28) has a unique solution: there is no reason to think that the function $t \mapsto I(t)$ is convex. However a case of uniqueness is proved in Proposition 5.3 below.

5.2. Best approximation for a scalar mixture.

Proposition 5.3. Let $\nu(d \lambda)$ be a probability on $(0, \infty)$ such that

$$
\mathbb{E}\left(\left(\Lambda+\Lambda_{1}\right)^{-n / 2}\right)<\infty
$$

where Λ and Λ_{1} are independent with distribution ν, and let μ be the distribution of $V=\Lambda I_{n}$. Then $t \mapsto I(t)$ defined in 27) reaches its minimum at a unique point t_{0}. Furthermore t_{0} is a multiple of I_{n}.
Proof. From Theorem 4.2,I reaches its minimum at least at one point $t_{0} \in \mathcal{P}$. Without loss of generality by choosing a suitable orthonormal basis of \mathbb{R}^{n}, we can assume that $t_{0}=\operatorname{diag}\left(\lambda_{1}^{0}, \ldots, \lambda_{n}^{0}\right)$. We are going to show that $\lambda_{1}^{0}=\ldots=\lambda_{n}^{0}$. Consider the restriction I^{*} of I to the set of diagonal matrices with positive entries, namely

$$
I^{*}\left(t_{1}, \ldots, t_{n}\right)=I^{*}\left(\operatorname{diag}\left(t_{1}, \ldots, t_{n}\right)\right)
$$

Of course $\left(t_{1}, \ldots, t_{n}\right) \mapsto I^{*}\left(t_{1}, \ldots, t_{n}\right)$ reaches its minimum on $\left(\lambda_{1}^{0}, \ldots, \lambda_{n}^{0}\right)$. By a computation which imitates the proof of Theorem 4.2 we consider

$$
\begin{aligned}
I_{1}^{*}\left(t_{1}, \ldots, t_{n}\right) & =(2 \pi)^{n} I^{*}\left(t_{1}, \ldots, t_{n}\right)-\|\hat{f}\|^{2} \\
& =\frac{\pi^{n / 2}}{\sqrt{t_{1} \ldots t_{n}}}-2 \int_{0}^{\infty} \frac{\nu(\mathrm{d} \lambda)}{\prod_{i=1}^{n}\left(t_{i}+\lambda\right)^{1 / 2}} .
\end{aligned}
$$

Since $I_{1}^{*}\left(t_{1}, \ldots, t_{n}\right)$ reaches its minimum at t_{0}, its gradient is zero at $\left(\lambda_{1}^{0}, \ldots, \lambda_{n}^{0}\right)$. We have

$$
\frac{\partial}{\partial t_{j}} I_{1}^{*}\left(t_{1}, \ldots, t_{n}\right)=-\frac{\pi^{n / 2}}{2 t_{j} \sqrt{t_{1} \ldots t_{n}}}+\int_{0}^{\infty} \frac{\nu(\mathrm{d} \lambda)}{\left(t_{j}+\lambda\right) \prod_{i=1}^{n}\left(t_{i}+\lambda\right)^{1 / 2}}
$$

and as a consequence, for all $j=1, \ldots, n$

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\lambda_{j}^{0}}{\lambda_{j}^{0}+\lambda} \times \frac{\nu(\mathrm{d} \lambda)}{\prod_{i=1}^{n}\left(\lambda_{i}^{0}+\lambda\right)^{1 / 2}}=\frac{\pi^{n / 2}}{2 \sqrt{\lambda_{1}^{0} \ldots \lambda_{n}^{0}}} \tag{30}
\end{equation*}
$$

The important point of (30) is the fact that the right hand side does not depend on j. Suppose now that there exists j_{1} and j_{2} such that $\lambda_{j_{1}}^{0}<\lambda_{j_{2}}^{0}$. This implies that for all $\lambda>0$ we have

$$
\frac{\lambda_{j_{1}}^{0}}{\lambda_{j_{1}}^{0}+\lambda}<\frac{\lambda_{j_{2}}^{0}}{\lambda_{j_{2}}^{0}+\lambda}
$$

and the left hand sides of 30 cannot be equal for $j=j_{1}$ and $j=j_{2}$. As a consequence $t_{0}=\lambda^{0} I_{n}$ for some $\lambda^{0}>0$.

To see that λ^{0} is unique, we imitate the proof of Theorem 3.1. We omit the details here.

We will finish by giving an example of a scalar Gaussian mixture, actually built on the univariate Kolmogorov-Smirnov measure (9) with density

$$
k_{1}(\lambda)=\sum_{n=1}^{+\infty}(-1)^{n+1} n^{2} e^{-\frac{n^{2} \lambda}{2}} \mathbf{1}_{(0,+\infty)}(\lambda)
$$

Example 5. Let us verify first that

$$
g_{n}(x)=C_{n} \frac{e^{\|x\|}}{\left(1+e^{\|x\|}\right)^{2}},
$$

where C_{n} is the normalizing constant, is a density in \mathbb{R}^{n}. Indeed, using polar coordinates in \mathbb{R}^{n} with $r=\|x\|$, we have $\frac{1}{C_{n}}=S_{n-1} J(n-1)$ where $S_{n-1}=n \pi^{n / 2} / \Gamma\left(1+\frac{n}{2}\right)$ is the area of the unit sphere in \mathbb{R}^{n} and where

$$
J(t)=\int_{0}^{+\infty} \frac{e^{-r} r^{t}}{\left(1+e^{-r}\right)^{2}} \mathrm{~d} r
$$

Of course $J(0)=1 / 2$ and by integration by part $J(1)=\log 2$. For $t>1$ we have

$$
\begin{aligned}
J(t) & =\sum_{k=1}^{\infty}(-1)^{k-1} k \int_{0}^{\infty} e^{-k r} r^{t} \mathrm{~d} r=\Gamma(t+1) \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^{t}} \\
& =\Gamma(t+1)\left(1-2^{1-t}\right) \zeta(t)
\end{aligned}
$$

where $\zeta(t)=\sum_{k=1}^{\infty} \frac{1}{k^{t}}$ is the Riemann function and the last equality is a well-known formula. Thus for instance

$$
C_{1}=1, C_{2}=1 /(2 \pi \log 2), C_{3}=3 /\left(2 \pi^{3}\right) .
$$

Next, writing

$$
k_{n}(\lambda)=C_{n}(2 \pi \lambda)^{\frac{n-1}{2}} k_{1}(\lambda) \mathbf{1}_{(0,+\infty)}(\lambda)
$$

let us show that k_{n} is a density such that

$$
\begin{equation*}
\int_{0}^{+\infty} \frac{e^{-\frac{\|x\|^{2}}{2 \lambda}}}{(2 \pi \lambda)^{n / 2}} k_{n}(\lambda) \mathrm{d} \lambda=g_{n}(x) \tag{31}
\end{equation*}
$$

This means, of course, that g_{n} is a scale mixture of multivariate normal $N\left(0, \lambda I_{n}\right)$ distributions. We have

$$
1=\int_{\mathbb{R}^{n}} g_{n}(x) d x=C_{n} \int_{\mathbb{R}^{n}} \int_{0}^{+\infty} \frac{e^{-\frac{\|x\|^{2}}{2 \lambda}}}{(2 \pi \lambda)^{n / 2}}(2 \pi \lambda)^{(n-1) / 2} k_{1}(\lambda) \mathrm{d} \lambda \mathrm{~d} x
$$

$$
\begin{aligned}
& =C_{n} \int_{0}^{+\infty}(2 \pi \lambda)^{(n-1) / 2} k_{1}(\lambda)\left(\int_{\mathbb{R}^{n}} \frac{e^{-\frac{\|x\| \|^{2}}{2 \lambda}}}{(2 \pi \lambda)^{n / 2}} \mathrm{~d} x\right) \mathrm{d} \lambda \\
& =C_{n} \int_{0}^{+\infty}(2 \pi \lambda)^{(n-1) / 2} k_{1}(\lambda) \mathrm{d} \lambda
\end{aligned}
$$

ACKNOWLEDGEMENT

This work was partially supported by an NSERC Discovery Grant for H. Massam. The authors would like to thank the referee for a careful reading of the paper and the suggestion to expand Section 4.
(Received March 20, 2019)

References

[1] W. Feller: An Introduction to Probability Theory and its Applications, vol. 2. Wiley, New York 1966.
[2] T. Gneiting: Normal scale mixture and probability densities. J. Stat. Comput. Simul. 59 (1997), 375-384. DOI:10.1080/00949659708811867
[3] G. H. Hardy and E. M. Wright: An Introduction to the Theory of Numbers. Sixth edition. Oxford University Press, London 2008. DOI:10.1017/s0025557200007464
[4] A. N. Kolmogorov: Sulla determinazióne empìrica di una légge di distribuzióne. G. Inst. Ital. Attuari 4 (1933), 83-91.
[5] G. Letac, H. Massam, and R. Mohammadi: The ratio of normalizing constants for Bayesian Gaussian model selection. arXiv 1706. 04416 (2017), revision Oct. 12th 2018.
[6] J. F. Monahan and L. A. Stefanski: Normal Scale Mixture Approximations to $F^{*}(z)$ and Computation of the Logistic-Normal Integral. Handbook of the Logistic Distribution (N. Balakrishnan, ed.), Marcel Dekker, New York 1992.
[7] J. A. Palmer, K. Kreutz-Delgado, and S. Maleig: Dependency models based on generalized Gaussian scale mixtures. DRAFT UCSD-SCCN v1.0, Sept 7 (2011).
[8] L. A. Stefanski: A normal scale mixture representation of the logistic distribution. Stat. Probab. Lett- 11 (1991), 69-70. DOI:10.1016/0167-7152(91)90181-p
[9] M. West: On scale mixture of normal distributions. Biometrika 74 (1987), 646-648. DOI:10.1093/biomet/74.3.646

Gérard Letac, Institut Mathématique de Toulouse, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse. France.
e-mail: gerard.letac@math.univ-toulouse.fr
Hélène Massam, Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, M3J 1P3. Canada.
e-mail: massamh@yorku.ca

