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We prove that a rank > 3 Dowling geometry of a group H is partition representable if
and only if H is a Frobenius complement. This implies that Dowling group geometries are
secret-sharing if and only if they are multilinearly representable.
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1. INTRODUCTION

The Dowling group geometeries [5] is a class of matroids defined for every finite group
H and for every rank n ∈ N. When n > 3, the matroid circuits are determined by the
group structure and non-isomorphic groups result in non-isomorphic matroids.1

The connection between the representability of the Dowling group geometry and the
underlying group was observed already in Dowling’s seminal work [5]: Dowling showed
that, for n > 3, the matroid is linearly representable if and only if the underlying
group is cyclic. Later works showed connections between the underlying group and
other types of matroid representability: multilinear representability [1, 12], skew-partial
field representability [12, 16], and representability over rings [16]. In particular, for
n > 3, the Dowling group geometry is multilinearly representable, skew-partial field
representable, and representable over some ring if and only if the group is fixed-point
free, or equivalently a Frobenius complement.2

Dowling group geometries are often used, either by themselves or as building blocks,
for separating matroid classes induced by various representation types. For example,
Beimel et al. [1] showed that for every prime p, there exists a Dowling geometry that is
p-linearly representable, but not `-linearly representable for every ` < p. The Dowling
group geometry of the quaternion group has been used, as a building block, by Pen-
davingh and van Zwam [12] to show a multilinear matroid not representable even over
a skew-field, and by Ben-Efraim [2] to show a multilinear matroid that is not algebraic.

DOI: 10.14736/kyb-2020-5-0934
1The discussion for n 6 2, where the group structure does not affect the matroid structure, is usually

omitted.
2see Remark 2.1 for a clarification of the definition.
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In this work we focus on partition representations, which have received considerable
and increasing interest in the last couple of decades. These representations are moti-
vated by questions from cryptography and coding theory, due to their close relation to
ideal perfect secret-sharing schemes [3, 14]. Partition representable matroids are also
known as almost affinely representable matroids [14], entropic, and secret-sharing ma-
troids [3, 13], and have also been studied in [8]. Simonis and Ashikmin [14] showed
that multilinear representability implies partition representability, and that partition
representable matroids are minor closed. Some techniques for proving matroids are not
partition representable were presented by Seymour [13] and Matúš [8], but this class of
matroids is still far from being completely understood.

Our result. In this work we investigate which Dowling group geometries are partition
representable. In particular, we show that for n > 3, the Dowling geometry of a group H
is partition representable if and only if H is a Frobenius complement. The first direction
follows by combining the known results stated above: if H is a Frobenius complement
then its Dowling group geometry is multilinear and therefore partition representable.

In contrast, the other direction is non-trivial. It is a long-standing open question
whether every partition representable matroid is multilinearly representable [8, 14], and
many conjecture that this is not the case. Beimel et al. [1] proved that if the Dowling
geometry is multilinearly representable then H is a Frobenius complement, by relying
on results from linear algebra. Additionally, Dowling group geometries are often used
to separate classes induced by different representation types. Thus, for groups that
are not Frobenius complements, the Dowling group geometries were natural candidates
for a partition representable, non-multilinear matroid. However, in this work we prove
that these matroids are not partition representable as well. Thus, the Dowling group
geometries are partition representable if and only if they are multilinearly representable.

Open questions. In this work we classify the Dowling group geometries that are
partition representable. Another representation type that is often of interest is alge-
braic representations, but not much is known about algebraic representations of the
Dowling group geometries: since linearly representable matroids are algebraic, Dowling
geometries of cyclic groups are algebraic. Additionally, a construction by Evans and
Hrushovski [6] involving elliptic curves shows that the Dowling geometries of some non-
cyclic groups are algebraic, e.ġ., the Dowling geometries of SL(2, 3) and of the quaternion
group are algebraic in characteristic 2, and the Dowling geometry of the group C3 oC4

is algebraic in characteristic 3; we observe that these three groups are Frobenius comple-
ments. On the other hand, there are no groups for which it is known that the Dowling
group geometry is not algebraic. Classifying the algebraic Dowling group geometries
seems an intriguing open problem.

There are also many interesting open questions on partition representable matroids.
For example, it is not known whether the dual of a partition representable matroid
is also partition representable. It is not even known whether there exists a partition
representable, non-multilinear matroid. Following our result, if such a matroid exists, it
cannot be a Dowling group geometry.
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Organization. In Section 2 we give the definitions of the rank-3 Dowling group ge-
ometry and of partition representations, and present some useful notation, terminology,
and observations. Section 3 contains our main theorem and the beautiful proof written
by Fero Matúš. In order to avoid making significant changes to this proof, which is
written in Fero’s uncompromising style, Appendix A contains further expansions and
explanations for marked paragraphs in the proof.

2. PRELIMINARIES

We assume the reader is familiar with the basic concepts of matroid theory, such as
circuits, minors, linear representations, etc. A good introduction to matroid theory
is [10].

Remark 2.1. We clarify the definition of Frobenius complement that we use in this
paper: Let G be a finite group and H a non-trivial subgroup of its automorphism group,
i. e., {ι} 6= H 6 Aut(G). The subgroupH is a subgroup of fixed-point free automorphisms,
if each non-identity automorphism in H does not fix any element of G except the identity,
i. e., ∀ι 6= ϕ ∈ H,∀1 6= g ∈ G,ϕ(g) 6= g. It is known (see for example [11, Chapter 3]
or [7, Theorem 25.5]) that this is equivalent to H being a Frobenius complement and
to H being a fixed-point free group. Hence, we use these terms interchangeably, even
though the standard definitions for these terms are different. We note that Beimel et
al. [1] used the standard definition of a fixed-point free group in their proof.

2.1. Dowling group geometries

Dowling introduced the Dowling group geometries in [5]. The Dowling group geometry
Down(H), n > 1 is a matroid of rank n constructed from a finite group (H, ·, e) on
a ground set with n +

(
n
2

)
|H| points [5]. For our main theorem we require only the

definition of Dow3(H), which we give below. The formal definition of Down(H) for
general n can be found in [5] and [10].

Definition 2.2. The ground set of Dow3(H) consists of three joints 1, 2, 3 and three
disjoint copies of H, which we denote by H, Ḣ and Ḧ. It is a simple paving matroid
whose lines with at least three points are either the edges

{1, 2} ∪H , {2, 3} ∪ Ḣ and {3, 1} ∪ Ḧ ,

or {h, k̇, l̈} for h, k, l ∈ H such that lkh = e; here, k̇ ∈ Ḣ and l̈ ∈ Ḧ are copies of k, l.
The rank of every set with > 3 elements is 2 if it is contained in a line above, and 3
otherwise.

Example 2.3. The case H = C2 = {e, h} is depicted in Figure 1.

2.2. Partition representations of matroids

We follow [8] and present the definition of partition representations and some useful
notation and observations. A more detailed coverage of partition representations can be
found in [8]. The definition of a partition representable matroid is as follows:
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ḣ.

........

........

........

........

........

......

........

........

...

.........
........

..........
.....

..........
..

............ ............ ............. .............. ................
...................

.....................

.......................

..........................

............................

..............................

.................................

.

..........
..........
..........
.

...........
...........

......

...........
...........

....

............
............

.............
........

...............
....

................. .............. ............ .......... ..........
.........
...........

.............

................

..................

....................

.......................

...........................

..............................

.................................

....................................

.

........

........

........

........

.....

........

........

........

........

..

........

........

........

......

........

........

........

...

........

........

........

........

........

....

........

........

.

.........

......

.........

...
.................... ...... ........

..........
..............

.................

....................

........................

...........................

..............................

..................................

.....................................

........................................

.

.........
.........
.........
.........
...

.........
.........
.........
.........

.........
.........
.........
......

.........
.........
.........
...

.........
.........
.........

.........
.........
.....

.........
.........
..

.........
........

..........
....
...........

.
.......... ......... ......... ..........

..........
.............

................

...................

......................

........................

...........................

t

t

t
t

t

t t

t
t

Fig. 1. Geometric representation of Dow3(C2).

Definition 2.4. Let M = (E, r) be a matroid with rank function r. The matroid
is partition representable if there exist an integer d > 2, a finite set Ω of cardinality
|Ω| = dr(E), and partitions (ξi)i∈E of Ω, such that for every I ⊂ E, the meet-partition3

ξI ,
∧
i∈I ξi has dr(I) blocks, all of the same cardinality. The set of partitions is called

the partition representation.

Observe that all the blocks of ξI have cardinality dr(E)−r(I). In particular, ξ∅ has only
one block being the whole set Ω, and ξE has |Ω| blocks, being the singletons of Ω.

Example 2.5. Let G = {0, 1}, d = |G| = 2, and Ω = G × G. Denote the partitions
ξ1 = {G× {g}|g ∈ G}, ξ2 = {{g} ×G|g ∈ G}, and ξ3 = {{(0, 0), (1, 1)}, {(0, 1), (1, 0)}}.
Note that all the partitions have 2=d1 blocks of the same size and all the meet partitions
ξ1∧ξ2, ξ2∧ξ3, ξ1∧ξ3, and ξ1∧ξ2∧ξ3 are equal and have 4 = d2 blocks. Hence, (ξ1, ξ2, ξ3)
is a partition representation of U2,3.

Partition representable matroids have been studied in several works, e. g., [3, 8, 14,
13], also under the names almost affinely representable and secret-sharing matroids.
In particular, [14] showed that all multilinearly representable matroids are partition
representable. A basic concept in partition representations is isotopy.

Definition 2.6. Two partition representations (ξ)i∈E and (η)i∈E of a matroid M =
(E, r), which partition the sets Ωξ and Ωη, respectively, are called isotopic if there exists
a bijection f : Ωξ → Ωη such that ∀i ∈ E, f(ξi) = ηi.

Isotopic partition representations are considered equivalent. Hence, as explained in [8],
one can to look at Ω as an n-ary Cartesian power of a set G of cardinality d, where
n = r(E). Furthermore, one can choose a base of the matroid and set its corresponding

3The meet-partition of a set of partitions is the coarsest partition refining each of the partitions in
the set.
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partitions to be {Gi × {g} ×Gn−i−1|g ∈ G}i∈[n], so each block of the ith partition is of
the form Gi × {g} ×Gn−i−1 for some g ∈ G.

For example, if Dow3(H) is partition representable then |Ω| = d3 for some integer
d > 2, and we may assume Ω = G×G×G for some G of size d. Further, we can choose
the base {1, 2, 3}, i. e., the set of joints, and set its corresponding partitions ξ1,ξ2, and
ξ3 to have the blocks {g}×G×G, G×{g}×G, and G×G×{g}, respectively.

A partition ρ of Ω = G × G is called a Latin partition if there exists a quasigroup
operation ◦ on G such that the blocks of the partition are {(x, y)|x◦y = a}a∈G, i. e., each
block consists of all the pairs that map to the same quasigroup element.4 In Example
2.5, ξ3 is a Latin partition by the group operation of addition modulo 2. On the other
hand, ξ1 and ξ2 are not Latin partitions, since in any quasigroup if g, h1, h2 ∈ G and
h1 6= h2 then g ◦ h1 6= g ◦ h2 and h1 ◦ g 6= h2 ◦ g. Therefore, in any Latin partition of
G × G, each block contains d couples such that each g ∈ G occurs exactly once in the
first coordinate of a couple and exactly once in the second coordinate of a couple.

Two Latin partitions ρ and π of Ω = G×G corresponding to quasigroup operations
◦ and ·, respectively, are termed orthogonal if the mapping (x, y) → (x ◦ y, x · y) is
bijective.4 Note that this implies that the blocks of the meet partition ρ ∧ π are the
singletons.

Example 2.7. Let Ω = G × G, where G is a set of size d > 2, and assume that
ξ1 = {{g} × G|g ∈ G}, ξ2 = {G × {g}|g ∈ G}, and ξ3 and ξ4 are orthogonal Latin
partitions of Ω. Then it is not difficult to see that ξ = (ξ1, ξ2, ξ3, ξ4) is a partition
representation of U2,4.

If H is a fixed-point free group of automorphisms of G, then the above example can
be extended to U2,|H|+2.

Lemma 2.8. Let Ω = G × G, where G is a group of size d > 2, and let H 6 Aut(G)
be a subgroup of fixed-point free automorphisms. Then ρH = {ρ1, ρ2, (ρh)h∈H}, where
ρ1 = {{g} ×G|g ∈ G}, ρ2 = {G× {g}|g ∈ G}, and

ρh = {{(x, ah(x))|x ∈ G}|a ∈ G},

is a partition representation of U2,|H|+2.

P r o o f . Clearly, every single partition has |G| blocks of size |G|. Thus, it remains to
prove that the meet partition of every 2 elements has |G|2 blocks, i. e., to show that the
blocks of the meet-partition are the singletons. We show this for ρh1

∧ ρh2
, leaving the

cases with ρ1 and ρ2 as exercise.
Assume that (x1, y1) and (x2, y2) are two distinct elements that belong to the same

block in ρh1
∧ ρh2

, with h1 6= h2. This implies that they are in the same block in ρh1
so

y1 = a1h1(x1), y2 = a1h1(x2) for some a1 ∈ G. Additionally, they are in the same block
in ρh2 so y1 = a2h2(x1) and y2 = a2h2(x2) for some a2 ∈ G.

Using the equations on y1, we get a−11 a2 = h1(x1)h2(x1)−1. Similarly, a−11 a2 =
h1(x2)h2(x2)−1 using the equations on y2. So, h1(x2)−1h1(x1) = h2(x2)−1h2(x1), and

4The definition of (orthogonal) Latin partitions can also be extended to Ω = Gn for any n, cf. [8].
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using that h1, h2 are homomorphisms, we get h1(x−12 x1) = h2(x−12 x1). Now applying
h−12 on both sides, and using that h1, h2 are automorphisms, we receive h−12 h1(x−12 x1) =
x−12 x1, but as H is fixed-point free this implies that either h−12 h1 = ι or x−12 x1 = 1G.
The first case implies h1 = h2, a contradiction. In the second case we get that x1 = x2
and y1 = a1h1(x1) = a1h1(x2) = y2, so (x1, y1) = (x2, y2), a contradiction. �

We end this section with a few more notations. If ρ is a partition of G×G and B ∈ ρ
is a block, we can look at the block transposition Btr = {(y, x)|(x, y) ∈ B}. A partition
is transposed by transposing all the blocks – note that the number of blocks in ρtr and
their size are equal to those of ρ.

Suppose ρ1, ρ2, and ρ3 are three partitions Ω = G×G and that B ∈ ρ1, C ∈ ρ2, and
D ∈ ρ3 are blocks. Then we can look at the set BCD , {(x, y, z)|(x, y) ∈ B, (y, z) ∈
C, (z, x) ∈ D} of G × G × G. Note that this set might be empty, for example, if
B = C = {(x, x)|x ∈ G} then BCD is non-empty if and only if (x, x) ∈ D for some
x ∈ G as well. Choosing the correct blocks and finding the conditions when this set is
non-empty plays an important role in our main proof.

2.3. Partition representations of Dowling geometries

All matroids of rank 6 2 are linearly representable. Hence, for n 6 2 the Dowling
matroids are linearly representable and therefore partition representable. For n > 3, if
H is fixed-point free then Down(H) is multilinearly representable [1, 16], and therefore
also partition representable [14]. We note that Dow3({e}) ∼= M(K4), i. e., the rank-3
Dowling geometry of the trivial group is isomorphic to the cycle matroid of the clique on
four vertices, and the partition representations of this matroid have been fully classified
in [8].

Lemma 2.9. (Matúš [8, Proposition 3.1]) Every partition representation of M(K4) is
isotopic to the system of partitions,

ρ(G,·) ,
(
ρ
(G,·)
1 , ρ

(G,·)
2 , ρ

(G,·)
3 , ρ

(G,·)
4 , ρ

(G,·)
5 , ρ

(G,·)
6

)
, (1)

constructed from a finite group (G, ·), where the blocks of ρ
(G,·)
1 , ρ

(G,·)
2 and ρ

(G,·)
3 are

{g} ×G×G, G× {g} ×G, and G×G× {g}, respectively, and

ρ
(G,·)
4 , {{(x, y, z)|xy−1 = a}|a ∈ G}

ρ
(G,·)
5 , {{(x, y, z)|yz−1 = a}|a ∈ G}

ρ
(G,·)
6 , {{(x, y, z)|zx−1 = a}|a ∈ G}.

Two partition representations ρ(G,·) and ρ(G′,◦) are isotopic if and only if the groups
(G, ·) and (G′, ◦) are isomorphic.

Thus, our result can be seen as extension of [8, Proposition 3.1] to general groups and
higher ranks. For the rest of this paper, unless explicitly stated, we assume H is non-
trivial. As a warm-up to our main theorem, which we present in Section 3, we next show



940 F. MATÚŠ AND A. BEN-EFRAIM

that the Dowling geometry Dow3(H) of the Frobenius complement H in a Frobenius
group Γ can be represented by the partitions in Figure 2: The corresponding partition
representation

πΦ ,
(
π1, π2, π3, (πh)h∈H , (πk̇)k∈H , (πl̈)l∈H

)
lives on Ω = G 3, where G is the Frobenius kernel of Γ . The mappings Φh are the con-
jugations, {Φh : g 7→ h−1gh}h∈H , which are fixed-point-free automorphisms of G. The
mapping Φ : h 7→ Φh is a monomorphism of H into Aut(G), so H can be identified with
a subgroup of fixed-point free automorphisms. As we shall see in Section 3, every parti-
tion representation of Dow3(H) is in fact isotopic to this type of partition representation.

�
�
�
�
�
�
�
�
�
�

A
A
A
A
A
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A
A

{{a}×G×G : a ∈ G} = π1 π2 = {G×{b}×G : b ∈ G}

π3 = {G×G×{c} : c ∈ G}

πh =
{
{(x, aΦh(x), z) : x, z ∈ G} : a ∈ G

}

πk̇ =
{
{(x, y, b Φk(y)) : x, y ∈ G} : b ∈ G

}
{
{(c Φl(z), y, z) : y, z ∈ G} : c ∈ G

}
= πl̈

s

s

s

s

s
s

Fig. 2. A partition representation πΦ of Dow3(H) for a Frobenius

complement H in Γ lives on the cube G3 of the Frobenius kernel G to H.

Lemma 2.10. The set of partitions πΦ define a partition representation of Dow3(H).

P r o o f . First, as Dow3(H) is rank 3 and paving, it follows from [8, Lemma 1.4] that it
suffices to check the subsets of size 3. The subsets of size 3 can be classified into 4 types
– 2 types of bases and 2 types of circuits:

1. Circuits where all 3 points are on the same edge,

2. Bases where exactly 2 of the points are on the same edge,

3. Circuits where each point is on a different edge, corresponding to h1, ḣ2, ḧ3, such
that h3h2h1 = e.

4. Bases where each point is on a different edge, corresponding to h1, ḣ2, ḧ3, such
that h3h2h1 6= e.

Therefore, it remains to show that the meet partitions of types 1 and 3 have |G|2
blocks of size |G| and the meet partitions of types 2 and 4 have |G|3 blocks of size 1. For
type 1 this follows from Lemma 2.8, because the additional coordinate is free. We next
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show for types 2, 3, and 4, where for simplicity in type 2 we consider only the subsets
not containing any of the joints.

Suppose the set is of type 2, with the points h1, h2 being on the first edge and the
point ḣ3 on the second egde, with corresponding partitions ξh1 ,ξh2 , and ξḣ3

. From
Lemma 2.8, the blocks of the meet partition ξh1,h2

are of the form {g}×{k}×G for g, k
running over G. Therefore, the blocks of the meet partition ξh1,h2,ḣ3

are the singletons
{g} × {k} × {l} for g, k, l running over G – any coarser partition that contains a non-
singleton block in the first 2 coordinates is not contained in any block of ξh1,h2 , but
fixing the second coordinate corresponds to a unique block in ξḣ3

for each choice of the
3rd coordinate. The other subsets of type 2 follow from symmetric arguments.

Now suppose the set is of type 3, with the points h1, ḣ2, ḧ3 being on the first, second,
and third edge respectively, with corresponding partitions ξh1 ,ξḣ2

, and ξḧ3
. Then the

blocks of the meet partition ξh1,ḣ2
are of the form

{(g, aΦh1(g), bΦh2(aΦh1(g))) : g ∈ G}

For a, b running over G. Looking at the partition ξḧ3
, we see the blocks of the meet

partition ξh1,ḣ2,ḧ3
are of the form

{(g, aΦh1
(g), bΦh2

(aΦh1
(g))) : g ∈ G, g = cΦh3

(bΦh2
(aΦh1

(g)))}

for a, b, c running over G. Note that

cΦh3
(bΦh2

(aΦh1
(g))) = cΦh3

(b)Φh3h2
(a)Φh3h2h1

(g).

Furthermore, h3h2h1 = e, so Φh3h2h1 = ι, the identity function. This simplifies the
additional condition to

cΦh3
(b)Φh3h2

(a) = e.

We observe that for every choice of a, b ∈ G, there exists a unique c ∈ G satisfying the
condition, and this holds for all g ∈ G. Thus, we have |G|2 blocks of size |G|. The other
subsets of type 3 follow from symmetric arguments.

Now suppose the set is of type 4, with the points h1, ḣ2, ḧ3 being on the first, second,
and third edge respectively, with corresponding partitions ξh1 ,ξḣ2

, and ξḧ3
. Following

the previous case, we again get that the meet partitions ξh1,ḣ2,ḧ3
are of the form

{(g, aΦh1(g), bΦh2(aΦh1(g))) : g ∈ G, g = cΦh3(b)Φh3h2(a)Φh3h2h1(g)}

for a, b, c running over G. This time, however, we have h3h2h1 6= e, so Φh3h2h1
6= ι.

Therefore, by the assumption, Φh3h2h1 is fixed-point free, so it is an orthomorphism, i. e.,
g 7→ Φh3h2h1(g)g−1 is a permutation of G. So for each choice of a, b, c ∈ G there exists a
unique g such that the condition g = cΦh3

(b)Φh3h2
(a)Φh3h2h1

(g) holds. Therefore, there
are |G|3 singleton blocks. The other subsets of type 4 follow from symmetric arguments.

�

Note that if Φh3h2h1
is not fixed-point free for some h1, h2, h3 ∈ H for which h3h2h1 6=

e, then the above arguments fail and we do not get a legal partition representation.
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3. MAIN THEOREM

As we have seen, if H is a fixed-point free group, then Down(H) is partition repre-
sentable. In this section, we shall show that the converse is also true, i. e., if Down(H)
for n > 3 is partition representable, then H is fixed-point free. We first note that for
n > 3, the matroid Down(H) contains Dow3(H) as a minor by restriction (see for ex-
ample [10, Chapter 6.10]). Therefore, if Dow3(H) is not partition representable, then
neither is Down(H). Thus, it suffices to look only at Dow3(H). We now present and
prove our main theorem.

Theorem 3.1. If Dow3(H) constructed from a group (H, ·, e) has a partition represen-
tation (with order d > 2), then there exists a group (G, ◦ , 1 ) with d elements such that
Aut(G) contains an isomorphic copy of H that is fixed-point free.

In the following proof, only minimal changes have been made to Fero’s original proof.
Therefore, the proof is succinct, in accordance with his uncompromising style. For the
benefit of the readers, we provide several expansions with additional explanations in
Appendix A, marked after the relevant paragraphs.

P r o o f . Let ξ =
(
ξ1, ξ2, ξ3, (ξh)h∈H , (ξk̇)k∈H , (ξl̈)l∈H

)
be a configuration representing

Dow3(H) and having degree d > 2. Up to an isotopy, it can be assumed that ξ lives on
a set Ω = G 3 where G is a set with d elements, and that the blocks of ξ1/ξ2/ξ3 are of
the form

{g}×G×G / G×{g}×G / G×G×{g}, g ∈ G.

Since h ∈ H is on the line through {1, 2}, there exists a Latin partition ρh of G×G
such that the blocks of ξh have the form B×G, B ∈ ρh.[A.1] This means that B consists
of d couples such that each g ∈ G occurs in the first coordinate of a couple and in the
second coordinate of a couple. Hence, for a unique permutation φh,B of G

B = {(φh,B(y), y) : y ∈ G} , B ∈ ρh .

Analogously, the blocks of ξḣ are G×C where the blocks C = {(φḣ,C(z), z) : z ∈ G}
form a Latin partition ρḣ, and the blocks of ξḧ are {(x, g, φḧ,D(x)) : x, g ∈ G} where
D = {(φḧ,D(x), x) : x ∈ G} are blocks of a Latin partition ρḧ.

The restriction of Dow3(H) to {1, 2, 3, e, ė, ë} is M(K4). By Lemma 2.9, the set G can
be endowed with a group operation ◦ , such that, up to isotopy, the blocks of ξe/ξė/ξë
are ∆a ×G / G×∆a / {(y, g, x) : (x, y) ∈ ∆a, g ∈ G} where

∆a = {(x, y) : x ◦ y−◦ 1 = a} , a ∈ G .

Here, y−◦ 1 is the inverse of y in the operation ◦ on G. Let σ denote the partition of
G×G with the blocks ∆a, a ∈ G. Then, ρe = ρė = ρë = σ and φe,∆a = φė,∆a = φë,∆a

which is the mapping y 7→ a ◦ y, y ∈ G. In particular, φe,∆1
= ι.

Let lkh = e for h, k, l ∈ H, and B ∈ ρh, C ∈ ρk̇ and D ∈ ρl̈. If the block

BCD = {(x, y, z) : (x, y) ∈ B, (y, z) ∈ C, (z, x) ∈ D}
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of ξh ∧ ξk̇ ∧ ξl̈ is nonempty then it contains d triples (x, y, z) because h, k̇, l̈ are collinear
so that ξh ∧ ξk̇ ∧ ξl̈ has d2 blocks. Therefore,

φh,B • φk̇,C • φl̈,D = ι .[A.2] (2)

Recall that the transposition of a subset A of G × G is Atr = {(x, y) : (y, x) ∈ A},
and the partitions are transposed by transposing all blocks, e. g., σ is self-transposed.

The choice h−1eh = e, B ∈ ρh−1 , ∆1 ∈ ρė and D ∈ ρḧ renders

B∆1D = {(x, y, y) : (x, y) ∈ B, (y, x) ∈ D}

nonempty if and only if D = Btr.[A.3] Hence, ρtrh−1 = ρḧ and (2) reduces to

φh−1,B • ι • φḧ,Btr = ι , h ∈ H, B ∈ ρh−1 .

Similarly, the choice h−1he = e, B ∈ ρh−1 , C ∈ ρḣ and ∆1 ∈ ρë renders

BC∆1 = {(x, y, x) : (x, y) ∈ B, (y, x) ∈ C}

nonempty if and only if C = Btr. Hence, ρtrh−1 = ρḣ and

φh−1,B • φḣ,Btr • ι = ι , h ∈ H, B ∈ ρh−1 .

Third choice eh−1h = e, ∆1 ∈ ρe, B ∈ ρḣ−1 and D ∈ ρḧ renders

∆1BD = {(x, x, y) : (x, y) ∈ B, (y, x) ∈ D}

nonempty if and only if D = Btr. Hence, ρtr
ḣ−1

= ρḧ and

ι • φḣ−1,B
• φḧ,Btr = ι , h ∈ H, B ∈ ρḣ−1 .

It follows that if h ∈ H then ρh = ρḣ = ρḧ = ρtrh−1 and thus

φh,B = φḣ,B = φḧ,B = φ−1h−1,Btr , B ∈ ρh , (3)

known previously only for h = e. Then, (2) supplemented with quantification rewrites
to

φh,B • φk,C • φl,D = ι , lkh = e, B ∈ ρh, C ∈ ρk, D ∈ ρl s.t. BCD 6= ∅ . (4)

Given a partition ρh of G×G let A(h) denote its block containing the couple (1, 1).
Then A(h)tr = A(h−1) as ρh = ρtrh−1 .

Let Φ : h 7→ φ−1h,A(h) map H to the set of permutations of G. Since (1, 1, 1) belongs to

any A(h)A(k)A(l),

Φhk = φ−1hk,A(hk)

(4)
=φh−1,A(h−1) • φk−1,A(k−1) = φh−1,A(h)tr • φk−1,A(k)tr

(3)
=φ−1h,A(h)

• φ−1k,A(k) = Φh • Φk , h, k,∈ H ,
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using (4) with k−1h−1(hk) = e and (3).[A.4] Thus, Φ is a group homomorphism.
Let h ∈ H. To prove that Φh is an automorphism of G, let x ∈ G and D be the block

of ρh−1 that contains (x−◦ 1 , 1 ). Then

A(h)∆xD = {(y, φh,A(h)(y), x−◦ 1 ◦ φh,A(h)(y)) : y ∈ G, ... ∈ D}

contains (1, 1, x−◦ 1). Let z = zx = [φ−1h,A(h)(x
−◦ 1)]−◦ 1. Then

∆zA(h)D = {(y, z−◦ 1 ◦ y, φh,A(h)(z
−◦ 1 ◦ y) : y ∈ G, ... ∈ D}

contains (1, z−◦ 1, x−◦ 1). It follows that the mappings

y 7→ φ−1h,A(h)(x ◦ y) and y 7→ zx ◦ φ
−1
h,A(h)(y)

are identical. When y = 1 this specializes to φ−1h,A(h)(x) = zx . Thus,

Φh(x ◦ y) = φ−1h,A(h)(x ◦ y) = φ−1h,A(h)(x) ◦ φ−1h,A(h)(y) = Φh(x) ◦ Φh(y) , x, y ∈ G .[A.5]

If h 6= e then the restriction of Dow3(H) to {1, 2, e, h} is U2,4. Then, ρe 6= ρh implies
that Φ is injective. It remains to prove that Φh is an orthomorphism.[A.6] As any blocks
B ∈ ρh and ∆a ∈ ρe intersect in a unique couple, the equation φh,B(g) = a−◦ 1 ◦ g
has a unique solution g ∈ G. For B = A(h) this recasts to g = Φh(g)(a−◦ 1 ◦ g). This
means existence of a unique g such that a ◦ g = Φh(g). Thus, g 7→ Φh(g) ◦ g−◦ 1 is a
permutation. �

We are now able to derive our stated result as a corollary from Theorem 3.1 and
previously known results.

Corollary 3.2. A rank > 3 Dowling geometry of a non-trivial group H is partition
representable if and only if H is a Frobenius complement. This implies that for all n
and H, Down(H) is partition representable if and only if it is multilinearly representable.

P r o o f . For n > 3 and non-trivial H, we recall that Down(H) contains Dow3(H) as a
minor and that partition representations are minor closed. Therefore, if a rank n > 3
Dowling geometry of a group H is partition representable, then so is Dow3(H). Thus,
by Theorem 3.1, H is a subgroup of fixed-point free automorphisms. As explained, this
is equivalent to H being a Frobenius complement (see Remark 2.1, or see Remark 3.3
for a direct construction in this case).

In the other direction, we recall that all multilinearly representable matroids are
partition representable, and further recall that if H is a Frobenius complement, then
Down(H) is multilinearly representable. Hence, if H is a Frobenius complement, then
Down(H) is multilinearly representable and therefore partition representable.

Thus, for rank n > 3 and non-trivial H, Down(H) is partition representable if and
only if H is a Frobenius complement (equivalently, a fixed-point free group), which
matches the characterization for multilinear representability of Down(H) found in [1].
For the trivial cases with H = {ι} or rank n 6 2, Down(H) is linearly representable,
and therefore both multilinearly and partition representable. �
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Remark 3.3. The group Aut(G) is a subgroup of the symmetric group on G, together
with the group L(G) of left multiplications x 7→ gx, g ∈ G. Then, L(G)Aut(G) is a
subgroup as well (the holomorph of G, see [9, p. 320]). It contains L(G) as a normal
subgroup and L(G) ∩ Aut(G) = {ι}. In Theorem 3.1, H is embedded in Aut(G) as ΦH
which is fixed-point-free. Therefore, L(G)ΦH is a Frobenius group, ΦH is a Frobenius
complement and L(G) its kernel.
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946 F. MATÚŠ AND A. BEN-EFRAIM

A. ADDITIONAL EXPLANATIONS AND EXPANSIONS FOR THE PROOF

Explanation A.1. Since {1, 2, h} is a circuit, by definition the meet partition of ξ1 ∧ ξ2 ∧ ξh
contains d2 blocks of size d. Therefore, ξ1 ∧ ξ2 ∧ ξh = ξ1 ∧ ξ2, which clearly has blocks of the
form {g1} × {g2} ×G for g1, g2 ∈ G, and further ξ1 ∧ ξ2 ∧ ξh = ξ2 ∧ ξh = ξ1 ∧ ξh. This implies
that there exists a Latin partition ρh of G×G such that the blocks of ξh have the form B×G,
B ∈ ρh.

Expansion A.2. We first note that if lkh = e for h, k, l ∈ H, and B ∈ ρh, C ∈ ρk̇ and D ∈ ρl̈,
then

BCD = {(x, y, z) : (x, y) ∈ B, (y, z) ∈ C, (z, x) ∈ D}
is a block of ξh ∧ ξk̇ ∧ ξl̈. To see this, observe that if a partition refines ξh, ξk̇, and ξl̈ then in
each of its blocks all 3 conditions must hold for some B ∈ ρh, C ∈ ρk̇ and D ∈ ρl̈. On the other
hand, all the non-empty blocks BCD, for B ∈ ρh, C ∈ ρk̇ and D ∈ ρl̈ form a partition of Ω,
hence this must be the meet partition.

Next, if BCD is nonempty then it contains d triples (x, y, z), because h, k̇, l̈ are collinear, so
ξh ∧ ξk̇ ∧ ξl̈ has d2 blocks. Furthermore, the x in each triple is unique, because B is a block of a
Latin partition. Note that in BCD, by definition, x = φh,B(y), y = φk̇,C(z), and z = φl̈,D(x),

so x = φh,B(φk̇,C(φl̈,D(x))) for all x ∈ G. Therefore, whenever BCD is non-empty,

φh,B • φk̇,C • φl̈,D = ι . (5)

Explanation A.3. The choice h−1eh = e, B ∈ ρh−1 , ∆1 ∈ ρė and D ∈ ρḧ renders

B∆1D = {(x, y, y) : (x, y) ∈ B, (y, x) ∈ D}

nonempty if and only if D ∩ Btr 6= ∅. In this case |B| = |D|(A.2)
= |B∆1D| = |D ∩ Btr|, so this

holds if and only if D = Btr. For every B ∈ ρh−1 , the set {(x, y, y) : (x, y) ∈ B} is non-empty,
so there exists a block D ∈ ρh such that B∆1D 6= ∅. Thus, by size considerations, this block
is unique and equal to Btr.

Explanation A.4. First, note that (1, 1, 1) belongs to any A(h)A(k)A(l), because (1, 1) be-
longs to all three blocks. Thus, by using (4) with k−1h−1(hk) = e we get

φhk,A(hk) • φh−1,A(h−1)
• φk−1,A(k−1) = ι ⇒ φh−1,A(h−1)

• φk−1,A(k−1) = φ−1
hk,A(hk). (6)

Using this and (3) we find that

Φhk = φ−1
hk,A(hk)

(6)
=φh−1,A(h−1)

• φk−1,A(k−1) = φh−1,A(h)tr
• φk−1,A(k)tr

(3)
=φ−1

h,A(h)
• φ−1

k,A(k) = Φh • Φk , h, k,∈ H .

Expansion A.5. Let h ∈ H. To prove that Φh is an automorphism of G, fix x ∈ G and let D
be the block of ρh−1 that contains (x−◦ 1 , 1 ). Then

A(h)∆xD = {(y, φh,A(h)(y), x−
◦ 1 ◦ φh,A(h)(y)) : y ∈ G, (x−

◦ 1 ◦ φh,A(h)(y), y) ∈ D}

contains (1, 1, x−◦ 1). Since A(h)∆xD is a non-empty block of ξh∧ξė∧ξḧ−1 , it contains d triples,
and in particular a triple (y, φh,A(h)(y), x−◦ 1 ◦ φh,A(h)(y)) for every y ∈ G. Similarly, by setting
z = zx = [φ−1

h,A(h)(x
−◦ 1)]−◦ 1, we find that

∆zA(h)D = {(y, z−◦ 1 ◦ y, φh,A(h)(z
−◦ 1 ◦ y) : y ∈ G, (φh,A(h)(z

−◦ 1 ◦ y), y) ∈ D}
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contains (1, z−◦ 1, x−◦ 1), and so by similar consideration also has size d, i. e., a triple for each
y ∈ G. Note that the same block D is used in both cases, and therefore the set of pairs
{(x−◦ 1 ◦ φh,A(h)(y), y)}y∈G and {(φh,A(h)(z

−◦ 1 ◦ y), y)}y∈G are equal. It follows that the map-
pings

y 7→ φ−1
h,A(h)(x ◦ y) and y 7→ zx ◦ φ

−1
h,A(h)(y) (7)

are identical, and when y = 1 this specializes to

φ−1
h,A(h)(x) = zx. (8)

Note that Equations (7) and (8) hold for every x ∈ G. Thus,

Φh(x ◦ y) = φ−1
h,A(h)(x ◦ y)

(7)
= zx ◦ φ

−1
h,A(h)(y)

(8)
=φ−1

h,A(h)(x) ◦ φ−1
h,A(h)(y) = Φh(x) ◦ Φh(y) ,

x, y ∈ G .

Explanation A.6. A permutation ρ : G → G on a group G that fixes the identity is called
an orthomorphism if g 7→ g−1 ◦ ρ(g) is also a permutation. If ρ is an automorphism, then
equivalently g 7→ ρ(g) ◦ g−1 is a permutation.

Note that Φh is a permutation by definition and that we have shown that H ∼= Φ(H) 6
Aut(G). If Φh is an orthomorphism it implies that it is a fixed-point free automorphism:
g = Φh(g) ⇒ g−1 ◦ Φh(g) = 1 = 1−1 ◦ Φh(1), and since g 7→ g−1 ◦ Φh(g) is a permutation, it
implies that g = 1. Thus, proving that Φh is an orthomorphism shows that Φ(H) is a group of
fixed-point free automorphisms, completing the proof of Theorem 3.1.
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