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TOPOLOGY DESIGN FOR GROUP CONSENSUS
IN DIRECTED MULTI-AGENT SYSTEMS

Onur Cihan

In this paper, we investigate the grouping behavior of multi-agent systems by exploiting the
graph structure. We propose a novel algorithm for designing a network from scratch which
yields the desired grouping in a network of agents utilizing a consensus-based algorithm. The
proposed algorithm is shown to be optimal in the sense that it consists of the minimum number
of links. Furthermore, we examine the effect of adding new vertices and edges to the network
on the number of groups formed in the group consensus problem. These results can be further
utilized by the network topology designer to restructure the network and achieve the desired
grouping. Theoretical results are illustrated with simulation examples.
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1. INTRODUCTION

The consensus problem has received considerable critical attention in recent past due
to its applicability in different fields including social networks [5, 11], wireless sensor
networks [20], computer networks [2], power grids [22], distributed decision making [21],
distributed optimization [16] and robotics [3, 15]. In particular, consensus algorithms are
widely used in multi-robot systems in formation control [1, 14, 25], orientation control
[17], containment control [4], trajectory tracking [26], rendezvous problem [8] and task
allocation [6].

In the classical consensus problem, all agents in the multi-agent system are required
to agree on the same state, which is generally a physical quantity such as position or
velocity. The stability conditions of consensus algorithms can be classified into two
groups: i) the parametric conditions, and ii) the conditions related to network topology.
While the parametric conditions may differ from algorithm to algorithm, the topological
conditions are explicitly defined in the literature. Olfati-Saber and Murray show that
an undirected network must be connected and a directed network must have a spanning
tree in order to reach consensus [18]. When the network structure fails to satisfy these
conditions, the agents do not agree on the same value and multiple groups are formed.
In this case, the agents in a group achieve consensus with the agents in the same group
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whereas the agreement values of the groups are different. Although the number of groups
is equal to the number of connected components in an undirected network, as we have
shown in our previous study, the graph structure must be exploited in order to determine
the number of groups in a directed network [10]. Since there are important applications
of group consensus in multi-agent systems (e. g., groups with different opinions in social
networks, containment control of multi-robot networks), the problem of topology design
for group consensus needs to be properly addressed.

In [10], we have introduced the novel concepts of primary and secondary layer sub-
graphs1 that are further utilized to express the number of groups to be formed. It is
also shown that agents in a particular subgraph achieve consensus with the agents in the
same group, i. e., one can determine the total number of groups and the agents in each
group in a multi-agent network with directed topology by using these concepts. While
there are studies related to the effect of adding edges to an acyclic graph on the consen-
sus performance [24] and the effect of cycles on the H2 performance of the networks [23],
to the best of our knowledge, no study has addressed the question of how to design a
directed network from scratch and modify an existing one to achieve the desired number
of groups in the multi-agent network and group members in each group.

The main contributions of the paper can be summarized as follows:

1. The minimum number of links required to obtain a network with the desired
numbers of primary and secondary layer subgraphs are expressed mathematically.

2. An algorithm, which can be used to design a directed network with the desired
number of groups and the desired number of agents in each group from scratch, is
proposed. This algorithm is shown to be optimal in the sense that the generated
graph consists of the minimum number of links for the given setting.

3. Given an arbitrary graph, the number of links required to obtain a graph with
a spanning tree is obtained. In a social network, this result can be utilized to
determine the individuals with high strategic importance (the influencers).

4. The effect of creating new links and adding new agents to the multi-agent network
with a directed graph is investigated. By this means, the topology designer can
determine the required modifications on the existing network to achieve the desired
grouping.

The remainder of the paper is organized as follows. In Section 2, we review the concepts
of graph theory and give the mathematical formulation of the consensus algorithms. In
Section 3, we study the topology design problem and propose an algorithm that can be
used to obtain a directed network with the desired number of groups and the desired
agents in each group. The analysis of modifications on the network topology is given
in Section 4 which is further verified by a numerical example. Finally, we conclude the
paper in Section 5.

2. MATHEMATICAL PRELIMINARIES

In this section, we review some important graph theory concepts and introduce the
mathematical formulations of well-known consensus protocols in multi-agent networks.

1The definitions of the primary and secondary layer subgraphs are given in Section 2.
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2.1. Graph theory concepts

The information flow in a multi-agent network is represented by a directed graph G =
(V, E) where V = {v1, . . . , vn} is a non-empty finite set of vertices representing the
agents where n is the total number of the agents in the network; and E is a finite set of
edges representing the communication between the agents. An edge, denoted by (vi, vj)
or eij , shows a directed information flow from vi to vj , i. e., vj receives information
of vi in one step. We denote the adjacency matrix of a graph G by A = [aij ] where
aij > 0 if eji ∈ E and aij = 0 otherwise. Let the set of neighbors of vi be defined as
Ni = {j | (vj , vi) ∈ E}. Let the empty set be denoted by ∅ and the set of vertex indices
be denoted by I = {1, 2, . . . , n}.

We say there is a directed path between v1 and vn if there exists a finite sequence
of ordered edges of the form (v1, v2), (v2, v3), . . . , (vn−1, vn) such that (vi, vi+1) ∈ E ,
i = 1, . . . , n − 1. A directed graph has a spanning tree if each vertex has one parent
vertex except for one vertex, called the root, which has a directed path to all other
vertices in the graph. Note that we use the concepts of agent and vertex interchangeably
throughout the paper.

2.2. Mathematical model of consensus algorithms

In this section, we introduce the discrete-time and continuous-time mathematical models
of the averaging based consensus algorithm.

2.2.1. Discrete-time consensus algorithm

In a multi-agent network consisting of n agents, the first-order agent dynamics can be
expressed in discrete-time as

xi(k + 1) = wiixi(k) +
∑
j∈Ni

wijxj(k), i ∈ I (1)

where xi(k) ∈ Rm is the state vector of the ith agent at time step k and wij is the
non-negative averaging coefficient related with the information flow between agents j
and i.

Assumption 2.1. The averaging coefficients are assumed to satisfy the conditions be-
low:

(i) wii > 0,∀i ∈ I.

(ii) wij

{
> 0, if (vj , vi) ∈ E ,
= 0, if (vj , vi) /∈ E ,

i, j ∈ I, i 6= j.

(iii)
∑n

j=1 wij = 1,∀i ∈ I.

Assumption 2.1(i) requires that the agent uses its own data in its update. Assumption
2.1(ii) states that the information coming from a neighbor should be used with strictly
positive weighting. Assumption 2.1(iii) is required to guarantee the stability of the
consensus algorithm.



Topology design for group consensus in directed multi-agent systems 581

2.2.2. Continuous-time consensus algorithm

In a multi-agent network consisting of n agents, the first-order agent dynamics can be
expressed in continuous-time as

ẋi(t) =
∑
j∈Ni

aij(xj(t)− xi(t)), i ∈ I (2)

where xi(t) ∈ Rm is the state vector of the ith agent at time t and aij ≥ 0 is the (i, j)th
component of the weighted adjacency matrix A.

A well-known stability condition of the (discrete-time and continuous-time) consensus
algorithms is the existence of a spanning tree in the multi-agent network [18, 19]. When
the network graph does not contain a spanning tree, the agents do not agree on the
same state and the multi-agent network automatically achieve group consensus, whose
definition is given as follows.

Definition 2.2. (Group Consensus) We say that the network represented by system
(1) (or equivalently, (2)) achieves K-group consensus if there exist K distinct constant
vectors cl ∈ Rm, and K non-empty sets Sl, l = 1, . . . ,K, such that

K⋃
l=1

Sl = V, Sl ∩ Sq = ∅, for l 6= q, and l, q = 1, . . . ,K

and for the set Sl we have

lim
k→∞

||xi(k)− cl|| = 0, ∀vi ∈ Sl, i = 1, . . . , n

for arbitrary initial conditions xi(0) ∈ Rm (i ∈ I) and arbitrary choice of averaging co-
efficients wij satisfying Assumption 2.1 (or equivalently, arbitrary choice of non-negative
weighted adjacency matrix components aij).

Definition 2.2 delineates that the multi-agent network forms K groups if the states of
the agents asymptotically converge to K distinct equilibria. We would like to emphasize
that this grouping behavior is not related to the choice of parameters, but due to the
structure of the directed graph as illustrated in the following example.

Example 2.3. Consider the multi-agent system depicted in Figure 1 where the objective
of the agents is to gather at the same location (rendezvous problem). Suppose that the
initial positions of the agents (xi(0) ∈ R2) are randomly distributed in two-dimensional
space as shown in Figure 2a.

When the agents utilize the consensus algorithm (1), the positions of the agents at
k = 10 and k = 100 are illustrated in Figure 2b and 2c, respectively. As can be seen from
the figure, the multi-agent network forms 8 groups where the agents in the same group
gather at the same location. While it is not straightforward to directly conclude these
groups from the structure of the network (see Figure 1), the groups and their members
can be determined by utilizing the definitions of primary and secondary layer subgraphs
which were first introduced in [10] and restated in Definition 2.5.
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Fig. 1: A directed graph G consisting of 25 vertices and 38 edges.

Remark 2.4. Note from Definition 2.2 that the states of the agents in different groups
converge to different values and the averaging coefficients wij are non-negative by As-
sumption 2.1 in the group consensus problem. On the other hand, in coopetition net-
works, the weighting coefficients can be positive or negative depending on whether the
agents cooperate or not. In such networks, bipartite consensus and fragmentation prob-
lems are defined where multiple groups may be formed [12, 13]. Note that the averaging
coefficients play a key role in determining the groups in the bipartite consensus and
fragmentation problems whereas the groups are solely determined by the network struc-
ture in the group consensus problem. Furthermore, unlike the bipartite consensus and
fragmentation problems, the existence of a spanning tree is not an assumption in the
group consensus problem.

Definition 2.5. (Primary and secondary layer subgraphs Erkan et al. [10]) A directed
graph, G = (V, E), can be uniquely partitioned into K = lp + ls subgraphs such that

(i) lp subgraphs, denoted by Gp,i = (Vp,i, Ep,i), i = 1, . . . , lp, consist of a spanning tree
with the maximum possible number of vertices where there is no directed path
from a vertex in V \ Vp,i to the vertices in Vp,i, and

(ii) ls subgraphs, denoted by Gs,j = (Vs,j , Es,j), j = 1, . . . , ls, consist of a spanning
tree where there exist at least two directed paths from vertices of two different
subgraphs to the root of Gs,j which is the only vertex to receive information from
the vertices in V \ Vs,j .

The subgraphs Gp,i (i = 1, . . . , lp) and Gs,j (j = 1, . . . , ls) are called the primary layer
subgraphs and the secondary layer subgraphs of G, respectively. Note that, there may
exist multiple spanning trees with different root vertices for both primary and secondary
layer subgraphs. However, for the secondary layer subgraphs, there is a unique root that
receives information from the rest of the graph which we call the principal root of the
subgraph and denote by rGs,j .
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(a) Initial positions of the agents.
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(b) Positions of the agents at k = 10.
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(c) Positions of the agents at k = 100.

Fig. 2: Evolution of the agent positions in Example 2.3.
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Note here that with the above definition, each vertex in G will either be in a primary
or a secondary layer subgraph and these subgraphs can be uniquely determined [9,
10]. Note also that an isolated vertex is a primary layer subgraph itself by definition.
These definitions are utilized in the following Lemma which states the conditions on the
topology where the network forms K groups.

Lemma 2.6. (Erkan et al. [10], Develer and Akar [7]) Consider a directed graph
G consisting of lp primary and ls secondary layer subgraphs. Then the multi-agent
network with dynamics (1) (or equivalently (2)) forms K = lp + ls groups. Furthermore,
the agents in a particular primary (or secondary) layer subgraph achieve consensus with
the agents in the same primary (or secondary) layer subgraph.

The proof of Lemma 2.6 can be found in [7, 10]. The relationship between the final
values of the agents in the primary and secondary layer subgraphs is stated in the
following Lemma.

Lemma 2.7. Let G denote a directed graph representing a network with agent dynamics
(1) (or equivalently (2)). Let Ip,i and Is,j denote the sets of indices of the vertices in the
ith primary and jth secondary layer subgraph of G, respectively. Let vi ∈ Rm denote the
consensus values of the agents in the ith primary layer subgraph, i. e., limk→∞ xj(k) = vi
for all j ∈ Ip,i. Then

lim
k→∞

xl(k) =

lp∑
i=1

αijvi for all l ∈ Is,j

where αij ≥ 0 for all i, j; and
∑lp

i=1 αij = 1 for all j.

Remark 2.8. The proof of Lemma 2.7 can be found in [7]. We conclude from Lemma
2.7 that the states of the agents in the secondary layer subgraphs eventually converge to
a convex combination of the final values of the agents in the primary layer subgraphs.
This result can be verified by Example 2.3 where the positions of the agents in the
secondary layer subgraphs are in the convex hull of the positions of the agents in the
primary layer subgraphs (see Figure 2c).

Remark 2.9. As stated in Lemma 2.6, the number of groups in the multi-agent network
is related to the numbers of primary and secondary layer subgraphs, i. e., the structure of
the directed network. In practical applications where a conventional consensus algorithm
is used, the topology design arises as an important problem since the groups and the
group members need to be determined by the topology designer. For instance, in the
containment control problem (which finds applications in dangerous material handling
and cooperative transportation), the topology designer must determine the number of
leader and follower groups (primary and secondary layer subgraphs), and the agents in
each group. Once the topology is designed properly, the agents in the leader groups can
be equipped with necessary sensors that can detect hazardous obstacles and consequently
the agents in the follower groups (that are not equipped with sensors) will be able to
move safely inside the convex hull formed by the leader groups [4].
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Fig. 3: The primary and the secondary layer subgraphs of G.

Remark 2.10. In previous studies, it is shown that the number of groups formed in
a multi-agent network with agent dynamics (1) or (2) is defined as K = lp + ls, i. e.,
the sum of the number of primary and secondary layer subgraphs [9, 10]. One of the
main objectives of this paper is to design an algorithm that can be used to generate
a directed graph with the desired numbers of primary and secondary layer subgraphs,
and the desired numbers of agents in each subgraph. By this means, the number of
groups and the members in each group can be explicitly determined by the network
topology designer. Moreover, we also investigate the effect of adding new agents to the
network and building new links between the agents on the number of groups, which can
be further used to modify an existing graph in order to satisfy given design criteria.

Remark 2.11. In our previous study, we have proposed two algorithms to determine
the primary and secondary layer subgraphs of a given directed graph [10]. While these
algorithms are sufficient for detection, they need to be modified as given in the Appen-
dices (see Algorithms 2 and 3) to be further utilized in the topology design.

Example 2.12. Reconsider the multi-agent network consisting of 25 agents as depicted
in Figure 1. Algorithms 2 and 3 can be utilized to conclude that there exist lp = 3
primary and ls = 5 secondary layer subgraphs in the network as shown in Figure 3. Note
that the roots of the primary layer subgraphs and the principal roots of the secondary
layer subgraphs are marked with squares whereas other vertices are marked with circles.
Note here also that while there may be more than one vertex which is a root in a
primary layer subgraph, the principal roots of the secondary layer subgraphs are unique
by Definition 2.5.
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3. TOPOLOGY DESIGN IN A MULTI-AGENT NETWORK FROM SCRATCH

In this section, we discuss the topology design problem of an arbitrary directed graph
with the desired number of primary and secondary layer subgraphs and the desired
number of vertices in each subgraph. To this end, we state the following theorem which
will be further utilized in the topology design algorithm.

Theorem 3.1. The minimum number of links required to design a directed graph with
lp primary and ls secondary layer subgraphs and n vertices is n− lp + ls.

P r o o f . Let np,i (i = 1, . . . , lp) and ns,j (j = 1, . . . , ls) be the number of vertices in the
ith primary and the jth secondary layer subgraph, respectively. Since the simplest graph
consisting of a spanning tree is a directed acyclic graph, each primary and secondary
layer subgraph must contain at least np,i − 1 and ns,j − 1 internal links, respectively.
Furthermore, from Definition 2.5, the principal roots of secondary layer subgraphs are
linked with at least two different subgraphs and therefore 2ls links are necessary for
inter-subgraph connections. Consequently, the minimum number of links required for
the design can be computed as

lp∑
i=1

(np,i − 1) +

ls∑
j=1

(ns,j − 1) + 2ls = n− lp + ls.

�

Given arbitrary feasible numbers of the primary and secondary layer subgraphs2 (lp
and ls) and numbers of agents in each subgraph (np,i and ns,j , i = 1, . . . , lp, j = 1, . . . ls),
Algorithm 1 can be used to generate a directed graph with the minimum number of edges.
The procedure of Algorithm 1 can be summarized as follows. In the first phase, n isolated
vertices are added to the graph. In Phase 2, np,i (i = 1, . . . , lp) vertices are connected to
each other to form lp directed acyclic subgraphs. The same method is applied so as to
create additional ls directed acyclic subgraphs in Phase 3. By the end of this phase, the
network consists of lp + ls acyclic subgraphs without any inter-subgraph connections.
In the final phase, the roots of subgraphs generated in Phase 3 are connected to two
randomly chosen vertices from two different randomly chosen subgraphs, resulting in a
graph topology consisting of lp primary and ls secondary layer subgraphs. Note that
the algorithm is optimal in the sense of the number of links, i. e., it generates a directed
graph with the desired settings by creating the minimum number of links (n − lp + ls)
as stated in Theorem 3.1.

Remark 3.2. In Algorithm 1, Phase 1 requires time O(n) since it consists of initializa-
tion of an array with n elements and assignment of two variables and an empty set. In

Phase 2,
∑lp

i=1 np,i−lp elements are added to the sets of edges and
∑lp

i=1 np,i elements are
added to the sets of vertices which yields a time complexity of O(n). Similarly, in Phase

3,
∑ls

j=1 ns,j−ls elements are added to the sets of edges and
∑ls

j=1 ns,j elements are added
to the sets of vertices which yields a time complexity of O(n). Finally, for each secondary

2Based on the partitioning given in Definition 2.5, a directed graph consists of at least one primary
layer subgraph (lp > 0). Furthermore, if there is a secondary layer subgraph, there must be at least two
primary layer subgraphs.
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Algorithm 1 Algorithm to generate a directed graph with a given feasible setting-

Require:
(lp ≥ 1 and ls = 0) OR (lp ≥ 2 and ls > 0),
np,i ≥ 1, ns,j ≥ 1, for all i = 1, . . . , lp and j = 1, . . . , ls

1: procedure [G,Gp,1, . . . ,Gp,lp ,Gs,1, . . . ,Gs,ls ]=GraphGen(np,1, . . . , np,lp , ns,1, . . . , ns,ls )

2: n←
∑lp

i=1 np,i +
∑ls

j=1 ns,j

3: V ← {v1, . . . , vn} . Phase 1
4: E ← ∅
5: k ← lp + ls + 1
6: for i← 1, lp do . Phase 2

7: Ṽ ← {vi}
8: Ẽ ← ∅
9: if np,i > 1 then

10: for j ← 2, np,i do

11: u← a random element from the set Ṽ
12: Ṽ ← Ṽ ∪ {vk}
13: Ẽ ← Ẽ ∪ {(u, vk)}
14: k ← k + 1
15: end for
16: end if
17: Vp,i ← Ṽ
18: Ep,i ← Ẽ
19: Gp,i ← (Vp,i, Ep,i)
20: E ← E ∪ Ẽ
21: end for
22: for i← 1, ls do . Phase 3
23: Ṽ ← {vlp+i}
24: Ẽ ← ∅
25: if ns,i > 1 then
26: for j ← 2, ns,i do

27: u← a random element from Ṽ
28: Ṽ ← Ṽ ∪ {vk}
29: Ẽ ← Ẽ ∪ {(u, vk)}
30: k ← k + 1
31: end for
32: end if
33: Vs,i ← Ṽ
34: Es,i ← Ẽ
35: Gs,i ← (Vs,i, Es,i)
36: E ← E ∪ Ẽ
37: end for
38: if ls > 0 then
39: for i← 1, ls do . Phase 4
40: g1, g2 ← two random elements from {1, . . . , lp + ls} \ {lp + i, . . . , lp + ls}
41: for j ← 1, 2 do
42: if gj ≤ lp then
43: qj ← random element from Vp,gj
44: else
45: qj ← random element from Vs,gj−lp
46: end if
47: end for
48: E ← E ∪ {(q1, vlp+i), (q2, vlp+i)}
49: end for
50: end if
51: G ← (V, E)
52: return [G,Gp,1, . . . ,Gp,lp ,Gs,1, . . . ,Gs,ls ]
53: end procedure
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layer subgraph, two random vertices are picked from two different sets and a link between
these vertices is added to the edge set which requires time O(ls) in Phase 4. Therefore,
the overall time complexity of Algorithm 1 is O(n)+O(n)+O(n)+O(ls) = O(n). Since
a directed graph consisting of n vertices and n − lp + ls links cannot be generated by
an algorithm faster than O(n), we conclude that Algorithm 1 is optimal and the time
required to execute the algorithm will increase linearly with the network size n.

We provide the following example to demonstrate Algorithm 1.

Example 3.3. Consider the problem of generating a directed network with lp = 4
primary and ls = 5 secondary layer subgraphs where the numbers of agents in each
subgraph are desired to be as follows: np,1 = 1, np,2 = 2, np,3 = 3, np,4 = 4, ns,1 =
4, ns,2 = 2, ns,3 = 5, ns,4 = 1 and ns,5 = 2. Figure 4 illustrates a possible topology
with the desired settings generated by Algorithm 1. The obtained graph consists of

n =
∑lp

i=1 np,i +
∑ls

i=1 ns,i = 24 vertices and n − lp + ls = 25 edges which verifies the
efficiency of Algorithm 1.

Gs,5

Gp,1

Gs,1 Gs,4 Gs,3

Gp,2 Gp,3 Gp,4

Gs,2

2 12 3 13 4 14

10

5 16
11

19
15

9 1 17 6 7 20

24 18 8 23 21 22

Fig. 4: A directed graph generated by Algorithm 1.

4. MODIFICATION OF THE GRAPH STRUCTURE

In this section, we investigate the effect of adding new vertices and edges to a given
graph on the number of groups formed in the multi-agent system. Let the modified
graph be denoted by Ḡ, and the numbers of primary and secondary layer subgraphs of
Ḡ be denoted by l̄p and l̄s, respectively.

4.1. Adding new vertices

Given an arbitrary graph G = (V, E), the following lemma states the effect of adding a
new vertex on the topological properties of the graph.
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Lemma 4.1. Suppose a vertex vk is added to a directed graph G = (V, E) resulting in
the modified graph Ḡ = (V ∪ {vk}, E). Then l̄p = lp + 1 and l̄s = ls.

P r o o f . Note from Definition 2.5 that an isolated vertex is a primary layer subgraph
itself and therefore the number of primary layer subgraphs will be increased by 1. Fur-
thermore, since an isolated vertex does not interact with other vertices, the rest of the
subgraphs will remain unchanged. �

4.2. Creating new links

Let vk, vl be two vertices in G = (V, E). In this section, we investigate the effect of
creating a link between vk and vl (i. e., Ḡ = (V, E ∪ {(vk, vl)}) on the topology of the
graph in terms of the graph partitioning given in Definition 2.5. To this end, let ΥGs,j
denote the set of primary layer subgraphs whose root vertex can access the vertices in
Gs,j . Let SG,v denote the set of vertices that are reachable from vertex v in G. For a
directed graph G = (V, E) consisting of a spanning tree, let RG denote the set of roots
of G, i. e., for all v ∈ RG , we have SG,v = V.

The following lemma considers the case where a new link between two vertices in the
same subgraph is created.

Lemma 4.2. Suppose a new link (vk, vl) is created between two vertices in the same
subgraph. Then l̄p = lp and l̄s = ls.

P r o o f . Recall from Definition 2.5 that each subgraph consists of a spanning tree.
Therefore, the subgraph with the new link also consists of a spanning tree. Furthermore,
since the link (vk, vl) is not connecting two different subgraphs of G, it follows from
Definition 2.5 that not only the type of the subgraph consisting of vk and vl , but also
the rest of the subgraphs of G remains unchanged. Hence, we conclude that G and Ḡ
have the same partitioning. �

The effect of creating a link between two vertices that are in different primary layer
subgraphs is described in the following lemma.

Lemma 4.3. Suppose that Gp,i and Gp,j are two distinct primary layer subgraphs of

G and a new link between vk ∈ Gp,i and vl ∈ Gp,j is created. Let Gp = {Ĝ | ΥĜ =
{Gp,i,Gp,j}} be the set of (secondary layer) subgraphs of G whose vertices are accessible
from the roots of Gp,i and Gp,j ; but not accessible from the roots of other primary layer
subgraphs. Then,

(i) If vl ∈ RGp,j , then l̄p = lp − 1 and l̄s = ls − |Gp|, and

(ii) If vl 6∈ RGp,j , then l̄p = lp and l̄s = ls + l̂s

where l̂s denotes the number of secondary layer subgraphs of Ĝ = (Vp,j ∪ {vk}, Ep,j ∪
{(vk, vl)}) and |Gp| denotes the cardinality of the set Gp.
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P r o o f . We first consider (i). In the modified graph Ḡ, the vertices in Gp,i ∪ Gp,j ∪
(
⋃
Gp) are reachable from the root vertex of Gp,i. This corresponds to an augmented

primary layer subgraph consisting of the vertices of two primary layer subgraphs and
|Gp| secondary layer subgraphs of G. The remaining secondary layer subgraphs remains
unchanged, and therefore the number of primary layer subgraphs is decreased by 1 and
the number of secondary layer subgraphs is decreased by |Gp|.

For the second case, while the new link does not affect the subgraph Gp,i, the subgraph
Gp,j shrinks to a smaller primary layer subgraph with the vertex set Vp,j \ SGp,i,vl .
Furthermore, when the link (vk, vl) is created, the vertices in SGp,j ,vl form l̂s secondary
layer subgraphs in Ḡ. Since the rest of the graph G remains unchanged, we conclude
that creating a link between vk and vl does not change the number of primary layer
subgraphs whereas the number of secondary layer subgraphs is increased by l̂s. �

Remark 4.4. Given an arbitrary directed graph, creating a link between a vertex in
a primary layer subgraph and a root vertex of another primary layer subgraph always
decreases the total number of subgraphs. This result is extended in the following theorem
to state the conditions on the minimum number of links to be created under which the
modified graph has a spanning tree.

Theorem 4.5. Let G be a directed graph consisting of lp primary and ls secondary
layer subgraphs. The minimum number of links that must be created in order to obtain
a graph containing a spanning tree is lp − 1.

P r o o f . Let v∗p,i, i ∈ Ip, denote a root vertex of the ith primary layer subgraph, i. e.,
SGp,i,v∗

p,i
= Vp,i for all i ∈ Ip. Then, we conclude from Lemma 4.3 that creating the

links (v∗p,i, v
∗
p,j), j ∈ Ip \{i}, results in a single primary layer subgraph and consequently

no secondary layer subgraphs. Since a graph with a single primary layer subgraph
consists of a spanning tree, lp−1 links are sufficient for a graph to have a spanning tree.
Furthermore, since the vertices of a primary layer subgraph do not receive information
from the vertices in other subgraphs, it is not possible to obtain a graph with a spanning
tree by creating less than lp − 1 links. Hence, lp − 1 is the minimum number of links
that must be created in order to build a directed graph with a spanning tree. �

Remark 4.6. In a multi-agent system, it is well-known that the existence of a spanning
tree is necessary to achieve consensus on a single equilibrium state [18, 19]. Theorem 4.5
states the minimum number of links that must be created for the agents in a directed
network with K subgraphs to agree on a single equilibrium state.

Remark 4.7. In social networks, consensus algorithms are widely used to express the
evaluation of the opinions of the individuals [5, 11]. We conclude from Theorem 4.5 that
it is theoretically possible to influence all individuals by connecting lp − 1 individuals
together. The individuals with high strategic importance are the roots of the primary
layer subgraphs of the social network.

The following lemma states the effect of creating a link between a vertex in a primary
layer subgraph and a vertex in a secondary layer subgraph.
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Lemma 4.8. Suppose that Gp,i and Gs,j are primary and secondary layer subgraphs of
G, respectively. When a new link between vk ∈ Gp,i and vl ∈ Gs,j is created,

i) If vl is the principal root of Gs,j , then l̄p = lp and l̄s = ls, and

ii) If vl is not the principal root of Gs,j , then l̄p = lp and l̄s = ls + l̂s

where l̂s denotes the number of secondary layer subgraphs of Ĝ = (Vs,j ∪ {vk}, Es,j ∪
{(vk, vl)}).

P r o o f . For case (i), the link (vk, vl) does not affect the structure of the overall graph
since vl already has at least two neighbors from at least two different subgraphs by
Definition 2.5. For case (ii), while the new link does not affect the subgraph Gp,i,
the subgraph Gs,j shrinks to a smaller secondary layer subgraph with the vertex set
Vs,j \SGs,j ,vl . Furthermore, when the link (vk, vl) is created, the vertices in SGs,j ,vl form

l̂s secondary layer subgraphs in Ḡ. Since the rest of the graph G remains unchanged, we
conclude that creating a link between vk and vl does not change the number of primary
layer subgraphs whereas the number of secondary layer subgraphs is increased by l̂s. �

The effect of building a link between the vertices of a secondary and a primary layer
subgraph is stated in the following lemma.

Lemma 4.9. Suppose that Gp,i and Gs,j are primary and secondary layer subgraphs of
G, respectively. Let G = {Gs,k | ΥGs,k = ΥGs,j} be the set of (secondary layer) subgraphs
of G which receive information from the same primary layer subgraphs as Gs,j . When a
new link between vk ∈ Gs,j and vl ∈ Gp,i is created,

(i) If vl ∈ RGp,i , then l̄p = lp − 1. Furthermore, l̄s = ls − |G| if |ΥGs,j \ Gp,i| = 1; and
l̄s = ls otherwise.

(ii) If vl 6∈ RGp,i , then l̄p = lp and l̄s = ls + l̂s

where l̂s denotes the number of secondary layer subgraphs of the graph Ĝ = (Vp,i ∪
{vk}, Ep,i ∪ {(vk, vl)}) and |G| denotes the cardinality of G.

P r o o f . We first consider (i). In the modified graph, the vertices in Gp,i are reachable
from the root of Gs,j and consequently Gp,i will no longer be a primary layer subgraph.
Hence we have l̄p = lp − 1. Moreover, if |ΥGs,j \ Gp,i| = 1 all subgraphs in G will join
to the primary layer subgraph consisting the former subgraphs ΥGs,j \ Gp,i. Therefore
the number of secondary layer subgraphs will be decreased by |G|. On the other hand,
if |ΥGs,j \ Gp,i| > 1, the subgraphs Gs,j and Gp,i merge and become a larger secondary
layer subgraph, i. e., the number of secondary layer subgraphs will remain unchanged.

For the second case, while the new link does not affect the subgraph Gs,j , the sub-
graph Gp,i shrinks to a smaller primary layer subgraph with the vertex set Vp,i \SGp,i,vl .
Furthermore, when the link (vk, vl) is created, the vertices in SGp,i,vl form l̂s secondary
layer subgraphs in Ḡ. Since the rest of the graph G remains unchanged, we conclude
that creating a link between vk and vl does not change the number of primary layer
subgraphs whereas the number of secondary layer subgraphs is increased by l̂s. �
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The effect of building a link between the vertices of two distinct secondary layer
subgraphs is given in the following lemma.

Lemma 4.10. Suppose that Gs,i and Gs,j are two distinct secondary layer subgraphs of
G. When a new link between vk ∈ Gs,i and vl ∈ Gs,j is created,

(i) If vl is the principal root of Gs,j , then l̄p = lp and l̄s = ls.

(ii) If vl is not the principal root of Gs,j , then l̄p = lp and l̄s = ls + l̂s

where l̂s denotes the number of secondary layer subgraphs of Ĝ = (Vs,j ∪ {vk}, Es,j ∪
{(vk, vl)}).

P r o o f . For case (i), all subgraphs will remain unchanged since there is no modification
in the primary layer subgraphs and the principal roots of the secondary layer subgraphs
will continue receiving information from at least two different subgraphs.

For case (ii), while the new link does not affect the subgraph Gs,i, the subgraph
Gs,j shrinks to a smaller secondary layer subgraph with the vertex set Vs,j \ SGs,j ,vl .
Furthermore, when the link (vk, vl) is created, the vertices in SGs,j ,vl form l̂s secondary
layer subgraphs in Ḡ. Since the rest of the graph G remains unchanged, we conclude
that creating a link between vk and vl does not change the number of primary layer
subgraphs whereas the number of secondary layer subgraphs is increased by l̂s. �

The following comprehensive example is provided to demonstrate Lemmas 4.1-4.10
and Theorem 4.5.

Example 4.11. Reconsider the multi-agent network shown in Figure 1 which con-
sists of 3 primary and 5 secondary layer subgraphs with the sets of vertices Vp,1 =
{v1, v2, v6, v7}, Vp,2 = {v18, v19, v23}, Vp,3 = {v4, v5, v9, v10}, Vs,1 = {v11, v12, v16, v21},
Vs,2 = {v3, v8, v13}, Vs,3 = {v14, v20, v24, v25}, Vs,4 = {v15}, Vs,5 = {v17, v22}. The
principal roots of secondary layer subgraphs and the set of primary layer subgraphs
associated with the secondary layer subgraphs are given in Table 1.

Subgraph rG ΥG

Gs,1 v12 Gp,1,Gp,2
Gs,2 v13 Gp,1,Gp,2,Gp,3
Gs,3 v14 Gp,2,Gp,3
Gs,4 v15 Gp,2,Gp,3
Gs,5 v17 Gp,1,Gp,2

Tab. 1: Secondary layer subgraphs, their principal roots and related primary layer sub-
graphs.

The number of primary and secondary layer subgraphs and the vertices in each sub-
graph are summarized in Table 2 after the modifications in the network which verifies
the theoretical results given in Section 4. Note that these theoretical results can be
utilized by the topology designer to obtain the desired grouping without redetecting the
primary and secondary layer subgraphs of the modified graph by an algorithm.



Topology design for group consensus in directed multi-agent systems 593

Graph K l̄p l̄s Primary layer subgraphs Secondary layer subgraphs

Ḡ = (V ∪ {v26}, E) 9 4 5

V̄p,1 = {v1, v2, v6, v7}
V̄p,2 = {v18, v19, v23}
V̄p,3 = {v4, v5, v9, v10}
V̄p,4 = {v26}

V̄s,1 = {v11, v12, v16, v21}
V̄s,2 = {v3, v8, v13}
V̄s,3 = {v14, v20, v24, v25}
V̄s,4 = {v15}
V̄s,5 = {v17, v22}

Ḡ = (V, E ∪ {(v20, v14)}) 8 3 5

V̄p,1 = {v1, v2, v6, v7}
V̄p,2 = {v18, v19, v23}
V̄p,3 = {v4, v5, v9, v10}
V̄p,4 = {v26}

V̄s,1 = {v11, v12, v16, v21}
V̄s,2 = {v3, v8, v13}
V̄s,3 = {v14, v20, v24, v25}
V̄s,4 = {v15}
V̄s,5 = {v17, v22}

Ḡ = (V, E ∪ {(v23, v7)}) 5 2 3
V̄p,1 = {v1, v2, v6, v7, v11, v12, v16, v17,

v18, v19, v21, v22, v23}
V̄p,2 = {v4, v5, v9, v10}

V̄s,1 = {v3, v8, v13}
V̄s,2 = {v14, v20, v24, v25}
V̄s,3 = {v15}

Ḡ = (V, E ∪ {(v7, v23)}) 10 3 7
V̄p,1 = {v1, v2, v6, v7}
V̄p,2 = {v4, v5, v9, v10}
V̄p,3 = {v18}

V̄s,1 = {v11, v12, v16, v21}
V̄s,2 = {v3, v8, v13}
V̄s,3 = {v14, v20, v24, v25}
V̄s,4 = {v15}
V̄s,5 = {v17, v22}
V̄s,6 = {v19}
V̄s,7 = {v23}

Ḡ = (V, E ∪ {(v7, v10), (v7, v23)}) 1 1 0

V̄p,1 = {v1, v2, v3, v4, v5, v6, v7, v8,
v9, v10, v11, v12, v13, v14,
v15, v16, v17, v18, v19, v20,
v21, v22, v23, v24, v25}

-

Ḡ = (V, E ∪ {(v9, v17)}) 8 3 5
V̄p,1 = {v1, v2, v6, v7}
V̄p,2 = {v18, v19, v23}
V̄p,3 = {v4, v5, v9, v10}

V̄s,1 = {v11, v12, v16, v21}
V̄s,2 = {v3, v8, v13}
V̄s,3 = {v14, v20, v24, v25}
V̄s,4 = {v15}
V̄s,5 = {v17, v22}

Ḡ = (V, E ∪ {(v6, v11)}) 10 3 7
V̄p,1 = {v1, v2, v6, v7}
V̄p,2 = {v18, v19, v23}
V̄p,3 = {v4, v5, v9, v10}

V̄s,1 = {v3, v8, v13}
V̄s,2 = {v14, v20, v24, v25}
V̄s,3 = {v15}
V̄s,4 = {v17, v22}
V̄s,5 = {v11}
V̄s,6 = {v12}
V̄s,7 = {v16, v21}

Ḡ = (V, E ∪ {(v11, v6)}) 5 2 3
V̄p,1 = {v1, v2, v6, v7, v11, v12, v16,

v17, v18, v19, v21, v22, v23}
V̄p,2 = {v4, v5, v9, v10}

V̄s,1 = {v3, v8, v13}
V̄s,2 = {v14, v20, v24, v25}
V̄s,3 = {v15}

Ḡ = (V, E ∪ {(v13, v18)}) 7 2 5
V̄p,1 = {v1, v2, v6, v7}
V̄p,2 = {v4, v5, v9, v10}

V̄s,1 = {v3, v8, v13, v18, v19, v23}
V̄s,2 = {v14, v20, v24, v25}
V̄s,3 = {v15}
V̄s,4 = {v17, v22}
V̄s,5 = {v11, v12, v16, v21}

Ḡ = (V, E ∪ {(v8, v1)}) 9 3 6
V̄p,1 = {v6, v7}
V̄p,2 = {v4, v5, v9, v10}
V̄p,3 = {v18, v19, v23}

V̄s,1 = {v3, v8, v13}
V̄s,2 = {v14, v20, v24, v25}
V̄s,3 = {v15}
V̄s,4 = {v1, v2}
V̄s,5 = {v17, v22}
V̄s,6 = {v11, v12, v16, v21}

Ḡ = (V, E ∪ {(v13, v12)}) 8 3 5
V̄p,1 = {v1, v2, v6, v7}
V̄p,2 = {v4, v5, v9, v10}
V̄p,3 = {v18, v19, v23}

V̄s,1 = {v3, v8, v13}
V̄s,2 = {v14, v20, v24, v25}
V̄s,3 = {v15}
V̄s,4 = {v17, v22}
V̄s,5 = {v11, v12, v16, v21}

Ḡ = (V, E ∪ {(v17, v16)}) 9 3 6
V̄p,1 = {v1, v2, v6, v7}
V̄p,2 = {v4, v5, v9, v10}
V̄p,3 = {v18, v19, v23}

V̄s,1 = {v3, v8, v13}
V̄s,2 = {v14, v20, v24, v25}
V̄s,3 = {v15}
V̄s,4 = {v17, v22}
V̄s,5 = {v11, v12}
V̄s,6 = {v16, v21}

Tab. 2: Effect of modifications on the number of groups in the given network.
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5. CONCLUSIONS

In this paper, we have investigated the topology design problem for group consensus
in a multi-agent network. We have derived the minimum number of links required to
attain a directed network with a spanning tree which is one less than the number of
primary layer subgraphs in the network. Furthermore, we have proposed an algorithm
to design a directed network with any feasible setting from scratch and it is shown
that the algorithm is optimal in the sense that the generated graph has the minimum
number of links. We have also examined the effect of adding new agents to a multi-agent
network and creating new links between agents on the number of groups formed when a
conventional consensus-based algorithm is used. These results can be utilized to modify
an existing network and obtain the desired grouping without redetecting the primary and
secondary layer subgraphs of the modified graph by an algorithm. Numerical simulations
are provided to illustrate the effectiveness of the proposed algorithms and the theoretical
results of the paper.

While we have extensively investigated the effect of adding vertices and edges to the
graph on the number of groups in the network, the effect of their removal remains an
important issue for future research. We hope that such research will pave the way to
fully understand the grouping behavior of multi-agent systems utilizing consensus-based
algorithms.

APPENDICES

Algorithm 2 Algorithm to determine primary layer subgraphs.

1: procedure [Gp,1, . . . ,Gp,lp ] = PrimaryLayer(G(V, E))
2: n← the number of vertices in G
3: for i← 1, n do
4: SG,vi ← the set of vertices reachable from vi in G
5: end for
6: Lp ← {v1, . . . , vn}
7: for i← 1, n do
8: for j ← 1, n do
9: if i 6= j and SG,vi ⊆ SG,vj then

10: Lp ← Lp \ {vi}
11: end if
12: end for
13: end for
14: k ← 0
15: for all vi ∈ Lp do
16: k ← k + 1
17: Vp,k ← SG,vi \

⋃
j 6=i SG,vj

18: Ep,k ← E ∩ (Vp,k × Vp,k)
19: Gp,k ← (Vp,k, Ep,k)
20: rGp,k ← vi
21: end for
22: lp ← k
23: r ← [rGp,1 , . . . , rGp,lp ]

24: return [Gp,1, . . . ,Gp,lp , r]
25: end procedure
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Algorithm 3 Algorithm to determine secondary layer subgraphs.

1: procedure [Gs,1, . . . ,Gs,ls ,ΥGs,1 , . . . ,ΥGs,ls ] = SecondaryLayer(G(V, E),Gp,1, . . . ,Gp,lp , r)
2: l← 0
3: Vs,1 ← ∅
4: V̄ =

⋃
Vp,i

5: while V̄ 6= V do
6: Ls ← {vk : (vj , vk) ∈ E, ∀vj ∈ V̄ and ∀vk 6∈ V̄}
7: for all vi ∈ Ls do
8: G̃vi = (Ṽvi , Ẽvi )← the graph obtained by removing all edges associated with the vertices
Ls \ vi

9: end for
10: for all vi ∈ Ls do
11: SG̃vi ,vi ←, the set of vertices reachable from vi in G̃vi
12: end for
13: for all vi ∈ Ls do
14: l← l + 1
15: Vs,l ← SG̃vi ,vi \

⋃
i 6=j SG̃vj ,vj

16: Es,l ← E ∩ (Vs,l × Vs,l)
17: Gs,l ← (Vs,l, Es,l)
18: V̄ ← V̄ ∪ Vs,l
19: ΥGs,l ← {Gp,i : vi is reachable from rGp,i in G}
20: end for
21: end while
22: ls ← l
23: return [Gs,1, . . . ,Gs,ls ,ΥGs,1 , . . . ,ΥGs,ls ]
24: end procedure
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