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INFORMATION DECOMPOSITION
BASED ON COOPERATIVE GAME THEORY

Nihat Ay, Daniel Polani and Nathaniel Virgo

We offer a new approach to the information decomposition problem in information theory:
given a ‘target’ random variable co-distributed with multiple ‘source’ variables, how can we
decompose the mutual information into a sum of non-negative terms that quantify the con-
tributions of each random variable, not only individually but also in combination? We define
a new way to decompose the mutual information, which we call the Information Attribution
(IA), and derive a solution using cooperative game theory. It can be seen as assigning a “fair
share” of the mutual information to each combination of the source variables. Our decompo-
sition is based on a different lattice from the usual ‘partial information decomposition’ (PID)
approach, and as a consequence the IA has a smaller number of terms than PID: it has analogs
of the synergy and unique information terms, but lacks separate terms corresponding to redun-
dancy, instead sharing redundant information between the unique information terms. Because
of this, it is able to obey equivalents of the axioms known as ‘local positivity’ and ‘identity’,
which cannot be simultaneously satisfied by a PID measure.

Keywords: partial information decomposition, information geometry, cooperative game
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1. INTRODUCTION

Consider a random variable Y , called the target, and suppose it is co-distributed with a
set of random variables X1, . . . , Xn, which may also be correlated with each other. We
call the variables X1, . . . , Xn input variables or inputs, though this should not be taken
to imply a causal interpretation. Learning the values of the inputs provides information
about Y , and this can be quantified using the standard tools of information theory.
In particular one may consider quantities such as I(X1, X2;Y ) (the information that
the inputs X1 and X2 together provide, on average, about Y ), or I(X1;Y |X2) (the
information provided by X1 when X2 is known).

However, it has been clear for some time that the mutual information and conditional
mutual information are relatively blunt tools, and it would be useful in applications to
have a more fine-grained picture. This led in particular to the Partial Information
Decomposition (PID) framework, proposed by [36]. The original proposal was to divide
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the mutual information I(X1, . . . , Xn;Y ) into a sum of non-negative terms in a particular
way. However, this has proven difficult to do so satisfactorily for more than two inputs,
and in particular a no-go theorem, due to [31], has shown that no decomposition of the
mutual information can satisfy both Williams and Beer’s axioms and a certain set of
intuitively desirable properties.

Here we propose a different way to decompose the mutual information, which we call
the Information Attribution (IA). Let V = {X1, . . . , Xn} be the set of all the input
variables we are interested in, and consider the power set 2V . Members of 2V (i. e. sets
of input variables) are termed predictors, since in general each one provides some in-
formation about the target. Given a predictor A we wish to attribute to it a certain
fraction of the total mutual information. These should be non-negative and sum to
I(X1, . . . , Xn;Y ). In addition we wish to avoid double-counting: the information at-
tributed to a set of inputs should tell us something meaningful about how much more
information that set provides, beyond that provided by each of its subsets individually.
This has much in common with the notion of synergy in the PID framework, but dif-
fers in that our IA framework does not have distinct concepts of unique and redundant
information.

Because of this difference, we are able to propose an Information Attribution measure
that remains non-negative for an arbitrary number of input variables, while exhibiting
a number of desirable properties. Our solution makes use of both information geometry
and cooperative game theory, allowing us first to assess the information provided by
each set of predictors (i. e. set of sets of input variables), and then to share the total
mutual information among the individual predictors in a way that can be considered
uniquely fair.

In more detail, in the case of two inputs, the PID framework decomposes the mu-
tual information I(X1, X2;Y ) into a sum of four terms of three different kinds. These
terms are (i) the information that the two sources provide redundantly about the target
(known as redundant information, shared information or common information); (ii) two
terms corresponding to the information provided uniquely by each input, and (iii) the
synergistic or complementary information, which can only be obtained by knowing both
of the sources simultaneously.

However, the axioms proposed by Williams and Beer do not completely determine
these quantities. As a result, many PID measures have been proposed in the literature,
each satisfying different additional properties beyond the ones given by Williams and
Beer. Several approaches have been proposed. Among these are several that are based
on information geometry [8, 20, 21, 24, 29, 30], which we build upon here.

Generalizing towards the case of three or more input variables has turned out to
be more problematic under the PID framework. One of the most intuitive additional
axioms proposed is known as the identity axiom, proposed by [21], but it was shown by
[31] that no measure can exist that obeys both Williams and Beer’s axioms (including
“local positivity”) and the identity axiom. Because of this, there are a number of
proposed PID measures that relax either the identity axiom or the local positivity axiom
of Williams and Beer, or both. Such approaches include [17, 22, 25]. Another promising
class of approaches involve changing to a slightly different perspective, for example, by
considering the full joint distribution between multiple random variables, rather than
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singling out a particular variable as the target [18, 23, 32]. The present work falls into
a third class of approaches, which involves decomposing the mutual information in a
different way, using a different lattice from the one defined by Williams and Beer. [31]
argued for such an approach after proving their no-go theorem.

In contrast to the partial information decomposition, for two predictors our Informa-
tion Attribution (IA) framework decomposes the mutual information I(X1, X2;Y ) into
only three terms, all non-negative, corresponding to information that can be attributed
to the predictors {X1}, {X2} and {X1, X2}. The third term is similar to synergy in the
PID framework, since it corresponds to information that can only be attributed to X1

and X2 together, and not to either of them individually. The singleton {X1} and {X2}
terms behave like a combination of the redundant and unique information terms, in that
information shared between the two sources is split between the {X1} and {X2} terms.

In the general case of n inputs, with V = {X1, . . . , Xn}, we write

I(X1, . . . , Xn;Y ) =
∑
A∈2V

IA(X1, . . . , Xn;Y ) .

For a given predictor A, the term IA(X1, . . . , Xn;Y ) indicates the proportion of the total
mutual information attributed to A, beyond what is already provided by its subsets.
(The information attributed to the empty set is always 0.)

Despite being based on a different lattice, our decomposition obeys analogs of both
the local positivity and identity axioms. These properties hold for any number of inputs.

There are a number of other approaches to multivariate information besides PID,
some of which are closely related to our appraoch. These include in particular an ap-
proach called reconstructability analysis [37], which we draw on extensively, as well as
Amari’s hierarchical decomposition [1], Ay’s measure of complexity [4], and several mea-
sures that have arisen in the context of Integrated Information Theory (IIT), such as
[28]. This family of measures is reviewed in [3], which describes their relationships in
terms of information geometry.

We now outline the structure of the argument before proceeding to the details.
Throughout the paper we restrict ourselves to the case where all of the variables,
X1, . . . , Xn and Y , have finite state spaces, although we expect our measure to gen-
eralise well to cases such as Gaussian models in which the state spaces are continuous.
(Several previous PID measures have been extended to the Gaussian case by [6], who
also proves some important results about the behaviour of PID measures on Gaussian
models.)

To construct our Information Attribution measure we proceed in two steps. We begin
by defining the mutual information provided by certain sets of predictors, i. e. sets of sets
of input variables. We do this via a sublattice of the lattice of probability distributions
that [24] termed the “constraint lattice.” The same lattice has appeared in the literature
previously, within the topic of reconstructability analysis [37]. Having established the
information contribution of each set of predictors, we then attribute a contribution to
each individual predictor by a method that involves summing over the maximal chains
of the constraint lattice.

We then show that this procedure of averaging over maximal chains can be derived
using cooperative game theory. We can conceptualise our measure in terms of a co-
operative game, in which each set of predictors is thought of as a coalition of players.
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Each coalition is assigned a worth corresponding to the information they jointly provide
about the target. Our measure can then be derived via a known generalisation of the
Shapley value due to [16], which assigns a payoff to each individual player (i. e. predic-
tor) based on its average performance among all the coalitions in which it takes part,
while respecting additional precedence constraints.

Since our measure is based on the constraint lattice, we review this concept in depth
in section 2. We approach the constraint lattice from the perspective of information
geometry and state its relationship to known results in that field. In section 3 we consider
a sublattice of the constraint lattice which we term the input lattice, which allows us to
define a quantity corresponding to the information that a set of predictors provides about
the target. From this we derive our measure by summing over the maximal chains of the
input lattice. After proving some properties of our Information Attribution measure and
giving some examples (sections 5 and 6), we then make the connection to cooperative
game theory in section 7, proving that our measure is equivalent to the generalised
Shapley value of [16].

2. BACKGROUND: THE CONSTRAINT LATTICE

We begin by defining the so-called “constraint lattice” of [24], which has also been
defined previously in the context of reconstructability analysis [37]. This section serves
to summarise previous work and to establish notation for the following sections.

The constraint lattice, along with its sublattice that we term the input lattice, are
used in reconstructability analysis, as described by Zwick. It is used both as a tool
for constructing probabilistic models from limited data and as a way to quantify the
information in higher-order correlations by calculating the information lost when those
correlations are excluded from the model. This corresponds to the family of information
measures that we derive in sections 2.2 and 3. Our contribution, in section 4, is to turn
this family of separate measures into a single decomposition of the mutual information
between a set of source variables and a target variable, the Information Attribution
measure, by summing over a set of chains in the lattice.

The constraint lattice is also used by [24] to define a partial information decomposition
(PID) measure. This is done by calculating the same distributions on each node as
Zwick (which we also calculate here). Their PID measure is derived from the mutual
information between the source variables and the target according to these probability
distributions. This is a different procedure from the one derived here, and results in a
PID measure rather than an Information Attribution measure.

2.1. Lattices of random variables

In this section we introduce several concepts from partial order theory and introduce the
elements of the constraint lattice as defined in the literature. We state several standard
results from partial order theory, which can be found, for example, in [35], and for the
most part we follow the terminology of that reference see also [19]. Throughout the
paper we consider only finite sets and finite posets.

Suppose we have a finite set W of co-distributed random variables,

W = {Z1, Z2, . . . , Zm}.
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Subsets of W may also be considered as random variables. For example, {Z1, Z2}, which
we also write Z1Z2, can be thought of as a random variable whose sample space is the
Cartesian product of the sample spaces of Z1 and Z2. We therefore consider the power
set 2W , whose members are to be thought of both as sets and as random variables in
this sense. We think of 2W as a partially ordered set, ordered by set inclusion. That is,
given s, t ∈ 2W , considered as sets, we write s ≤ t if s ⊆ t. With this partial order, 2W

forms a distributive lattice, in fact a Boolean algebra.
The idea behind the constraint lattice is that given a set of sets of random variables

S, that is, a subset of 2W , we can form a new joint distribution on the sample space of all
the random variables, with the following property: the marginals of all the members of S
match those in the true distribution, but subject to that constraint the new distribution
is as decorrelated as possible. This decorrelation is understood in a maximum entropy
sense, which we define in the next section. To do this, it is natural to define the following

partial order on sets of sets of random variables (that is, on 22W ):

S ≤ T if and only if A ∈ S ⇒ ∃B ∈ T : A ⊆ B , (1)

for S, T ∈ 22W . This reflects the idea that T should lie above S if it specifies at least
all of the same marginals as S. However, this represents the situation in a redundant
way. For example, the sets {{Z1, Z2}} and {{Z1, Z2}, {Z1}} are distinct but specify
the same information, since specifying the joint marginal for Z1Z2 also specifies the
marginal for Z1. Because of this, we want to put some restrictions on which subsets of
2W are permitted as elements of the lattice. This may be done in terms of two different
concepts, antichains or down-sets. The resulting lattices have different elements but the
same partial order. It is standard in the Partial Information Decomposition literature to
define lattices in terms of antichains. However, in making the connection to cooperative
game theory it will be more convenient to talk in terms of down-sets instead. For this
reason, we define both terms here, but define the constraint lattice in terms of down-sets.

Given any poset P , an antichain of P is a subset A ⊆ P , such that no two members
of A are comparable. That is, given a, b ∈ A, we have neither a ≤ b nor b ≤ a. For
a power set lattice like 2W , this corresponds to a set A of subsets of W , such that no
member of A is a subset of any other. For example, if W has at least four elements then
{{Z1, Z2}, {Z2, Z3}, {Z4}} is an antichain of 2W .

On the other hand, given a poset P , a down-set of P is a subset S ⊆ P , such that

a ∈ S, b ≤ a ⇒ b ∈ S . (2)

That is, if an element a of P is included in S, then so are all the elements below it in the
partial order. For example, {{Z1, Z2}, {Z2, Z3}, {Z1}, {Z2}, {Z3}, {Z4}, ∅} is a down-set
of 2W .

For finite posets there is a one-to-one correspondence between antichains and down-
sets: given an antichain A ⊆ P of a poset, one can form a down-set S from the
members of P that are below some member of A in the partial order, that is, S =
{a ∈ P | a ≤ b for some b ∈ A}. On other other hand, given a down-set S one can
recover the corresponding antichain by taking the maximal members of S, that is,
A = {a ∈ S | b ∈ S, a ≤ b ⇒ a = b}. This correspondence allows us to use the
two concepts somewhat interchangeably.
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The correspondence also allows us to define the following shortcut notation for down-
sets of power set lattices like 2W : we take the corresponding antichain, write its elements
as lists surrounded by parentheses, and concatenate them. For example, the notation
(Z1Z2)(Z3) refers to the down-set {{Z1, Z2}, {Z1}, {Z2}, {Z3}, ∅}. This convention is
used in the figures and elsewhere.

For any poset P , one can form the lattice of down-sets of P , denoted J(P ), whose
elements are all of the down-sets of P . For down-sets, the partial order (1) reduces to
set inclusion. For any poset P , the poset J(P ), ordered by set inclusion, is a distributive
lattice. For the rest of the paper we will largely be concerned with sublattices of J(2W ),
that is, lattices whose elements are down-sets of 2W , ordered by set inclusion.

We define the constraint lattice in terms of down-set covers of W , meaning those
down-sets S of 2W for which each element of W appears at least once in one of the
members of S. That is, S ∈ 2W is a down-set cover of W if

⋃
a∈S a = W .

With this terminology in place, we can define the elements of the constraint lattice as
those elements of J(2W ) that are down-set covers of W , ordered by set inclusion. This
gives an equivalent lattice to the one defined by [24] and [37], but with elements that
are down-sets instead of the corresponding antichains. For m = 3, the resulting lattice
is illustrated in Figure 1. The definition of the constraint lattice will be completed by
assigning a probability distribution to each node in a particular way, which we do in the
next subsection.

(Z1)(Z2)(Z3)

(Z1Z2)(Z3) (Z1Z3)(Z2) (Z2Z3)(Z1)

(Z1Z2)(Z1Z3) (Z1Z2)(Z2Z3) (Z1Z3)(Z2Z3)

(Z1Z2)(Z1Z3)(Z2Z3)

(Z1Z2Z3)

Fig. 1. The Hasse diagram for the constraint lattice, as defined by

[24, 37], for three random variables, W = {Z1, Z2, Z3}.

We will make use of a few more definitions from partial order theory below. Given
a finite lattice P and members a, b ∈ P , we write a < b if a ≤ b and a 6= b. We say
that a lattice element b covers an element a, written a ≺ b, if a < b and there exists
no c ∈ P such that a < c < b. A sequence of elements a0, . . . , ak is called a chain in
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P if a0 < a1 < · · · < ak. Given a chain A, a subchain of A is a chain such that all its
elements are also elements of A. A chain is called a maximal chain if it is not a proper
subchain of any other chain. This implies that a0 is the bottom element of the lattice,
ak is the top element, and a0 ≺ a1 ≺ · · · ≺ ak.

In Figure 1, the relationship a ≺ b is indicated by drawing b above a and connecting
the elements with an edge. The resulting graph is called the Hasse diagram of the lattice.
The maximal chains are the directed paths from the bottom node in Figure 1 to the top
node.

2.2. Constraints and split distributions

Let p = p(Z1, . . . , Zm) be the joint probability distribution of the members of W . We
call this the true distribution. Following [24] and [37], we now wish to associate with
each element of the constraint lattice a joint distribution pS = pS(Z1, . . . , Zm). In the
spirit of [3, 4, 28] we term these split distributions. Each split distribution captures
only some of the correlations present in the true distribution, and we can think of the
remaining correlations as being split apart, or forced to be as small as possible.

Specifically, given an element S of the constraint lattice, which is a down-set cover of
W (and hence a set of sets of random variables), the split distribution pS is constructed
so that it captures the correlations associated with the members of S, in the sense
that pS(A) = p(A), for every A ∈ S. This defines a family of distributions, and from
this family we choose the one with the maximum entropy. Intuitively, the maximum
entropy distribution is the least correlated one in the family, so it excludes any additional
correlations aside from those specified by S.

In the remainder of this section, we define the split distributions more rigorously,
alongside some related objects, and we point out an important property, which follows
from the so-called Pythagorean theorem of information geometry. This section is largely
a review of previous work, and makes a connection between the constraint lattice of
[24, 37] and the language of information geometry [5, chapter 2].

Let ∆ be the set of all joint probability distributions of the random variables in W.
For a down-set cover S of W, let

MS = {q ∈ ∆ : ∀A ∈ S, q(A) = p(A)} .

That is, MS is the set of all probability distributions for which the members of S have
the same marginal distributions as in the true distribution p. Note that if the constraint
q(A) = p(A) holds for some A ⊆ W , then it will also automatically hold for B ⊆ A.
This is the reason for considering down-sets, rather than arbitrary subsets of 2W . MS is
a mixture family, and we have that S ≤ T ⇒MS ⊇MT .

We can now define the split distribution pS as

pS = argmax
q∈MS

H(q) . (3)

Equivalently, we can instead define the split distributions in terms of the Kullback-
Leibler divergence, as we will see below. This has the advantage that it is likely to
generalise to cases such as Gaussian models in which the state space is not discrete.
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There is another interpretation of the split distributions, which is interesting to note.
In addition to the mixture family MS , we can also define an exponential family corre-
sponding to a given node in the constraint lattice. This can be seen as a family of split
models, i. e. probability distributions in which some kinds of correlation are forced to be
as small as possible. The split distribution pS can be seen as the closest member of this
exponential family to the true distribution.

To see this, we define the exponential family

ES =

{
q ∈ ∆ : q(z1, . . . , zm) =

∏
A∈S

µA(z1, . . . zm), for some set of functions µA

}
,

(4)
where the functions µA have the additional requirements that µA(z1, . . . , zm) depends
only on zi for Zi ∈ A, and µA(z1, . . . , zm) > 0. ES is an exponential family, and we
have S < T =⇒ ES ⊆ ET .

Finally, we let ES be the topological closure of the set ES , meaning that ES contains
every member of ES , and in addition also contains all the limit points of sequences
in ES . The difference is that ES does not contain distributions with zero-probability
outcomes, whereas the closure ES does.

Note that we cannot obtain ES by just relaxing the condition that µA(z1, . . . , zm) > 0.
This is because although every member of ES must factorise according to eq. (4), the
limit points on the boundary of the simplex can fail to factorise in the same way. An
example of this is given by [27, Example 3.10]. These limit points must be included in
order to make sure the split distribution is always defined.

It is a known result in information geometry [5, Theorem 2.8] that for any S, the sets
MS and ES intersect at a single point. In fact this point is the split distribution pS .
With the Kullback-Leibler divergence

DKL(q‖p) =
∑

z1,...,zm

q(z1, . . . , zm) log
q(z1, . . . , zm)

p(z1, . . . , zm)
,

we can equivalently characterise pS by

pS = argmin
q∈MS

DKL(q‖u) , (5)

where u denotes the uniform distribution. This directly follows from (3). A further
equivalent characterisation of pS is given by

pS = argmin
q∈ES

DKL(p‖q) . (6)

In the terminology of information geometry, eq. (5) defines an I-projection (information
projection) and eq. (6) defines an rI-projection (reverse I-projection). The classical
theory of these information projections has been greatly extended by [11, 12].

We also have the so-called Pythagorean theorem of information geometry [2], which
in our notation says that for elements S < T < U of the constraint lattice,

DKL(pU‖pS) = DKL(pU‖pT ) +DKL(pT ‖pS) . (7)
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Equation (7) can be extended to any chain in the constraint lattice S1 < S2 < · · · < Sk,
to give

DKL(pSk‖pS1) =

k∑
i=2

DKL(pSi‖pSi−1) . (8)

This will be crucial in defining our information contribution measure below.
Consider the top node in the constraint lattice, given by (Z1, . . . , Zm), which we

denote >. We have p> = p. That is, the split distribution corresponding to > is equal
to the true distribution.

Since we are considering only down-set covers of W , the bottom node of the lattice
is given by (Z1) . . . (Zm), which we denote ⊥. We have p⊥(z1, . . . , zm) = p(z1) . . . p(zm).
That is, its split distribution is given by the product of the marginal distributions for
all the members of W .

Together with eq. (5), this allows us to interpret pS as the distribution that is as
decorrelated as possible (i. e. closest to the product distribution, in the Kullback-Leibler
sense), subject to the constraint that the marginals of the members of S match those of
the true distribution. Alternatively, via eq. (6), we can see it as the distribution that is
as close to the true distribution as possible, subject to the constraint that it lies in the
closure of the exponential family ES .

For a general down-set cover S of W , the split distribution pS may not have an
analytical solution, and instead must be found numerically. One family of techniques for
this is iterative scaling [13, chapter 5], which was used to calculate the examples below.
Alternatively, one may solve eq. (5) as a numerical optimisation problem, starting from
an element such as ⊥ with a known split distribution. This yields a convex optimisation
problem with linear constraints, but it is not always well conditioned.

Finally, given an element S of the constraint lattice, we define IS := DKL(p>‖pS).
This can be thought of as the amount of information that is present in the true distribu-
tion p> but is not present in pS . Note that due to the Pythagorean relation (eq. (7)) we
have DKL(pT ‖pS) = IS − IT , for any S ≤ T . The quantity IS turns out to be a useful
generalisation of the mutual information, as shown in the following examples.

Example 2.1. Independence. Suppose W = {Z1, Z2}, and let S = (Z1)(Z2). Then ES
is the set of distributions q that can be expressed as a product q(z1, z2) = µ1(z1)µ2(z2),
which we may also write q(z1, z2) = q(z1)q(z2). So ES is the set of distributions for
which Z1 and Z2 are independent. We have that pS = p(z1)p(z2), and consequently, it
is straightforward to show that in this example, DKL(p>‖pS) = I(X1;X2).

Example 2.2. Conditional independence. Suppose W = {Z1, Z2, Z3}, and let S =
(Z1Z3)(Z2Z3). Then ES is the set of distributions q that can be expressed as a product

q(z1, z2, z3) = µ1(z1, z3)µ2(z2, z3) .

These are the distributions for which q(z1, z2, z3) = q(z3)q(z1|z3)q(z2|z3), i. e. for which
Z1 ⊥⊥q Z2 | Z3. So in this case ES can be seen as a conditional independence constraint.
It is straightforward to show that pS(z1, z2, z3) = p(z3)p(z1|z3)p(z2|z3), and consequently
DKL(p>‖pS) = I(X1;X2|X3).
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Example 2.3. Amari’s triplewise information. Suppose W = {Z1, Z2, Z3}, and let
S = (Z1Z2)(Z1Z3)(Z2Z3). Then ES is the set of distributions q that can be expressed
as a product

q(z1, z2, z3) = µ1(z1, z2)µ2(z1, z3)µ3(z2, z3) .

Unlike the previous two examples, there is no analytic expression for µ1, µ2 and µ3 in
terms of the probabilities q(z1, z2, z3). However, [1] argued that ES can be interpreted
as the set of distributions in which there are no three-way, or “triplewise” interactions
between the variables Z1, Z2 and Z3, beyond those that are implied by their pairwise
interactions. The split distribution pS can be calculated numerically as described above,
in order to obtain the quantity DKL(p>‖pS), which quantifies the amount of informa-
tion present in the triplewise interactions. [1] gives a straightforward generalisation,
allowing n-way interactions to be quantified, among n or more random variables. As
an example of triplewise information, consider the case where Z1 and Z2 are uniformly
distributed binary variables, and Z3 = Z1 xorZ2. In this case, in the split distribu-
tion p(Z1Z2)(Z1Z3)(Z2Z3) all three variables are independent. The split distribution has 8
equally likely outcomes while the true distribution has 4 equally likely outcomes, leading
to a triplewise information of 1 bit.

3. THE INPUT LATTICE

The elements of the constraint lattice are formed from an arbitrary set of random vari-
ables W = {Z1, . . . , Zm}. We are interested specifically in the case where W is composed
of a set of input variables X1, . . . , Xn and a target variable Y . We write V for the set
of input variables, so W = V ∪ {Y }.

We wish to decompose the mutual information I(X1, . . . , Xn;Y ) into a sum of terms
IA(X1, . . . , Xn;Y ), one for each subset A of the input variables. To do this, we start by
noting that

I(X1, . . . , Xn;Y ) = DKL(p(X1,...,Xn,Y )‖p(X1,...,Xn)(Y )) .

Because of this, we can use the constraint lattice to derive decompositions of the mutual
information.

Consider the set of elements S of the constraint lattice which satisfy
(X1, . . . , Xn)(Y ) ≤ S. This set forms a sublattice of the constraint lattice, i. e. a lattice
under the same partial order. We call this sublattice the input lattice. The input lattice
is highlighted in red in Figure 2, left.

The input lattice can also be thought of in a different way. Each element of the
input lattice contains the element {Y } and the element {X1, X2, . . . , Xn} along with
its subsets. In addition, an element of the input lattice may also contain elements such
as {X1, X2, Y }, which contain Y along with some members of V . In fact the input
lattice consists of exactly those (non-empty) down-sets of 2W that have this form, as
the following proposition shows. This is useful because it allows us to think of members
of the input lattice as sets of sets of the input variables, rather than sets of sets of all
variables. The mapping is illustrated in Figure 2.

Proposition 3.1. The elements of the input lattice are in one-to-one correspondence
with the elements of J(2V ) \ {∅}. (That is, J(2V ) with the empty down-set removed.)
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(X1X2)(Y )

(X1X2)(X1Y ) (X1X2)(X2Y )

(X1X2)(X1Y )(X2Y )

(X1X2Y )

(X1)(X2)(Y )

(X1Y )(X2) (X2Y )(X1)

(X1Y )(X2Y )

⊥in

[X1] [X2]

[X1][X2]

[X1X2]

Fig. 2. (Left) the Hasse diagram for the constraint lattice for

W = {X1, X2, Y }. Highlighted in red bold is the sublattice that we

call the input lattice, which provides decompositions of

I(X1, X2, . . . , Xn;Y ). (Right) the input lattice alone, with the nodes

labelled using down-sets of 2V (that is, sets of sets of input variables

only), rather than 2W . The square brackets indicate down-sets of 2V .

The two lattices are related by the mapping σ, defined theorem 3.1.

P r o o f . We first define a map from J(2V ) \ {∅} to the input lattice, and then show
that it has an inverse. Let S ∈ J(2V ) \ {∅} be a non-empty down-set of 2V , and define
the corresponding member of the input lattice as

σ(S) = (X1 . . . Xn) ∪
{
A ∪ {Y } : A ∈ S

}
.

Since S is down-set and (X1 . . . Xn) contains all subsets of {X1, . . . , Xn}, we have that
if B ∈ σ(S) and C ⊆ B then C ∈ σ(S). That is, σ(S) is a down-set of 2W . We also
have that {X1, . . . , Xn} ∈ σ(S) and {Y } ∈ S, so σ(S) is a member of the input lattice.

To see that σ has an inverse, suppose that S is an element of the input lattice. Suppose
that A∪ {Y } ∈ S, where A is a subset of the input variables, A ⊆ {X1, . . . , Xn}. Then,
for every A′ ⊆ A, we must have that A′ ∪ {Y } ∈ S. Since S is an element of the input
lattice it must also contain every subset of V = {X1, . . . , Xn}. It follows that S = σ(S)
for some down-set S.
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We note that S may be the down-set {∅}, in which case σ(S) = (X1 . . . Xn)(Y ), but
it cannot be the empty down-set, since σ(∅) would map to (X1 . . . Xn), which is not a
member of the input lattice. This proves that there is a bijection between members of
the input lattice and non-empty down-sets of 2V . �

As a matter of technical bookkeeping, some care needs to be taken over the empty
set. Both ∅ and {∅} are down-sets of 2V . However, in our current context we have
temporarily excluded the empty set from consideration, because the input lattice is in a
1-1 correspondence with J(2V )\{∅} (that is, J(2V ) with the empty down-set removed),
rather than J(2V ). We will need to consider the empty set again in section 7 once we
make the connection to cooperative game theory.

In previous sections, we referred to members of the input lattice as down-set covers
of W , such as (X1X2)(X1Y )(X2Y ). This bijection allows us to think of members of the
input lattice instead as down-sets of 2V . When writing members of the input lattice as
down-sets of 2V we use square brackets. So for example, instead of (X1X2)(X1Y )(X2Y )
we will use the notation [X1][X2] to refer to the same element of the constraint lattice.
We write the bottom node of the input lattice as ⊥in, which is equal to {∅} when
considered as a down-set of 2V , or (X1 . . . Xn)(Y ) when considered as a member of the
constraint lattice.

We now consider chains from ⊥in to > in the input lattice. Since these are also chains
in the constraint lattice, each one provides a decomposition of I(X1, . . . , Xn;Y ) into a
sum of non-negative terms. An example of such a decomposition is the chain rule for
mutual information,

I(X1, X2;Y ) = I(X1;Y ) + I(X2;Y |X1) ,

which can be derived by applying the Pythagorean theorem to the (not maximal) chain

⊥in < [X1] < [X1X2] .

This corresponds to

(X1X2)(Y ) < (X1X2)(X1Y ) < (X1X2Y )

when considered as elements of the constraint lattice. Applying eq. (7), we have

DKL(p(X1X2Y )‖p(X1X2)(Y )) = DKL(p(X1X2)(X1Y )‖p(X1X2)(Y ))

+DKL(p(X1X2Y )‖p(X1X2)(X1Y )), (9)

which corresponds term-by-term to the chain rule for mutual information.
This chain is not maximal, but considering a maximal chain yields a more fine-grained

decomposition:
⊥in < [X1] < [X1][X2] < [X1X2]

corresponds to a decomposition of the mutual information with three non-negative terms,

I(X1, X2;Y ) = I(X1;Y ) +
(
I(X2;Y |X1)− I3(X1, X2, Y )

)
+ I3(X1, X2, Y ) ,

where I3(X1, X2, Y ) is Amari’s triplewise information. (See theorem 2.3 above.)
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In this way we can write I(X1, . . . , Xn;Y ) as a sum of non-negative terms in many
different ways. However, these decompositions in general treat the input variables asym-
metrically. The decompositions are “path-dependent,” in the sense that they depend on
which particular chain is chosen. In the next section we turn these path-dependent de-
compositions into a single path-independent one by suitably averaging over the maximal
chains in the input lattice.

4. DEFINING THE INFORMATION ATTRIBUTION AS A SUM OVER CHAINS

We have defined a decomposition of the mutual information for each chain from ⊥in to >
in the input lattice. We now define from this a path-independent Information Attribution
measure. This decomposition will define a separate information contribution for each of
the non-empty subsets A of V , that is, to the elements of 2V rather than its lattice of
down-sets.

In order to do so, consider the set Γ of all maximal chains in the input lattice, that
is, all directed paths from ⊥in to [X1, . . . , Xn]. Consider a maximal chain γ ∈ Γ. For
any index l in the chain, the collection γ(l) of subsets forms a non-empty down-set of
V and for each transition from γ(l) to γ(l + 1) a subset A of V is added to the set γ(l)
until the topmost element, which ends up containing all subsets of V . In particular, the
chain has the property that all non-empty subsets A of V are added at some point along
a chain γ.

This ensures that there is exactly one lγ(A) that satisfies the following condition: all
the elements γ(l), 0 ≤ l < lγ(A) of the input lattice do not contain A, and all elements
γ(l), lγ(A) ≤ l ≤ 2n − 1, do contain A; i. e. lγ(A) denotes the step in the chain γ at
which A is added. (The empty set ∅ is necessarily contained in the first element of each
chain, i. e. lγ(∅) = 0).

Based on this, we now derive a decomposition of the mutual information between
inputs and output “aligned” with respect to a particular subset A of inputs. For this
purpose, consider the set EA of all edges (S,S′) where S′ is obtained from S by adding
A, i. e. where S′ = S ] {A}:

A

S′

S

A

A

We furthermore now subdivide the set Γ into classes of maximal chains in the input
lattice, grouped by specific edges (S,S′). Denote by Γ(S,S′) the set of all maximal
chains γ ∈ Γ that contain this particular edge (S,S′):
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A

A

A

Γ(S,S′)

Then, for any non-empty subset A, one has the following partition:

Γ =
⊎

(S,S′)∈EA
Γ(S,S′) .

Every maximal chain is accounted for in this disjoint union, because for every maximal
chain there is exactly one step (edge) at which the set A is added. This is illustrated in
Figure 3 for the case of three input variables.

We now consider a probability weighting over the maximal chains, that is, a set of
weights µ(γ) such that

∑
γ∈Γ µ(γ) = 1. We obtain

I(X1, . . . , Xn;Y ) = DKL(p[X1,...,Xn] ‖ p⊥in
) (10)

=
∑
γ∈Γ

µ(γ)

2n−1∑
l=1

DKL(pγ(l) ‖ pγ(l−1)) (11)

=
∑
γ∈Γ

µ(γ)
∑
∅6=A⊆V

DKL(pγ(lγ(A)) ‖ pγ(lγ(A)−1)) (12)

=
∑
∅6=A⊆V

∑
γ∈Γ

µ(γ)DKL(pγ(lγ(A)) ‖ pγ(lγ(A)−1)) (13)

=
∑
∅6=A⊆V

∑
(S,S′)∈EA

 ∑
γ∈Γ(S,S′)

µ(γ)

︸ ︷︷ ︸
=1

DKL(pS′ ‖ pS) (14)

=
∑
∅6=A⊆V

∑
(S,S′)∈EA

µ(S,S′)DKL(pS′ ‖ pS) (15)

Here, we used the short-hand notation µ(S,S′) for µ(Γ(S,S′)) =
∑
γ∈Γ(S,S′) µ(γ). The

equality (11) follows because of the Pythagorean theorem (eq. (8)) and the normalization
of the weights µ. Note, via (14), that the non-negative weights in the decomposition
(15) satisfy the following condition:∑

(S,S′)∈EA
µ(S,S′) = 1 . (16)
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⊥

[X1] [X2][X3]

[X1][X2][X1][X3] [X2][X3]

[X1][X2][X3][X1X2][X1X3] [X2X3]

[X1X2][X3][X1X3][X2] [X2X3][X1]

[X1X2][X1X3] [X1X2][X2X3][X1X3][X2X3]

[X1X2][X1X3][X2X3]

[X1X2X3]

16 1616

88 8 88 8

124124 12 4

1212 1244 4

8 88 8 88

16 1616

48

Fig. 3. The input lattice for three inputs. Each edge is labelled with

the total number of maximal chains that pass through that edge. The

edges where the subset {X1, X2} appears for the first time are

highlighted in red. Each maximal chain passes through exactly one of

these edges. The contribution of {X1, X2} to the total information is

calculated by averaging over these edges, weighted by their path

counts (the numbers in red.) In this lattice there are 48 maximal

chains in total.



994 N. AY, D. POLANI AND N. VIRGO

This allows us to interpret

I
(µ)
A (X1, . . . , Xn ; Y ) :=

∑
(S,S′)∈EA

µ(S,S′)DKL(pS′ ‖ pS) (17)

as the average information in A that is not contained in a proper subset of A.

This gives us a non-negative decomposition of I(X1, . . . , Xn;Y ) into terms corre-
sponding to each subset of the input variables, but note that this decomposition is
dependent on the choice of weights µ. This non-negative decomposition is related to
and refines the works [29, 30], where only particular down-sets in the input lattice were
considered. More precisely, for each k, 1 ≤ k ≤ n, the set of subsets of V = {X1, . . . , Xn}
with cardinality at most k forms a down-set which represents a distinguished vertex in
the input lattice. This defines a particular (non-maximal) chain, indexed by k, from
which we can define an information decomposition similar to the one proposed by [1]
(see theorem 2.3 above). This chain corresponds to a single hierarchy of exponential
families, which does not require weights µ of chains γ as we are considering here. In
this sense, the present approach generalises the previous ones, which can be considered
as a special case of ours by choosing µ to be concentrated on the specific chain outlined
above.

A natural choice for the weights µ would be simply to choose the uniform distribution,
i. e. µ(γ) = 1/|Γ| for all γ. It is not completely straightforward to justify the uniform
distribution over maximal chains, because there is no obvious symmetry that transforms
one maximal chain into another. Note, for example, that the connectivity of [X1][X2][X3]
in the Hasse diagram in Figure 3 is different from that of other elements of the same
rank.

Nevertheless, we will now proceed with the uniform distribution as a reasonable
intuitive choice. It will be shown in section 5 that choosing µ this way gives rise to a
decomposition of I(X1, . . . , Xn;Y ) that has some intuitively desirable properties. For

the special choice of µ as the uniform distribution we will write I
(µ)
A (X1, . . . , Xn ; Y )

simply as IA(X1, . . . , Xn ; Y ). We refer to this as the share of the mutual information
attributed to A. In section 7 we will then proceed to show that above originally merely
intuitive choice of µ as uniform distribution finds a deeper justification in the theory of
cooperative game theory.

For the practical calculation of IA we first calculate the number n(S,S′) of maximal
chains that pass through each edge (S,S′) in the Hasse diagram of the input lattice.
These numbers are shown in Figure 3, as well as the total number of maximal chains,
|Γ|. For each node S in the lattice we calculate the distribution pS by iterative scaling
[13, chapter 5], from which we obtain DKL(pS‖p⊥in

). We then find the set EA of edges in
which a given predictor A is added for the first time in a maximal chain (for the example
of A = {X1, X2} this is shown in red in Figure 3). We then calculate our measure IA
from the changes in Kullback–Leibler divergence along these paths by adding the set A
of interest, weighted by the chain counts n(S,S′) of the respective edges:

IA(X1, . . . , Xn ; Y ) =
1

|Γ|
∑

(S,S′)∈EA
n(S,S′)

(
DKL(pS′‖p⊥in

)−DKL(pS‖p⊥in
)
)
. (18)
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5. PROPERTIES OF THE INFORMATION ATTRIBUTION

We now prove the following properties of the above defined Information Attribution
measure IA(X1, . . . , Xn ; Y ), as a decomposition of the mutual information.

Theorem 5.1. For A ⊆ {X1, . . . , Xn} we have

I. IA(X1, . . . , Xn ; Y ) ≥ 0 (nonnegativity)

II.
∑
A∈2V IA(X1, . . . , Xn ; Y ) = I(X1, . . . , Xn ; Y ) (completeness)

III. IA(X1, . . . , Xn ; Y ) is invariant under permutations of X1, . . . , Xn. (symmetry)

IV. IA(X1, . . . , Xn ; (X1, . . . , Xn)) = 0 if |A| > 1. (singleton)

V. if Xi = (X ′i, X
′′
i ) for all i, Y = (Y ′, Y ′′), and

p(x1, . . . , xn, y) = p(x′1, . . . , x
′
n, y
′) p(x′′1 , . . . , x

′′
n, y
′′) ,

then

IA(X1, . . . , Xn ; Y ) = IA′(X
′
1, . . . , X

′
n ; Y ′) + IA′′(X

′′
1 , . . . , X

′′
n ; Y ′′) ,

where A′ = {X ′i : (X ′i, X
′′
i ) ∈ A} and A′′ = {X ′′i : (X ′i, X

′′
i ) ∈ A}. (additivity)

As we discuss below, the singleton property is somewhat analogous to the identity axiom
proposed by [21] for partial information decomposition measures, which effectively says
that there should be no synergy terms if the output is simply an indentical copy of the
input.

P r o o f . (I) follows from the nonnegativity of the Kullback-Leibler divergence. (II)
is proved in section 4 above. (III) is true by construction, since the values of the
Kullback-Leibler divergences do not depend on the order in which the input variables
are considered, and the uniform distribution over maximal chains in the input lattice is
invariant to reordering the input variables.

To prove (IV), write Y = (X1, . . . , Xn), where Xi is considered to be a copy of Xi,
in the sense that Xi and Xi are separate random variables but we have

p(x1, . . . , xn, x1, . . . , xn) =

{
p(x1, . . . , xn) if x1 = x1, . . . , xn = xn ,

0 otherwise ,
(19)

which implies that p(xi, xi) = δxi,xip(xi), for every i. We then have

p⊥in
(X1, . . . , Xn, X1, . . . , Xn) = p(X1) . . . p(Xn)p(X1, . . . , Xn) .

Consider now any edge (S\{A},S) in the Hasse diagram of the input lattice. There
are two cases to consider:
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(i) A = {Xi} for some i. In this case σ(S) contains the element {Xi, Y }. Therefore,
from its definition, the marginal pS(Xi, Y ) must match the true marginal p(Xi, Y ),
which implies that pS(xi, xi) = δxi,xip(xi). However, σ(S \ {A}) does not contain
the element {Xi, Y }, and so the marginal pS\{A}(xi, xi) may in general differ from
δxi,xip(xi), and DKL(pS‖pS\A) can be nonzero.

(ii) |A| > 1. Consider first the case that A = {Xi, Xj}. Because S is a down-set of V ,
we have that {Xi} ∈ S\{A} and {Xj} ∈ S\{A}. Therefore pS\{A} has to match
the constraints pS\{A}(xi, xi) = δxi,xip(xi) and pS\{A}(xj , xj) = δxj ,xjp(xj). We
also have, from eq. (19), that pS\{A}(xi, xj) = p(xi, xj). From these constraints
we have

pS\A(xi, xj , xi, xj) = p(xi, xj)δxi,xiδxj ,xj = p(xi, xj , xi, xj) .

Therefore pS\A already meets the constraint that the marginals for Xi, Xj , Y
match those of the true distribution and minimising DKL(pS‖pS\A) subject to
this constraint must result in zero. The proof of this is similar if |A| > 2.

Therefore every term in eq. (15) will be zero if |A| > 1, but in general they can be
nonzero if |A| = 1.

To prove (V) we first note the following general additivity property of the Kullback-
Leibler divergence. Let Z ′ and Z ′′ be two co-distributed random variables, let
p0(z′, z′′) = p0(z′)p0(z′′) for each z′, z′′ in the sample spaces of Z ′, Z ′′, that is, ren-
der the two random variables independent according to the distribution p0. Then let M
be a mixture family defined by constraints that depend only on either Z ′ or Z ′′. That
is,

M =
{
q :
∑
z′

q(z′)f (i)(z′) = F (i) (i = 1, . . . , r) ,

∑
z′′

q(z′′)g(j)(z′′) = G(j) (j = 1, . . . , s)
}
.

(20)

Calculating argminp∈M DKL(p‖p0), introducing Lagrange multipliers in the usual way,
gives us

p(z′, z′′) = p0(z′)p0(z′′)e
∑
i λif

(i)(z′)+
∑
j ηjg

(j)(z′′)−ψ = p(z′)p(z′′) ,

where p(z′) = p0(z′)e
∑
i λif

(i)(z′)−ψ′ and p(z′′) = p0(z′′)e
∑
j ηg

(j)(z′′)−ψ′′ . Note that these
are the same distributions that would be obtained if the projection were performed on
each of the marginals rather than the joint distribution. We have both that Z ′ and Z ′′ re-
main independent after projecting onto M , and also that DKL(p(Z ′, Z ′′) ‖ p0(Z ′, Z ′′)) =
DKL(p(Z ′) ‖ p0(Z ′)) +DKL(p(Z ′′) ‖ p0(Z ′′)).

Now consider constructing a system of random variablesXi = (X ′i, X
′′
i ), Y = (Y ′, Y ′′),

according to the condition of property V. Each of the split distributions is defined as
a projection from the product distribution onto a mixture family. By construction, all
of these mixture families satisfy eq. (20). Because of this, every term in eq. (17) can
be written as a sum of the corresponding terms for the systems {X ′1, . . . , X ′n, Y ′} and
{X ′′1 , . . . , X ′′n , Y ′′}. The additivity property follows from this. �
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We note that these properties do not uniquely determine the Information Attribution
measure. In particular, one could choose a different measure µ over the maximal chains
of the input lattice besides the uniform measure; there are in general many such measures
that would yield an information measure satisfying theorem 5.1. To see this, note that
the proofs of properties I, II, IV and V do not depend on the choice of measure µ, and
hence don’t constrain it. Property III does restrict the choice of measure, but for more
than two inputs the number of paths in the lattice is greater than the number of inputs,
and consequently the symmetry axiom does not provide enough constraint to uniquely
specify µ. However, as argued above, the uniform measure is a natural choice, and we
will show below that its use can be more systematically justified from the perspective of
cooperative game theory.

5.1. Comparison to partial information decomposition

As noted above, the Information Attribution IA is not a partial information decompo-
sition (PID) measure, because it decomposes the mutual information into a different
number of terms than the latter. In the case of two input variables X1 and X2, the PID
has four terms (synergy, redundancy, and two unique terms), whereas the information
contribution has only three, I{X1}, I{X2} and I{X1,X2}. The joint term, I{X1,X2}, be-
haves somewhat similarly to a synergy term, and the two singleton contributions I{X1}
and I{X2} have some similarity to the two unique information terms, but there is no
separate term corresponding to shared/redundant information. Instead, the singleton
terms behave as if they capture a combination of unique and redundant information.
For more than two inputs, the terms of a partial information measure can be expressed
in terms of a lattice known as the redundancy lattice [36], which is different from the
constraint lattice or the input lattice discussed above.

Within the PID framework, [21] introduced the identity axiom, which states that a
measure of redundant information I∩, should satisfy

I∩(X1, X2; (X1, X2)) = I(X1;X2) .

This is equivalent to saying that the corresponding measure of synergy, I∪, should be
zero in the case where the output is a copy of its two input variables:

I∪(X1, X2; (X1, X2)) = 0 . (21)

It was proven by [31] that there can be no non-negative PID measure that satisfies all
of Williams and Beer’s axioms together with the identity axiom. This can be achieved
if we restrict ourselves to two input variables, but for three or more inputs there are
distributions for which it cannot be achieved (see the example we call RBOJ in table 2).

While the Information Attribution measure is not a PID measure, if we take the
joint term I{X1,X2} to be analogous to a synergy term, then the singleton decomposition
property (property IV), for two inputs, is analogous to eq. (21). Therefore our measure
obeys an analog of the identity axiom for PID measures, alongside analogs of the non-
negativity and symmetry axioms for PID measures. This is possible only because the
Information Attribution is not a PID measure, and hence does not have to obey the
precise set of Williams-Beer lattice axioms.
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It is also worth comparing our Information Attribution measure with the framework
proposed by [23], which seeks a different kind of information decomposition from PID.
In this framework, instead of decomposing the mutual information between a set of
sources and a target, one instead wishes to decompose the joint entropy H(Z1, . . . , Zn)
of several jointly distributed random variables, into a sum of terms corresponding to
each subset of the variables. Our framework sits somewhere between this approach and
PID, since we have the distinction between the inputs and the target, but we decompose
I(X1, . . . , Xn;Y ) into a sum of terms corresponding to subsets of the inputs, in a similar
manner to James and Crutchfield’s proposal.

It is an open question whether our Information Attribution measure obeys analogs
of other axioms that have been proposed for PID measures. Such axioms include the
so-called target chain rule, which was proposed by [7] under the name “left chain rule”
and has been discussed for example by [17].

6. EXAMPLES

We now explore a few examples of our Information Attribution measure. Here, we apply
it to joint distributions between a target and two or three inputs. Note that our frame-
work does not require any restrictions on these joint distributions. In particular, it is
expressly not assumed that the inputs are independent of one another. Importantly, the
measures will in general be affected by dependent inputs, which is a desirable property
of such a measure, because it has been observed before that appropriate attributions of
joint interactions should depend on input correlations see the discussion on source vs.
mechanistic redundancy in [21].

We take most of our examples from the literature on partial information decomposi-
tion, in particular [8, 20, 21, 36]. These examples are relatively standardised, and give
some intuition for how our measure compares to PID measures.

We first explore some basic examples with two predictors, which are presented in
table 1. For each of these examples, the method attributes an amount of information
to the predictors {X1}, {X2} and {X1, X2}. The numbers assigned to these sets are
nonnegative and, together, they sum up to the mutual information I(X1, X2;Y ).

In the example Rdn in table 1, the two inputs share a single bit of information about
the target. In the PID framework, this typically corresponds to one bit of shared or
redundant information. However, our Information Attribution measure does not try to
identify redundancy as a separate term, and instead assigns half a bit to each of the
predictors. The joint predictor {X1, X2} is assigned a zero contribution. This reflects
the fact that once the correlations between Y and the two individual predictors are
known the three-way correlations are already determined, and so learning them does
not reveal any extra information.

In the second example, Xor, we have Y = X1 ⊕ X2, where ⊕ is the exclusive-or
function. In this example, no contribution is assigned to the individual predictors X1

and X2, but one bit is assigned to the joint predictor {X1, X2}. This can be seen as a
kind of synergy measure — it says that all of the information that the predictors give
about the target is found in the three-way correlations between X1, X2 and Y , and
none in the pairwise correlations between either predictor and the target. While the
Information Attribution does not have a separate term corresponding to redundancy,
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Rdn

X1 X2 Y p

0 0 0 1/2
1 1 1 1/2

predictor contribution (bits)

{X2} 1/2
{X1} 1/2
{X1, X2} 0

Xor

X1 X2 Y p

0 0 0 1/4
0 1 1 1/4
1 0 1 1/4
1 1 0 1/4

predictor contribution (bits)

{X2} 0
{X1} 0
{X1, X2} 1

2 bit copy

X1 X2 Y p

0 0 0 1/4
0 1 1 1/4
1 0 2 1/4
1 1 3 1/4

predictor contribution (bits)

{X2} 1
{X1} 1
{X1, X2} 0

And

X1 X2 Y p

0 0 0 1/4
0 1 0 1/4
1 0 0 1/4
1 1 1 1/4

predictor contribution (bits)

{X2} 0.40563765
{X1} 0.40563762
{X1, X2} 0

SynRdn

X1 X2 Y p

0 0 0 1/8
0 1 1 1/8
1 0 1 1/8
1 1 0 1/8
2 2 2 1/8
2 3 3 1/8
3 2 3 1/8
3 3 2 1/8

predictor contribution (bits)

{X2} 1/2
{X1} 1/2
{X1, X2} 1

Tab. 1. Examples of the Information Attribution for several simple

two-predictor cases. For each example the joint distribution is shown

on the left, and on the right we tabulate I{X1}, I{X2} and I{X1,X2},

the contributions made by the two singleton predictors {X1} and

{X2} and the joint predictor {X1, X2}. These three values always

sum to the mutual information I(X1, X2;Y ). All logarithms are taken

to base 2, so that the numbers are in bits. The interpretation of these

examples is given in the text.
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we see that it characterises synergy in a rather intuitive way.

Our third and fourth examples are discussed in [21]. The “two bit copy” operation
plays an important role in the PID literature in the context of the identity axiom. The
Information Attribution assigns one bit each to both of the predictors and none to the
joint predictor, reflecting the fact that the two inputs each provide a different piece of
information about the target. This can be compared to the PID framework, since it is
usually seen as desirable for a PID measure to assign zero bits of synergy in this case.
Note, however, that because our Information Attribution measure does not separate
redundancy from unique information, it does not distinguish between this case and the
case of Rdn, where the information is also shared equally between the two predictors.
The results for the And distribution are similar, telling us that there is also no synergy
in this case. This is because for And the joint distribution can be inferred completely
by knowing the marginals (X1, Y ), (X2, Y ) and (X1, X2), and consequently there is no
triplewise information.

Our final two-predictor example is SynRdn, which can be formed by combining the
Xor example with an independent copy of the Rdn example. The values assigned to the
two predictors and the joint predictor are simply the sum of their values in the original
two examples, which is a result of the additivity property (theorem 5.1, part V).

Table 2 shows the results for three input variables. In this case the method assigns
an amount of information to every non-empty subset of {X1, X2, X3}, representing the
share of the mutual information provided by that set of inputs. The first example,
Parity, is a three-input analog of the Xor example, since Y = X1 ⊕X2 ⊕X3. In this
example it is not possible to infer anything about the value of Y until the values of all
three inputs are known. Correspondingly, the method assigns all of the total mutual
information (1 bit) to the predictor {X1, X2, X3} and none to the others.

Our second example, XorMultiCoal (which we take from [20]) has the property
that knowing any single input gives no information about the target, but any pair of
predictors completely determines it. This is reflected in the contributions assigned by
the Information Attribution: the singleton predictors {X1}, {X2} and {X3} each make
no contribution to the total. Instead, the total one bit of mutual information is shared
equally between the three two-input predictors, {X1, X2}, {X1, X3} and {X2, X3}. The
three-input predictor {X1, X2, X3} makes no contribution, because the target is already
fully determined by knowing any of the pairwise predictors.

The third example, RBOJ, played an important role in the literature on PID, because
it was used in [31] to prove that no partial information decomposition is possible that
obeys the so-called identity axiom, along with the axioms of [36] and local-positivity. In
particular, no such decomposition is possible for this distribution. In this joint distribu-
tion, the inputs X1, X2 and X3 are related by the exclusive-or function, and the target
Y is in a one-to-one relationship with its inputs. As a result, each input provides one
bit (in the usual sense) of information about the target, and each pair of inputs provides
two bits, which completely determine the target. Consequently, learning the third input
adds no new information about the target, if the other two are already known. Because
Information Attribution is different from PID, it is able to assign non-negative values
to each of the predictors. It shares out the total two bits of mutual information equally
between the three singleton predictors, {X1}, {X2} and {X3}. This can be seen as
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Parity

X1 X2 X3 Y p

0 0 0 0 1/8
0 0 1 1 1/8
0 1 0 1 1/8
0 1 1 0 1/8
1 0 0 1 1/8
1 0 1 0 1/8
1 1 0 0 1/8
1 1 1 1 1/8

predictor contribution (bits)

{X1} 0
{X2} 0
{X3} 0
{X1, X2} 0
{X1, X3} 0
{X2, X3} 0
{X1, X2, X3} 1

total 1

XorMultiCoal

X1 X2 X3 Y p

4 0 4 0 1/8
0 2 2 0 1/8
1 1 0 0 1/8
5 3 6 0 1/8
5 1 4 1 1/8
1 3 2 1 1/8
0 0 0 1 1/8
4 2 6 1 1/8

predictor contribution (bits)

{X1} 0
{X2} 0
{X3} 0
{X1, X2} 1/3
{X1, X3} 1/3
{X2, X3} 1/3
{X1, X2, X3} 0

total 1

RBOJ

X1 X2 X3 Y p

0 0 0 0 1/4
0 1 1 1 1/4
1 0 1 2 1/4
1 1 0 3 1/4

predictor contribution (bits)

{X1} 2/3
{X2} 2/3
{X3} 2/3
{X1, X2} 0
{X1, X3} 0
{X2, X3} 0
{X1, X2, X3} 0

total 2

three way And

X1 X2 X3 Y p

0 0 0 0 1/8
0 0 1 0 1/8
0 1 0 0 1/8
0 1 1 0 1/8
1 0 0 0 1/8
1 0 1 0 1/8
1 1 0 0 1/8
1 1 1 1 1/8

predictor contribution (bits)

{X1} 0.18118725
{X2} 0.18118724
{X3} 0.18118724
{X1, X2} 0
{X1, X3} 0
{X2, X3} 0
{X1, X2, X3} 0

total 0.54356444

Tab. 2. Some examples of our measure, applied to joint distributions

between a target and three inputs. The interpretation of these

examples is given in the text.
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a compromise between the fact that the contributions of each member of a pair of input
variables are independent (similarly to the 2-bit copy) and that they, at the same time,
need to be fairly allocated to three variables.

We finish with an example, Three way And, in which the decomposition is less
intuitive. In this case, the target is 1 if and only if all three inputs are 1. Similarly to
the And example, our measure divides the information contributions between the three
singleton predictors, assigning none to the two- or three-input predictors. The reason
for this is similar to the And example. Because of this, from the perspective of our
measure, this example looks similar to the RBOJ example.

7. COOPERATIVE GAME THEORY AND WEIGHTED PATH SUMMATION

In section 4 we defined our Information Attribution measure IA(X1, . . . , Xn ; Y ) based
on a uniform weighting of the maximal chains in the input lattice. In this section we
return to the question of how this uniform distribution would be justified.

To do so, we use the notion of the Shapley value [33] from cooperative game theory.
Informally, the idea of the Shapley value is that one has a set of players N. Subsets of
the players are called coalitions, and each coalition is assigned a total worth, which is
to be interpreted as how well that set of players could do at some task (measured in
terms of some payoff), without the participation of the remaining non-coalition players.
Given this data, the problem is to assign a payoff to each individual player, such that
the payoffs of each individual player sum up to the total worth of the coalition. The
players’ individual payoffs should reflect their “fair” contribution in achieving the total
worth.

For this assignment of payoffs to be uniquely characterized, Shapley postulates that
these payoffs assigned to players should be a linear function of the coalitions’ worths,
and that the assignment must obey a notion of relevance (explained below) and a notion
of symmetry amongst the players (where players whose contribution to the coalitional
worth cannot be distinguished via a symmetrical exchange of players should attain the
same Shapley value). The basic Shapley value assumes that all subsets of N are possible
as coalitions. Since Shapley’s original work, many generalizations of the Shapley value
have been developed [9, 10, 14, 15, 26].

The purpose of our measure IA(X1, . . . , Xn ; Y ) is to attribute to each predictor A
(that is, each member of 2V ) a uniquely characterized share of the mutual information
I(X1, . . . , Xn ; Y ). Equation (18) calculates this as a linear function of the quantities
DKL(pS‖p⊥in

), which can be thought of as that part of the total information that can be
seen to have been contributed to a given set S of predictors. This is closely reminiscent
of the central problem in cooperative game theory of identifying the contribution of a
particular player to a total worth when the worth of all valid coalitions of players are
known and which is solved by the concept of the Shapley value.

In fact, we can apply cooperative game theory directly to our problem, in the following
way: we consider a cooperative game in which each player corresponds to a predictor.
That is, each player is a set of input variables, or member of 2V , the empty set included.
In this game, a worth v is assigned not to individual players but to coalitions, which
are sets of players, that is, sets of sets of input variables. To apply it for the purpose
of information decomposition, we consider a coalitional game whose payoff function
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Shapley Theory Information Attribution
player A,B,C set A,B,C ⊆ V of input variables
coalition down-set of 2V , a set of sets of input variables
set of feasible coalitions the set of down-sets of 2V , written D = J(2V )
empty coalition ∅ empty down-set S(0) = ∅ ∈ J(2V )
coalition of all players N set of all subsets of V , i. e. 2V ∈ J(2V )
worth v of a coalition S DKL(pS‖p⊥in), or 0 if S = ∅.
Shapley value φA(v) information contribution IA(X1, . . . , Xn ; Y )

Tab. 3. Correspondence between our quantities and coalitional game

theory. Note that the empty coalition/down-set is included at the

bottom of the lattice.

(i. e. coalitional worth) is given by

v(S) = DKL(pS‖p⊥in
), (22)

and, in particular, the worth achieved by the whole set of input variables becomes
I(X1, . . . , Xn ; Y ).

In formulating this particular cooperative game, we now encounter the additional
complication that not every set of players forms a viable coalition, since we want the
coalitions to correspond to the elements of the input lattice. This constrains each coali-
tion S to be a down-set of 2V . Explicitly, if a given set of input variables is a member
of a coalition, then all of its subsets must be members of the coalition as well. We thus
need a modified formulation which permits us to restrict the possible coalitions in this
way while still allowing a payoff to be uniquely assigned to each player. This restric-
tion necessitates a modification of the symmetry axiom of the original Shapley value to
guarantee that the generalized Shapley allocation becomes uniquely determined.

Concretely, here we argue that the specific quantity in eq. (17) can be interpreted
precisely as the generalized Shapley value under precedence constraints in the sense
of [16].

For consistency and to highlight the parallels, we will use for cooperative games
a notation similar to the notation we have used so far for the information quantities.
We use the symbols A,B,C, . . . for players (members of 2V ), and similarly S,S′, . . . for
coalitions (down-sets of 2V ), and D for the set of all feasible coalitions, to keep notation
coherent. Finally, let N denote the set of all players. Table 3 gives the relationship
between game-theoretic quantities and the quantities defined in previous sections. To
simplify the exposition and render it coherent with respect to existing literature on
cooperative game theory, we allow both the empty coalition ∅ as well as the coalition
consisting only of the empty player, {∅}, to be valid coalitions. Thus the set of feasible
coalitions becomes D = J(2V ) rather than J(2V )\{∅} as in previous sections. We assign
a worth of 0 to the empty coalition ∅. This does not affect any of the following results.

In what follows, we introduce Faigle and Kern’s extension of the Shapley value, and
then show that applying it to this ‘information game’ is indeed equivalent to our defini-
tion of the Information Attribution, eq. (17), with µ taken as the uniform distribution
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over maximal chains, resulting in our measure in the form of eq. (18). This demonstrates
that our measure obeys the axioms of Linearity, Carrier and Hierarchical strength, de-
scribed below, which are used to derive Faigle and Kern’s result.

7.1. Shapley value under precedence constraints

We now proceed to define the (generalized) Shapley value under precedence constraints
as defined in [16]. For brevity, when we henceforth say “Shapley value”, we will refer to
this variant unless stated otherwise.

Let N be an arbitrary finite partially ordered set of players, where for A,B ∈ N the
relation B ≤ A enforces that, if A ∈ S for any coalition S ⊆ N, one also has B ∈ S.
In other words, the permitted coalitions, known as feasible coalitions, are down-sets of
the poset N. The set D of feasible coalitions is closed under intersection and union
operations, but not necessarily under the complement operation.

A cooperative game on N is now a function

v : D → R (23)

such that v(∅) = 0. v(S) is called the worth of the coalition S, and is to be interpreted
as the total payoff assigned to it in the game. It measures the total “achievement” of
the players in this coalition.

The above definition of the game assigns a worth to all possible coalitions. While
there are also single-player coalitions, cooperative game theory asks the question how
to quantify the performance of a given player across all possible coalitions. One natural
way to do so is the Shapley value. The idea of the Shapley value is, given the overall
worth function v, to assign a payoff to individual players in such a way that it fairly
reflects each player’s overall contribution across all the coalitions. To do this formally,
consider the vector space Υ of all cooperative games v : D → R on N, where the vector
space structure on Υ is given by elementwise addition and scalar multiplication of each
coalition’s worth. Then the Shapley value is a function

Φ : Υ→ RN (24)

which defines, for each player A from N, their share ΦA(v) of the total worth v(N) (the
worth for the coalition consisting of the complete set of players) for the game v in a way
that fulfils a particular set of axioms. The axioms for the Shapley value are as follows:

Axiom 7.1. (Linearity) For all c ∈ R, v, w ∈ Υ, demand

Φ(c v) = cΦ(v)

Φ(v + w) = Φ(v) + Φ(w)

Axiom 7.2. (Carrier) Call a coalition U ∈ D a carrier of v ∈ Υ if v(S) = v(S ∩ U)
for all S ∈ D. Then, if U is a carrier of v, we have∑

A∈U
ΦA(v) = v(U) . (25)
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The carrier axiom needs a brief explanation. It unifies two intuitive axioms that are
sometimes used instead, the dummy axiom (a player that does not affect the worth —
or payoff — of any coalition is irrelevant for these and thus attains a neutral Shapley
value of 0) and the efficiency axiom (the sum of the Shapley values of all players sums
up to the total payoff of the whole set of players). Note that, as a special case, this
axiom guarantees that v(N) is the sum of the Shapley values of all individual players,
i. e. it distributes the total available worth across the players.

The third axiom of the traditional Shapley value postulates that players whose con-
tribution to coalition payoffs are equivalent with respect to a symmetric permutation
will also receive the same Shapley allocation. This axiom cannot be directly used in
our case, because, while for the traditional Shapley value v all possible subsets of N
are permitted as coalitions, we here have the additional restriction that the coalitions
of N must be feasible. To still obtain the a unique characterization, a generalized Shap-
ley value is used which imposes a stronger requirement. There are several axiom sets
which are equivalent on the ordered coalitional games discussed here (see introduction
of section 7 above). We follow [16] in choosing the formulation via hierarchical strength.

We need a number of definitions. Call an injective map (which in the special setups
considered here is also bijective)

π : N→ {1, 2, . . . , |N|}

a (feasible) ranking of the players in N if for all A,B ∈ N we have that A < B (i. e.
A ≤ B and A 6= B) implies π(A) < π(B). Sometimes we will instead consider feasible
rankings of a subset M ⊆ N, i. e. bijections between M and {1, 2, . . . , |M|} that are
compatible with the order on N in the same sense. We then denote by R(M) the set of
all feasible rankings of M.

Given a ranking π of N and a coalition S ⊆ N, there is a unique feasible ranking
πS on S such that πS(A) < πS(B) ⇔ π(A) < π(B). We call this the induced ranking
on S. Note that πS only inherits the order from π. In general πS(A) 6= π(A), since
πS(A) is the rank of A within a given coalition, whereas π(A) is the rank of A among
all players. We say that player C ∈ S is S-maximal in the ranking π if πS(C) = |S|,
which is the same as saying that π(C) = maxA∈S π(A) or that there is no player A in
coalition S with π(C) < π(A).

We are now ready to express the concept of hierarchical strength: the hierarchical
strength hS(C) of the player C in S is defined as the proportion of (total) rankings π
in which C is S-maximal. Formally,

hS(C) :=
1

|R(N)|
∣∣{π ∈ R(N) | C is S-maximal for π}

∣∣ (26)

where R(N) is the set of all (feasible) rankings for the set N of players.
Define now a particular fundamental game type, the unanimity game centered on a

coalition S 6= ∅, which we call ζS via:

ζS(T) :=

{
1 if S ⊆ T

0 otherwise.
(27)
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In other words, the payoff of the game is 1 if the tested coalition T encompasses a given
reference coalition S and vanishes otherwise. We mention without proof that these
games form a basis of Υ and thus it is sufficient to define the Shapley value over all
unanimity games on N.

Finally, we can define the axiom of hierarchical strength:

Axiom 7.3. (Hierarchical Strength (Equivalence)) For any S ∈ D, A,B ∈ S, we
demand:

hS(A)ΦB(ζS) = hS(B)ΦA(ζS) (28)

Informally, this means that the Shapley value of a player B in a coalition S for the
unanimity game is weighted against that of another player A in the same coalition
via their hierarchical strength. Everything else being equal, the Shapley values of the
two players relate to each other as their hierarchical strengths — a larger value of the
hierarchical strength corresponds to a larger Shapley value, i. e. larger allocation of
payoff.

[16] note that the hierarchical strength emphasizes the given player being on top of its
respective coalition in the given ranking rather than, say, considering its average rank.
This is insofar an intuitive choice for the generalized Shapley value, since it is only the
top-ranked player in a coalition which determines whether that particular coalition is
formed at all. In other words, it is a measuring in how many rankings (relative to the
total number of rankings) that particular player has the power to decide whether the
given coalition will be formed or not.

It turns out this has a straightforward reinterpretation and generalization in the
context of Markovian coalition processes [14]. In addition, there are many other for-
mulations equivalent with it (see the references mentioned in the introduction to the
present section 7). We opted for the formulation via hierarchical strength since it is the
most widely established generalization of the symmetry axiom for the classical Shapley
value in the literature.

We state here without proof that the unique payoff allocation of this generalized
Shapley value is given by

ΦC(v) =
1

|R(N)|
∑
T∈D:
C∈T+

|R(T \ {C})| · |R(N \ T)|
(
v(T)− v(T \ {C})

)
(29)

where we trivially assume |R(∅)| = 1 and where T+ denotes the set of maximal players
of T. The sum therefore sums over all coalitions T for which the player C is maximal.
The (generalized) Shapley value of C is thus given by the marginal contribution of C
to all coalitions T for which it is maximal, weighted by the proportion of rankings for
which this is the case.

Next we show that our definition of the Information Attribution IA(X1, . . . , Xn;Y ) of
a set of input variables A, eq. (18), is equivalent to the generalized Shapley value under
precedence constraints where the worth of each coalition S is given by DKL(pS‖p⊥in

)
(and 0 for the special coalition ∅). Thus, the Information Attribution has a natural
interpretation in the context of game-theoretic Shapley value allocation.
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7.2. Equivalence of generalized Shapley value and the sum over maximal
chains

We now return to the definition of our Information Attribution measure, which is defined
by eq. (17), together with the choice of a uniform measure µ over the set Γ of maxi-
mal chains. The choice of the uniform measure is justified by the following theorem,
which uses eq. (29) to show that when the uniform measure is chosen, the Information
Attribution measure becomes equal to the Shapley value under precedence constraints.

Theorem 7.4. Under the identifications of table 3, the information attributed to a pre-
dictor (i. e. set) A is identical with its Shapley value under precedence constraints, with
A now interpreted as a player. More precisely:∑

(S,S′)∈EA
µ(S,S′)DKL(pS′ ‖ pS)

=
∑
S∈D:
A∈S+

|R(S \ {A})| · |R(2V \S)|
|R(2V )|

[
DKL(pS||p{∅})−DKL(pS\{A}||p{∅})

]
. (30)

Here the weighting µ of the lattice chains γ is chosen as the uniform distribution over
the set Γ of maximal chains. In other words, µ(γ) = 1/|Γ|. The rankings R( . ) of sets of
players are taken with respect to the order relation “≤” induced by the inclusion, that
is, B ≤ A :⇐⇒ B ⊆ A.

To permit consistency between lattice and Shapley model, we furthermore define the
bracketed term on the right hand side of (30) to be 0 if S = ∅ or S = {∅}.

P r o o f . Consider N = 2V . Identify the elements A ∈ N, i. e. the subsets of V , with
the players in a Shapley coalitional game with partial ordering defined via the subset
relation, i. e. via

B ≤ A :⇐⇒ B ⊆ A .
Per definition, the partial order-compatible coalitions S then precisely constitute the
down-sets of N.

We now show that, under these identifications, the (feasible) rankings of players
define precisely the maximal chains over the down-sets of N. In other words, there is
a one-to-one correspondence between the rankings of the ordered coalitional game and
the maximal chains over its corresponding down-sets.

First, we establish that the orders in which the predictors are added in a maximal
chain correspond precisely to the feasible rankings of the predictors interpreted as Shap-
ley players.

A (feasible) ranking π of N can be interpreted, in the terminology of [35], as a bijective
order-preserving map π : N → [2|V |] where [2|V |] is the ordered set of natural numbers
{1, . . . , 2|V |} (we note that [2|V |] = [|2V |]). In other words, π is a topological sorting of
N. According to the proof of Proposition 3.5.2 (see also proof of Proposition 3.5.1) in
[35], there is a one-to-one relation between the maximal chains

S0 := ∅,S1,S2, . . . ,S|N|
= (Sk)k=0,...,|N| = (Sk)k

(31)
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of D and the (feasible) rankings π ∈ R(N).
For the sake of self-containedness, we additionally give a proof of this fact for our

specific setting of the inclusion order in appendix A where we only rely on terms intro-
duced in the present paper. The intuition of the proof is that in the Hasse diagram for
the input lattice (depicted in Figure 3), each maximal chain is formed by successively
adding each of the predictors, one at a time, in such a way that each step of the chain
remains a down-set.

Let (S,S′) ∈ EA be given, i. e. an edge where S′ = S∪{A} is obtained by adding A
to S. Consider now the set Γ(S,S′) of (maximal) chains (Sk)k that pass through this
edge, i. e. for which Sj = S and Sj+1 = S′ for some j.

In analogy of the one-to-one relation between maximal chains and their feasible rank-
ings referred to above, we can find a one-to-one map between Γ(S,S′) and

R(S′ \ {A})×R(N \S′) , (32)

the set of pairs of rankings over S′ \ {A} and N \S′.
This is seen by replacing the full ranking with two subrankings, one over the lower

sublattice with S as top element instead of N and one over the upper one which has S′

as bottom element replacing S0 and applying the same argument from [35] as above on
the two sublattices.

It follows that we have

|Γ(S,S′)| = |R(S′ \ {A})| · |R(N \S′)| . (33)

Consider a particular edge (S,S′) ∈ EA. We note that this edge corresponds precisely
to the down-set S′ ∈ D where A is maximal in S′, i. e. A ∈ S′+. We had earlier the
short-hand notation µ(S,S′) =

∑
γ∈Γ(S,S′) µ(γ) (where Γ(S,S′) again ranges over all

maximal chains containing a particular edge). If all chains/paths γ over the full lattice
are equally weighted, their weight is given by

1

|Γ| =
1

|R(N)| =
1

|R(2V )| , (34)

where 2V is considered as a poset ordered by set inclusion. Finally, note that

DKL(pS′ ‖ pS) = DKL(pS′ ||p⊥in
)−DKL(pS′\{A}||p⊥in

) (35)

because of the Pythagorean relation (8) (and noting that in our case ⊥in = {∅}). This
completes the proof of (30). �

Note that, when constructing the correspondence between the input lattice and the
Shapley value, for the former we had the maximal chains start at {∅} rather than at ∅
as bottom of the lattice. However, the property from theorem 7.4 continues to hold in
this case, since the bottom step from ∅ to {∅} is unique and does not affect the path
counts.

One may ask whether the function v defined in eq. (22) would fulfil some additional
desirable structural properties, such as submodularity or supermodularity, which would
permit the establishment of additional relations. However, it turns out that, when
instantiated with the information-based worth functions, neither of these are guaranteed,
as the following remark shows.
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Remark 7.5. Given a distributive lattice L, a function f : L→ R is called submodular
if

f(a) + f(b) ≥ f(a ∨ b) + f(a ∧ b) , ∀a, b ∈ L ,

and f is called supermodular if −f is submodular [34]. The function v defined in eq. (22)
is neither submodular nor supermodular, as we now show.

We consider the examples Rdn and And, defined in section 6. In each case, let
a = [X1] and b = [X2], so that a ∧ b = ⊥in and a ∨ b = [X1][X2]. Then, by calculating
eq. (22) directly, we obtain, for the Rdn example,

v(a) = 1 , v(b) = 1 , v(a ∧ b) = 0 , v(a ∨ b) = 1 ,

so that v(a) + v(b) > v(a∨ b) + v(a∧ b). For the And example it happens that the split
distribution p[X1][X2] is given by p[X1X2]. (That is, knowing the marginals X1X2, X1Y
and X2Y is enough to deduce the full joint distribution.) This allows us to calculate

v(a) = v(b) =
3

2
− 3

4
log2(3) ≈ 0.311 ,

v(a ∧ b) = 0 ,

v(a ∨ b) = 2− 3

4
log2(3) ≈ 0.811 ,

(36)

so that, in contrast to the Rdn example, v(a)+v(b) < v(a∨b)+v(a∧b). This shows that,
in our context, the function v, derived from the Kullback-Leibler divergences between
split distributions, is neither submodular nor supermodular in general.

8. DISCUSSION

In the search for a partial information measure that attributes informational contribu-
tions to various input variable sets (i. e. predictors) we relinquished the demand to quan-
tify redundancy separately from unique information and instead applied the Pythagorean
decomposition to characterize the additional contribution of an input variable set as it is
added onto the relevant maximal chains. This yields a decomposition that is dependent
on the order in which the set is added to the chain. To be able to talk about a contri-
bution of an individual predictor, we need to express this contribution independently of
the particular chain.

Intuitively, this can be done by assigning a probability distribution over the chains and
averaging a predictor’s contribution over all these chains; most naturally, the equidistri-
bution could be chosen for this purpose. A more justified reasoning for this choice can
be derived by observing that the setup of information contribution precisely matches
the situation of a coalitional game where the worth of a coalition is the contribution of
that player/predictor to the overall worth of the coalition, i. e. the information of the
coalition about the target variable; and that contribution can be fairly assigned via the
Shapley value concept. Of course, having a natural precedence order of predictors, not
all coalitions of predictors (i. e. players, when viewed through the eyes of game theory)
are viable. We needed to resort to the variant of the Shapley value under precedence
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constraints which, as it turns out, corresponds precisely to the averaging over all maxi-
mal chains of the input lattice, strengthening both the confidence in the appropriateness
of the proposed measure and the intuition behind it.

While the view of a predictor contribution stemming from averaging over chains
(paths) through the lattice seems abstract and artificial, the Shapley value-based inter-
pretation justifies its use. In fact, this perspective finds, again, additional justification
from more recent coalitional game theory in which coalitions are not considered as im-
mutable, but can change as per a stochastic process via local incentives [14]. In our
context, this would correspond to a dynamically chosen path in an input lattice. At this
stage, however, we are interested in the static contributions of the predictors; whether
there will be an incentive to invoke a complex trajectory in the input lattice over which
the contributions will be averaged, remains a question for the future.
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Appendix

A. CORRESPONDENCE BETWEEN FEASIBLE RANKINGS OF N AND MAXIMAL
CHAINS IN D

With the machinery from [35], the proof of existence of a bijection between feasible rankings
on the set of players N and maximal chains on the set of down-sets, has been straightforward.
However, for the sake of self-containedness, we provide an explicit proof using only developments
from the present paper.

Let N be an arbitrary finite partially ordered set of players. As in the main text, define
the set of feasible coalitions as the down-sets of N with respect to the given order. That is, a
feasible coalition is a set S ⊆ N such that for A,B ∈ N, if A ∈ S and B ≤ A, then we also
have B ∈ S. Recall that we write D for the set of feasible coalitions, and that we define the
(feasible) rankings π ∈ R(N) as the rankings of N which respect the above order relation as
per section 7.1.

Lemma A.1. For any such N there is a one-to-one relation between the maximal chains

S0 := ∅,S1,S2, . . . ,S|N|

= (Sk)k=0,...,|N| = (Sk)k
(37)

of D and the (feasible) rankings π ∈ R(N).

P r o o f . We first show well-definedness, i. e. that each ranking defines a maximal chain. Let π,
a (feasible) ranking over the set of players N, be given (we remind that each player is a subset
of V ). Define the sequence

S0 := ∅,S1,S2, . . . ,S|N| (38)
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where for k = 1, . . . , |N|

Sk := {A ∈ N | π(A) ≤ k} (39)

= π−1({1, . . . , k}) . (40)

We now need to show that this sequence (Sk)k=0,...,|N| is, first, a chain of down-sets (equiv-
alently, feasible coalitions) and, second, maximal.

If k = 0, then Sk = ∅ is trivially a down-set. Else, let 1 ≤ k ≤ |N|. Consider now A ∈ Sk,
and any B ∈ N with B ⊆ A. We have π(B) ≤ π(A) ∈ {1, . . . , k} per ranking property, and
thus π(B) ∈ {1, . . . , k}, and thus B ∈ Sk and Sk is a down-set.

From (40) it follows that, for k ≤ l, Sk ⊆ Sl. Therefore, if A ∈ Sk, also A ∈ Sl and thus
Sk ≤ Sl and the (Sk)k form a chain.

This chain is maximal. To show this, consider successive down-sets Sk,Sk+1, k = 0, . . . , |N|−1

in the sequence. Consider S̃ such that Sk ≤ S̃ ≤ Sk+1 according to the natural partial order ≤
on down-sets. If Sk 6= S̃, then there exists a B ∈ S̃ \Sk and, since S̃ ≤ Sk+1, one has B ⊆ C
for some C ∈ Sk+1. This means that π(B) ≤ π(C). Since B /∈ Sk, also π(B) /∈ {1, . . . , k},
so, per construction of Sk+1, necessarily π(B) = k + 1 and B = π−1(k + 1) = C ∈ Sk+1. It

follows that S̃ must be either Sk or Sk+1, thus, Sk ≺ Sk+1 and the chain is maximal (see
section 2.1). This shows that the mapping from rankings to maximal chains is well-defined.

We show now that mapping rankings to maximal chains (38) via (40) is injective. For this,
consider two rankings π 6= ρ. We have to show that they induce different maximal chains.

Consider B with π(B) 6= ρ(B). Assume, without loss of generality, π(B) < ρ(B). If we
consider the chain (Sπ

k )k induced by π (and analogously (Sρ
k)k for ρ), then observe that the

chain can be written in the form of inclusion chain as

∅ ⊆ Sπ
0 ⊆ Sπ

1 ⊆ · · · ⊆ Sπ
π(B)
↑
first time where B appears in (Sπk )k

⊆ · · · ⊆ Sπ
|N| = N . (41)

In this chain, the first down-set to contain B is the one with index π(B). Under the same
consideration for the chain induced by ρ, the first member of the chain to contain B is the one
with index ρ(B). However, π(B) < ρ(B) and therefore the chains must differ and assigning
chains to rankings via (38) is injective.

Show now surjectivity: for each maximal chain, there is a ranking that produces it. Let

∅ = S0 ⊆ S1 ⊆ · · · ⊆ S|N| = N (42)

be a maximal chain. We show now that each step adds exactly one C ∈ N. Note that none
of the steps in the sequence is trivial, i. e. we always have Sj ( Sj+1. All Sk are at the same
time down-sets as well as — equivalently — order-compatible coalitions. Choose C ∈ Sj+1 \Sj

minimal (i. e. such that for any B ∈ Sj+1 \Sj with B ⊆ C, we have B = C).
Since C ∈ Sj+1, for any B ⊆ C, we have B ∈ Sj+1. It follows that either B ∈ Sj or

B ∈ Sj+1 \Sj ; in the latter case, however, because of minimality of C in Sj+1 \Sj , it follows
B = C. Thus Sj ∪ {C} is a down-set, and because of maximality of the chain, it must be
identical to Sj+1. In summary, in each step of the maximal chain precisely one down-set is
added.

Finally, given a maximal chain

∅ ≺ S1 ≺ S2 ≺ · · · ≺ S|N| = N , (43)

define for every j = 1, . . . , |N| the inverse ranking π−1(j) to map onto the unique set (player)
in Sj \ Sj−1. The maximal chain (43) is induced by the ranking π; we have thus shown the
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mapping (40) of rankings to maximal chains to be surjective (for every maximal chain there
is a ranking that is mapped to it). With the injectivity shown earlier, this mapping is thus
bijective. In short, we have shown that to each maximal chain corresponds one and only one
feasible ranking. �
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