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GLOBAL ROBUST OUTPUT REGULATION OF A CLASS
OF NONLINEAR SYSTEMS WITH
NONLINEAR EXOSYSTEMS

Yuan Jiang, Ke Lu, and Jiyang Dai

An adaptive output regulation design method is proposed for a class of output feedback
systems with nonlinear exosystem and unknown parameters. A new nonlinear internal model
approach is developed in the present study that successfully converts the global robust output
regulation problem into a robust adaptive stabilization problem for the augmented system.
Moreover, an output feedback controller is achieved based on a type of state filter which is
designed for the transformed augmented system. The adaptive control technique is successfully
introduced to the stabilization design to ensure the global stability of the closed-loop system.
The result can successfully apply to a tracking control problem associated with the well known
Van der Pol oscillator.
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1. INTRODUCTION

The goal of output regulation is to reject the disturbances and/or track the desired
trajectories. The disturbances as well as exotic signals is usually modeled as unknown
deterministic signals with known signal-generating dynamics. The problem of asymp-
totic rejection of sinusoidal disturbance, which is one kind of common deterministic
disturbance, has been widely studied [1, 7, 8, 10, 14]. However, many periodic distur-
bances are not sinusoidal, such as the Van der Pol oscillator, for which they can’t be
modeled as an output of a finite-dimensional linear exosystem.

Recently, some progress is reported on output regulation with nonlinear exosys-
tems [2, 3, 17, 19, 26]. Ramos et al. [26] presented a result in terms of sufficient conditions
of the state feedback generalized output regulation problem for nonlinear systems with
nonautonomous exosystem. Byrnes et al. [2] proposed an algorithm, which uses high
gain internal models, to ensure the semi-global output regulation of nonlinear exosys-
tems. Huang et al. [4] for the first time provided a framework to study the robust
output regulation problem with nonlinear exosystem. [4] is also the only paper which
actually addresses the existence of the steady state generator and internal model when
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the exosystem is nonlinear. Ding [6] proposed an output regulation algorithm for a class
of nonlinear systems in the output feedback form. A new nonlinear internal model was
constructed based on high gain design and the Hermite–Birkhoff interpolation. The ap-
proach was then extended to the application of circle criterion in [31]. Similarly, Chen
et al. [3] proposed an asymptotic rejection algorithm, which used the same internal
model as in [31], to achieve the asymptotic rejection of nonharmonic disturbances and
ensured semi-global stability of the whole systems. Jiang et al. [17, 19, 20] proposed
the asymptotic rejection algorithms to achieve the asymptotic rejection of nonharmonic
disturbances for some classes of uncertain nonlinear systems and ensured global stability
of the whole systems.

Recently, some progress was also reported on output regulation problem. Xu et
al. [32] studied the global robust output regulation problem of nonlinear output feed-
back systems with uncertain exosystems by error output feedback control. Then a novel
nonlinear internal model approach was developed which successfully converted the global
robust output regulation problem into a robust non-adaptive stabilization problem for
the augmented system. By means of a feedback regulator with the same characteristics,
Elena Zattoni et al. [32] investigated the problem of achieving output regulation with
closed-loop global asymptotic stability in hybrid systems with a continuous-time linear
dynamics subject to periodic state jumps. A main contribution of this work is to estab-
lish a new necessary and sufficient condition for problem solvability in strict geometric
terms. Wang et al. [30] studied the robust output regulation problem for a class of
invertible nonlinear MIMO systems. Then a robust regulator was proposed with the
combination of nonlinear internal model and a new extended high-gain observer. The
novelty of this approach results from the use of an extended observer to estimate, under
mild assumptions, all unmeasured terms. Marco et al. [22] dealed with the problem of
output regulation for left invariant systems defined on general matrix Lie-Groups. The
structure of proposed control law embeds a copy of the exosystem kinematics updated
by means of error measurements. A rigorous stability analysis was provided for both the
general case and the particular case of systems posed on the special orthogonal group
SO(3). Ngoc-Tu Trinh et al. [29] dealed with the PI control/regulation design for a
cascaded network of multi systems governed by hyperbolic partial differential equations.
Then the PI controllers were designed at junctions and were applied for each subsystem
of the network. Subsequently the exponential stability for the closed-loop systems and
the output regulation were proven by using the Lyapunov direct method.

But most of the studies in the above were concerned the global output regulation
of minimum-phase nonlinear systems. For the study of non-minimum phase nonlinear
systems, it has always been a hot issue in the field of control [5, 11, 12, 13, 21, 24, 28].
However, for the non-minimum phase nonlinear systems, the design of stabilizing con-
trollers is challenging. Recently, some progress was also reported on output regulation
problem for the non-minimum phase nonlinear systems. A.Isidori et al. [15] proposed
an internal model-based output feedback controller for non minimum phase systems and
presented a sufficient condition for the existence of an output feedback controller able
to semi-globally asymptotically stabilize the augmented system. A.Isidori et al. [16]
presented some further results on the semi-global output regulation of non-minimum
phase nonlinear systems. Nazrulla and Khalil [25] combined the tool with sliding mode
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control as well as extended high-gain observer and presentd an output feedback con-
troller for non-minimum phase systems. By using the method of slow integrators as
well as high-gain feedback, Huang et al. [9] presented a methodology for the regulation
of non-minimum-phase nonlinear systems. And the effectiveness of such methodology
was demonstrated on the nontrivial translational oscillator rotating actuator example.
Recently, Jiang et al. [18] presented a methodology for the output regulation of output
feedback systems with unknown frequency gain.

In this paper, we consider the global output regulation problem with nonlinear ex-
osystems via output feedback. In order to tackle the nonlinearity in the exosystem, we
exploit a new nonlinear internal model that can be used to estimate the disturbances.
This is a crucial step for solving the output regulation problem. In fact, this internal
model design method has been exploited recently for disturbance rejection problem in
our paper [17]. Of course there are differences between designing an internal model for
disturbance rejection problem and an internal model for output regulation problem, with
the later one being more challenging. On the other hand, the exosystems are of special
characteristics, which lead to specific conditions to be identified for the internal model
design. A general condition will also be specified for nonlinear terms in the dynamic
system, which allows more general nonlinear functions than polynomials.

The outline of the paper is as follows. Section 2 describes a class of uncertain nonlinear
systems with nonlinear exosystems as a disturbance source. Assumptions are also given.
The state transformation is introduced in Section 3, and the design of the internal
model is presented in Section 4. Section 5 presents global robust stabilization analysis
to determine the controller. Section 6 gives an example to demonstrate the whole design
procedure of the proposed method. Finally, the conclusion is given in Section 7.

2. PROBLEM FORMULATION

Considering the following single-input-single-output nonlinear systems which can be
transformed into the output feedback form

ẋ = Acx+ ϕ(y)a+D(w) + bu

y = Cx

e = y − q(w)

(1)

with

Ac =



0 1 0 · · · 0

0 0
... · · · 0

...
...

...
. . .

...
0 0 0 · · · 1
0 0 0 · · · 0

 , C
T =


1
0
...
0

 , b =



0
...
0
bρ
...
bn


,

where x ∈ Rn is the state vector, u ∈ R is the control input, y ∈ R is the output,
e ∈ R is the measurement output, a ∈ Rq and b ∈ Rn are the vectors of unknown
parameters, bρ 6= 0 indicates that the nonlinear system has a constant relative degree of ρ,



Global robust output regulation of a class of nonlinear systems 797

D : Rm → Rn, ϕ : R→ Rn×q with ϕ(0) = 0 and |ϕ(y1)− ϕ(y2)| ≤ ∆1(|y1|)σ1(|y1 − y2|)
and σ1(·) ∈ < and ∆1(·) is nondecreasing and the function σ1(·) is a known smooth
function, q(w) is an unknown polynomial of w and w ∈ Rm is a nonharmonic periodic
disturbance vector which is generated from a nonlinear exosystem:

ẇ = s(w). (2)

Remark 1. The assumption about the function ϕ is satisfied for various types of
functions, for example, the polynomial functions.

Assumption 1. The system is of minimum phase, i. e., the polynomial <(s) =
n∑
i=ρ

bis
n−i

is Hurwitz, and the high frequency gain bρ is known.

Assumption 2. The flows of vector field s(w) are bounded and converged to periodic
solutions.

Remark 2. On the basis of Assumption 2, the periodic solutions of the exosystems
may include multiple functions, such as harmonic functions and limit cycles of nonlinear
dynamic systems.

The output regulation problem that we are going to solve is to find a finite dimensional
system

µ̇ = v(µ, e(t)),

u = u(µ, e(t))
µ ∈ Rs

such that for every x(0) ∈ Rn, w(0) ∈ Ω ⊂ Rm, x(t), µ(t) and u(t) are bounded ∀t ≥ 0,
and limt→∞ e(t) = 0.

Motivated by the results in [1], the following assumption is proposed in order to solve
the output regulation problem.

Assumption 3. There exist $(w) ∈ Rn and ι(w) with $1(w) = q(w) for each a, b
such that

∂$

∂w
s(w) = Ac$ + ϕ(q(w))a+D(w) + bι(w).

Assumption 4. There exists a positive integer r and an odd locally Lipschitz function
γ : Ω→ R such that

drν(t)

dtr
− γ(ν, ν̇, · · · , ν(r−1)) = 0 (3)

where Ω ∈ Rr is a compact subset. In addition, there exists a positive number %, such
that |γ(ρ1)− γ(ρ2)| ≤ % ‖ρ1 − ρ2‖, where ρ1, ρ2 ∈ Rr.

Remark 4. Assumption 4 is motivated by [8]. We note that the disturbances satisfying
Assumption 4 are more general.
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3. STATE TRANSFORM

For the system with relative degree ρ > 1, we introduce a state transform that is based
on the filtered transform in [33] to put the system in the following form

ż = Az + Ξe+ Ω(y, w, d)a

ẏ = z1 + d2
d1
y + ϕ1(y)a+D1(w) + bρξ1

(4)

where z ∈ Rn−1, a ∈ Rq, ξ1 is the output of an input filter, with λi > 0

ξ̇i = −λ1ξi + ξi+1, for i = 1, · · · , ρ− 2

ξ̇ρ−1 = −λρ−1ξρ−1 + u. (5)

Lemma 1. (Xi and Ding [31]) Under Assumption 3 there exists π(w) ∈ Rn−1 along
the trajectories of exosystem satisfying

dπi(w(t))

dt
= −di+1

d1
π1(w(t)) + πi+1(w(t)) + q(w(t))× (

di+2

d1
− di+1d2

d21
) +Di+1(w(t))

−D1(w(t))× di+1

d1
+ (ϕi+1(q(w(t)))− di+1

d1
ϕ1(q(w(t))))a, i = 1, · · · , n− 2

dπn−1(w(t))

dt
= −dn

d1
π1(w(t))− dnd2

d21
q(w(t)) + (ϕn(q(w(t)))− dn

d1
ϕ1(q(w(t))))a

+Dn(w(t))− dn
d1
D1(w(t)).

Based on the above Lemma 1, we have

∂q(w)

∂w
s(w) = π1(w) +

d2
d1
q(w) + ϕ1(q(w))a+D1(w) + bρα(w).

With ξ1 viewed as the input, α(w) is the feedback term used for output regulation to
tackle the disturbances, and it is given by

α(w) = b−1ρ (
∂q(w)

∂w
s(w)− π1(w)− d2

d1
q(w)− ϕ1(q(w))a−D1(w)).

We now introduce the last transformation based on the invariant manifold with

z̃ = z − π(w(t)),

finally, we have the model for the control design{
˙̃z = Az̃ + Ξe+ Ω(y, w, d)a

ė = z̃1 + d2
d1
e+ (ϕ1(y)− ϕ1(q(w)))a+ bρ(ξ1 − α(w))

(6)



Global robust output regulation of a class of nonlinear systems 799

where

A =

 −
d2
d1

1 · · · 0
...

...
. . .

...

−dnd1 0 · · · 0


Ξ =

(
d3
d1
− d22
d21
, · · · , dn

d1
− dn−1d2

d21
,−dnd2

d21

)T

Ω(y, w, d) =

 ϕ2(y)− ϕ2(q(w))− d2
d1

(ϕ1(y)− ϕ1(q(w)))
...

ϕn(y)− ϕn(q(w))− dn
d1

(ϕ1(y)− ϕ1(q(w)))

 .

Lemma 2. (Xi and Ding [31]) There exist a known function ζ(·) which is nondecreas-
ing and an unknown constant ∆ which is dependent on the initial state w0 of exosystem,
such that {

|Ω(y, w, d)| ≤ ∆ |e| ζ(|e|)

|ϕ1(y)− ϕ1(q(w))| ≤ ∆ |e| ζ(|e|).

Considering a Lyapunov function Vz = z̃TP0z̃, where

P0A + ATP0 = −I.

Assuming 2xy ≤ rx2+r−1y2 or xy ≤ rx2+(4r−1)y2 for x > 0, y > 0, r being any positive
real constant and ζ2(|e|) ≤ ζ2(1 + e2), there exist unknown positive real constants δ1, δ2
such that

V̇z = −z̃T z̃ + 2z̃TP0(Ξe+ Ω(y, w, d)a)

≤ −3

4
z̃T z̃ + δ1e

2 + δ2e
2ζ2(1 + e2) (7)

note that

2z̃TP0Ξe ≤ 1

8
z̃T z̃ + 8eTΞTP 2

0 Ξe ≤ 1

8
z̃T z̃ + δ1e

2

and

2z̃TP0Ω(y, w, d)a ≤ 1

8
z̃T z̃ + 8aTΩTP 2

0 Ωa ≤ 1

8
z̃T z̃ + δ2 |Ω|2

≤ 1

8
z̃T z̃ + δ2∆2e2ζ2(|e|) ≤ 1

8
z̃T z̃ + δ2e

2ζ2(1 + e2).

4. INTERNAL MODEL DESIGN

To solve the problem, we need an assumption on the structure of the exosystem. Firstly,
we define

θ = col(ν, ν̇, · · · , ν(r−1)). (8)
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Then, there exists an immersion of the exosystem

θ̇ = Fθ +Gγ(θ)

α = ψθ
(9)

where θ ∈ Rr,

F =


0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 , G =


0
0
...
0
1

 , ψT =


1
0
...
0
0

 .
We select any controllable pair (M,N) with M ∈ Rr×r, N ∈ Rr, where M is Hurwitzian
and has disjoint spectra with F . Because the pair (ψ, F ) is observable, there exists a
unique and nonsingular matrix T satisfying the Sylvester equation

TF −MT = Nψ. (10)

Assuming ϑ = Tθ, we have

ϑ̇ = TFT−1ϑ+ TGγ(T−1ϑ), α = ψT−1ϑ. (11)

We design the internal model as

η̇ = M(η − b−1ρ Ne) + TGγ(T−1(η − b−1ρ Ne)) +Nξ1, (12)

where N ∈ Rr, because M is Hurwitzian, there exists a positive matrix P and Q satis-
fying

PM +MTP = −Q,

ηTQη ≥ γ0‖η‖2, γ0 > 0.

We consider the mismatch between the states of (11) and (12), and define an auxiliary
error as

η̃ = ϑ− η + b−1ρ Ne.

It follows that

˙̃η = Mη̃ + TGγ(T−1ϑ)− TGγ(T−1(η − b−1ρ Ne))

+ b−1ρ N [z̃1 +
d2
d1
e+ (ϕ1(y)− ϕ1(q(w)))a].

Let Vη = η̃TP η̃, where % and γ0 are two positive reals. Then there exists unknown
positive real constants δ3 and δ4 such that

V̇η = −η̃TQη̃ + 2η̃TPTG(γ(T−1ϑ)− γ(T−1(η − b−1ρ Ne)))

+ 2η̃TPb−1ρ N(ϕ1(y)− ϕ1(q(w)))a+ 2η̃TPb−1ρ N(z̃1 +
d2
d1
e)

≤ −3

4
γ0‖η̃‖2 + %‖η̃‖2 +

12

γ0
b−2ρ z̃21 + δ3e

2 + δ4e
2ζ2(1 + e2). (13)



Global robust output regulation of a class of nonlinear systems 801

5. CONTROL DESIGN

From (11) we have

α = λ1ϑ1 + λ2ϑ2 = λ1(η̃1 + η1 − b−1ρ Ne) + λ2(η̃2 + η2 − b−1ρ Ne), λ1, λ2 ∈ R.

Then from (6) we have

ė = z̃1 +
d2
d1
e+ (ϕ1(y)− ϕ1(q(w)))a+ ξ̄1 + bρ(ξ̃1 − λ1(η̃1 + η1)

− λ2(η̃2 + η2) + (λ1 + λ2)b−1ρ Ne)

where ξ̃1 = ξ1 − ξ̂1 and ξ̂1 = b−1ρ ξ̄1.

For the virtual control ξ̂1, we design ξ̄1 as, with c > 0

ξ̄1 = −ce+ bρ(λ1η1 + λ2η2)− (λ1 + λ2)Ne− l̂e(1 + ζ2(1 + e2)) (14)

where l̂ is an adaptive coefficient with l̂(0) = 0. Then we have the resultant error
dynamics

ė = z̃1 − ce+
d2
d1
e− l̂e(1 + ζ2(1 + e2)) + (ϕ1(y)− ϕ2(q(w)))a+ bρ(ξ̃1 − λ1η̃1 − λ2η̃2).

Then for Ve = 1
2e

2, there exists unknown positive real constants δ5 and δ6 and a suffi-
ciently large unknown positive constant β such that

V̇e = −ce2 + ez̃1 +
d2
d1
e2 + ebρ(ξ̃1 − λ1η̃1 − λ2η̃2)

+ e(ϕ1(y)− ϕ1(q(w)))a− l̂e2(1 + ζ2(1 + e2))

≤ −ce2 +
1

8
βz̃21 +

1

4
γ0 |η̃|2 + δ5e

2 + δ6e
2ζ(1 + e2)

− l̂e2(1 + ζ2(1 + e2)) + bρeξ̃1. (15)

If the relative degree ρ = 1, we set u = ξ̂1. For ρ > 1, the adaptive backstepping
method can be used to obtain the following results:

ξ̂2 = −bρe− c1ξ̃1 − k1(
∂ξ̂1
∂e

)2ξ̃1 +
∂ξ̂1
∂e

[bρ(ξ1 − λ1η1 − λ2η2) + (λ1 + λ2)Ne]

+
∂ξ̂1
∂η̂

˙̂η +
∂ξ̂1

∂l̂

˙̂
l

ξ̂i = −ξ̃i−2 − ci−1ξ̃i−1 − ki−1(
∂ξ̂i−1
∂e

)2ξ̃i−1 +
∂ξ̂i−1
∂e

[bρ(ξ1 − λ1η1 − λ2η2)

+ (λ1 + λ2)Ne] +
∂ξ̂i−1
∂η̂

˙̂η +
∂ξ̂i−1

∂l̂

˙̂
l, for i = 3, . . . , ρ, (16)
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where ξ̃ρ = u− ξ̂ρ, ξ̃i = ξi− ξ̂i for i = 2, . . . , ρ−2, ci and ki, i = 2, . . . , ρ−1, are positive

real design parameters. When i = ρ, the control input appears in the dynamics of ξ̃i
through the term ξ̃ρ. Finally, we design the control input by setting ξ̃ρ = 0, which gives

u = ξ̂ρ. (17)

In the following sections, we will establish the boundedness of all the variables and
the convergence to zero of the measurement output.

Define a Lyapunov function candidate

V = βVz + Vη + Ve +
1

2
γ−1(l̂ − l)2 +

1

2

ρ−1∑
i=1

ξ̃2i (18)

where the positive real β is chosen, with the design of ξ̂i, for i = 1, . . . , ρ, the dynamics
of ξ̃i can be evaluated easily. According to the dynamics of Vz in (7), the dynamics of
Vη in (13), the dynamics of Ve in (15), and the virtual controls which designed in the
above, we have the derivative of V as

V̇ ≤ −βz̃T z̃ − γ0‖η̃‖2 − ce2 + β(δ1e
2 + δ2e

2ζ2(1 + e2)) + δ3e
2

+ δ4e
2ζ2(1 + e2) + δ5e

2 + δ6e
2ζ2(1 + e2)− l̂e2(1 + ζ2(1 + e2)) + bρeξ̃1

+ γ−1(l̂ − l) ˙̂
l − bρeξ̃1 +

ρ−1∑
i=1

[−ciξ̃2i − gi(
∂ξ̂i
∂e

)2ξ̃2i

− ξ̃i(
∂ξ̂i
∂e

)(z̃1 +
d2
d1
e+ (ϕ1(y)− ϕ1(q(w)))a) + ξ̃i(

∂ξ̂i
∂e

)bρ(λ1η̃1 + λ2η̃2)].

(19)

By using the inequalities 2xy ≤ rx2 + r−1y2 or xy ≤ rx2 + (4r−1)y2 for x > 0, y > 0
and r being any positive real constant, the stability analysis could be proceeded to deal
with the cross terms between the variables η̃, z̃, e, ξ̃ for i = 1, . . . , ρ − 1. Then we let
l = β(δ1 +δ2)+δ3 +δ4 +δ5 +δ6, which is an unknown positive real constant. And define

˙̂
l = γe2(1 + ζ2(1 + e2)). (20)

It can be shown that there exist sufficiently big positive real constants β ≥ ( 96
5γ0

)b−2ρ and

% ≤ 1
4γ0 such that the following result holds

V̇ ≤ −ce2 − β‖z̃‖2 − 1

4
γ0‖η̃‖2 −

ρ−1∑
i=1

ciξ̃
2
i . (21)

The boundedness of V further implies η̃, z̃, e, ξ̃ ∈ L2 ∩ L∞ for i = 1, . . . , ρ − 1,
and the boundedness of l. Since the disturbance w is bounded, η̃, z̃, e ∈ L∞ implies the
boundedness of y, z, η, which further implies the boundedness of ξ̂1 and the boundedness
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of ξ1. The boundedness of ξ̂1 and ξ1, together with the boundedness of e, η, l, implies
the boundedness of ξ̂2 and then the boundedness of ξ2 follows the boundedness of ξ̃2.
Applying the above reasoning recursively, we can establish the boundedness of ξ̂i for
i = 2, . . . , ρ−1. Then we can conclude that all the variables are bounded. Furthermore,

together with the derivatives of ˙̃η, ˙̃z, ė,
˙̃
ξ are bounded, by invoking Barbalat’s lemma, we

have limt→∞ z̃ = 0, limt→∞ η̃ = 0, limt→∞ e = 0 and limt→∞ ξ̃ = 0. The result of this
section is summarized in the following.

Theorem 1. For the uncertain nonlinear systems (1) with nonlinear exosystem (2),
satisfying Assumption 1-4, reveals that the feedback control system that consists of the
ξ filters (5), the nonlinear internal model (12), the control input (17), and the adaptive
law (20) can solve the global robust output regulation problem.

6. ILLUSTRATIVE EXAMPLE

We use a simple example to illustrate the proposed control design, concentrating on the
design of nonlinear internal model. Considering a first order system

ẏ = y + ` sin y − ` sinw1 + w2 + u

e = y − w1

where ` is an unknown parameter, the nonharmonic periodic disturbance α = −w1 is
the output of the following Van der Pol oscillator:

ẇ1 = w2

ẇ2 = −w1 + 0.5(1− w2
1)w2.

Then, it is easy to show that ν satisfies the following equation:

ν̈ + ν − 0.5ν̇(1− ν2) = 0.

Let

γ(ν, ν̇) = −ν + 0.5ν̇(1− ν2), θ = col(ν, ν̇)

and {
q(w) = w1

π = w1.

From the exosystem and the desired feedforward input α, it can be seen that θ is in the
format of (9) with

F =

[
0 1
0 0

]
, G =

[
0
1

]
, ψ =

[
1 0

]
, T =

[
−0.5 2.75
−1 1

]
.

Let
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M =

[
−2 5
0 −1

]
, N =

[
4 −1

]T
.

We can easily verify that (M,N) is a pair of controllable matrices with M being Hurwitz.
Then based on the proposed control method, the internal model is designed as the
following

η̇1 = −2(η1 − 4e) + 5(η2 + e) + 2.75γ(0.4444(η1 − 4e)− 1.2222(η2 + e)) + 4u

η̇2 = −(η2 + e) + γ(0.4444(η1 − 4e)− 0.2222(η2 + e))− u.

The control input is given by

u = −c0e+ 0.4444η1 − 1.2222η2 − l̂e(1 + (1 + e2)2)

˙̂
l = γe2(1 + (1 + e2)2).

In the simulation, the initial condition is set to be c0 = 10, ` = 10, γ = 10, and
the initial state is w1(0) = 2, w2(0) = 2, y(0) = 1. The phase portrait of Van der
Pol oscillator, the system error output, the control input, the feedforward term and its
estimation are shown in Figs.1-4 respectively. As illustrated in the figures, the diturbance
is well reproduced by the designed nonlinear internal model, and the system error is
regulated to zero.
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2

Fig. 1. Phase portrait of the exosystem.
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Fig. 4. Disturbance α(t) and its estimate.

7. CONCLUSIONS

We have proposed a new control design method for output regulation with nonlinear
exosystems, and a new nonlinear internal model is proposed. With the proposed internal
model design, the global robust output regulation problem has been solved for a class of
nonlinear output feedback systems. The proposed controller ensures that all the signals
in the closed-loop system are bounded and the measurement output converges to zero.
Simulation results demonstrates the effectiveness of our algorithm.
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