Kybernetika 56 no. 2, 298-322, 2020

Observer-based adaptive secure control with nonlinear gain recursive sliding-mode for networked non-affine nonlinear systems under DoS attacks

Yang Yang, Qing Meng, Dong Yue, Tengfei Zhang, Bo Zhao and Xiaolei HouDOI: 10.14736/kyb-2020-2-0298


We address the secure control issue of networked non-affine nonlinear systems under denial of service (DoS) attacks. As for the situation that the system information cannot be measured in specific period due to the malicious DoS attacks, we design a neural networks (NNs) state observer with switching gain to estimate internal states in real time. Considering the error and dynamic performance of each subsystem, we introduce the recursive sliding mode dynamic surface method and a nonlinear gain function into the secure control strategy. The relationship between the frequency (duration) of DoS attacks and the stability of the system is established by the average dwell time (ADT) method. It is proven that the system can withstand the influence of DoS attacks and track the desired trajectory while preserving the boundedness of all closed-loop signals. Finally, simulation results are provided to verify the effectiveness of the proposed secure control strategy.


adaptive control, networked control system, secure control, dynamic surface control


93D21, 93A15, 93D15


  1. L. An and G. H. Yang: Decentralized adaptive fuzzy secure control for nonlinear uncertain interconnected systems against intermittent dos attacks. IEEE Trans. Cybernet. 49 (2019), 3, 827-838.   DOI:10.1109/tcyb.2017.2787740
  2. A. Boubakir, S. Labiod and F. Boudjema: Linear adaptive control of a class of SISO nonaffine nonlinear systems. Int. J. Systems Sci. 45 (2014), 12, 2490-2498.   DOI:10.1080/00207721.2013.772259
  3. W. Chen, D. Ding, X. Ge, Q. L. Han and G. Wei: $H_{\infty}$ containment control of multi-agent systems under event-triggered communication scheduling: The finite-horizon case. IEEE Trans. Cybernet. (2018) 1-11.   DOI:10.1109/tcyb.2018.2885567
  4. B. Chen, H. Zhang and C. Lin: Observer-based adaptive neural network control for nonlinear systems in nonstrict-feedback form. IEEE Trans. Neural Networks Learning Systems 27 (2017), 1, 89-98.   DOI:10.1109/tnnls.2015.2412121
  5. P. Gahinet, A. Nemirovskii and A. J. Laub: The LMI control toolbox. In: Proc. 33rd IEEE Conference on Decision and Control, IEEE 3 (1994), pp. 2038-2041.   DOI:10.1109/cdc.1994.411440
  6. X. Ge and Q. L. Han: Consensus of multiagent systems subject to partially accessible and overlapping Markovian network topologies. IEEE Trans. Cybernet. 47 (2017), 8, 1807-1819.   DOI:10.1109/tcyb.2016.2570860
  7. L. Ding, Q. L. Han and X. Ge: An overview of recent advances in event-triggered consensus of multiagent systems. IEEE Trans. Cybernet. 48 (2018), 4, 1110-1123.   DOI:10.1109/tcyb.2017.2771560
  8. D. Ding, Z. Wang, Q. L. Han and G. Wei: Neural-network-based output-feedback control under Round-Robin scheduling protocols. IEEE Trans. Cybernet. 49 (2019), 6, 2372-2384.   DOI:10.1109/tcyb.2018.2827037
  9. V. S. Dolk, P. Tesi and C. D. Persis: Event-triggered control systems under denial-of-service attacks. IEEE Trans. Control Network Syst. 4 (2016), 1, 93-105.   DOI:10.1109/tcns.2016.2613445
  10. X. Ge, Q. L. Han and Z. Wang: A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks. IEEE Trans. Cybernetics 49 (2019), 1, 171-183.   DOI:10.1109/tcyb.2017.2769722
  11. X. Ge, Q. L. Han and X. M. Zhang: Achieving cluster formation of multi-agent systems under aperiodic sampling and communication delays. IEEE Trans. Industr. Electron. 65 (2018), 4, 3417-3426.   DOI:10.1109/tie.2017.2752148
  12. S. Hu, D. Yue and X. Xie: Resilient event-triggered controller synthesis of networked control systems under periodic dos jamming attacks. IEEE Trans. Cybernet. 49 (2018), 12, 4271-4281.   DOI:10.1109/tcyb.2018.2861834
  13. D. Ding, Q. L. Han, Z. Wang and X. Ge: A survey on model-based distributed control and filtering for industrial cyber-physical systems. IEEE Trans. Industr. Inform. 15 (2019), 5, 2483-2499.   DOI:10.1109/tii.2019.2905295
  14. A. Farraj, E. Hammad and D. Kundur: A cyber-physical control framework for transient stability in smart grids. IEEE Trans. Smart Grid 9 (2018), 2, 1205-1215.   DOI:10.1109/tsg.2016.2581588
  15. X. Ge, Q. L. Han and Z. Wang: A threshold-parameter-dependent approach to designing distributed event-triggered $H_{\infty}$ consensus filters over sensor networks. IEEE Trans. Cybernet. 9 (2019), 4, 1148-1159.   DOI:10.1109/tcyb.2017.2789296
  16. A. Kulkarni and S. Purwar: Adaptive nonlinear gain based composite nonlinear feedback controller with input saturation. IMA J. Math. Control Inform. 3 (2018), 35, 757-771.   DOI:10.1093/imamci/dnw075
  17. Y. Li and S. Tong: Prescribed performance adaptive fuzzy output-feedback dynamic surface control for nonlinear large-scale systems with time delays. Inform. Sci. 29 (2015), 125-142.   DOI:10.1016/j.ins.2014.08.060
  18. Y. Li, S. Tong and T. Li: Adaptive fuzzy output feedback dynamic surface control of interconnected nonlinear pure-feedback systems. IEEE Trans. Cybernet. 45 (2014), 1, 138-149.   DOI:10.1109/tcyb.2014.2333738
  19. X. Liu and X. Sun: Non-fragile recursive sliding mode dynamic surface control with adaptive neural network. Control Theory Appl. 30 (2013), 10, 1323-1328.   CrossRef
  20. X. Liu and X. Sun: Recursive sliding-mode dynamic surface adaptive NN control with nonlinear gains. Acta Automat. Sinica 40 (2014), 10, 2193-2202.   CrossRef
  21. A. Y. Lu and G. H. Yang: Input-to-state stabilizing control for cyber-physical systems with multiple transmission channels under denial of service. IEEE Trans. Automat. Control 63 (2018), 6, 1813-1820.   DOI:10.1109/tac.2017.2751999
  22. C. Lv, Y. Liu and X. Hu: Simultaneous observation of hybrid states for cyber-physical systems: A case study of electric vehicle powertrain. IEEE Trans. Cybernet. 48 (2018), 8, 2357-2367.   DOI:10.1109/tcyb.2017.2738003
  23. B. Niu, H. Li and T. Qin: Adaptive NN dynamic surface controller design for nonlinear pure-feedback switched systems with time-delays and quantized input. IEEE Trans. Systems Man Cybernet.: Systems. 48 (2017), 10, 1676-1688.   DOI:10.1109/tsmc.2017.2696710
  24. J. Otto, B. Vogel-Heuser and O. Niggemann: Automatic parameter estimation for reusable software components of modular and reconfigurable cyber-physical production systems in the domain of discrete manufacturing. IEEE Trans. Industr. Inform. 14 (2018), 1, 275-282.   DOI:10.1109/tii.2017.2718729
  25. C. D. Persis and P. Tesi: Input-to-state stabilizing control under denial-of-service. IEEE Trans. Automat. Control. 60 (2015), 11, 2930-2944.   DOI:10.1109/tac.2015.2416924
  26. J. Qin, M. Li and L. Shi: Optimal denial-of-service attack scheduling with energy constraint over packet-dropping networks. IEEE Trans. Automat. Control 63 (2018), 6, 1648-1663.   DOI:10.1109/tac.2017.2756259
  27. Z. Shen: Recursive sliding mode dynamic surface output feedback control for ship trajectory tracking based on neural network observer. Control Theory Appl. 35 (2018), 8, 1092-1100.   CrossRef
  28. Z. Shen and X. Zhang: Recursive sliding-mode dynamic surface adaptive control for ship trajectory tracking with nonlinear gains. Acta Automat. Sinica 44 (2018), 10, 1833-1841.   CrossRef
  29. X. Shi, C. C. Lim and P. Shi: Adaptive neural dynamic surface control for nonstrict-feedback systems with output dead zone. IEEE Trans. Neural Networks Learning Systems 29 (2018), 11, 5200-5213.   DOI:10.1109/tnnls.2018.2793968
  30. H. Sun, C. Peng and W. Zhang: Security-based resilient event-triggered control of networked control systems under denial of service attacks. J. Franklin Inst. 356 (2018), 17, 10277-10295.   DOI:10.1016/j.jfranklin.2018.04.001
  31. Y. C. Sun and G. H. Yang: Periodic event-triggered resilient control for cyber-physical systems under denial-of-service attacks. J. Franklin Inst. 355 (2018), 13, 5613-5631.   DOI:10.1016/j.jfranklin.2018.06.009
  32. Y. C. Sun and G. H. Yang: Event-triggered resilient control for cyber-physical systems under asynchronous DoS attacks. Inform. Sci. 465 (2018), 340-352.   DOI:10.1016/j.ins.2018.07.030
  33. D. Swaroop, J. K. Hedrick and P. P. Yip: Dynamic surface control for a class of nonlinear systems. IEEE Trans. Automat. Control 45 (2000), 10, 1893-1899.   DOI:10.1109/tac.2000.880994
  34. E. Tian, Z. Wang, L. Zou and D. Yue: Chance-constrained $H_{\infty}$ control for a class of time-varying systems with stochastic nonlinearities: The finite-horizon case. Automatica 107 (2019), 296-305.   DOI:10.1016/j.automatica.2019.05.039
  35. E. Tian, Z. Wang, L. Zou and D. Yue: Probabilistic-constrained filtering for a class of nonlinear systems with improved static event-triggered communication. Internat. J. Robust Nonlinear Control 29 (2019), 5, 1484-1498.   DOI:10.1002/rnc.4447
  36. S. Tong, Y. Li and X. Jing: Adaptive fuzzy decentralized dynamics surface control for nonlinear large-scale systems based on high-gain observer. Inform. Sci. 235 (2013), 287-307.   DOI:10.1016/j.ins.2013.02.033
  37. Y. Wang, Y. Gao and H. R. Karimi: Sliding mode control of fuzzy singularly perturbed systems with application to electric circuit. IEEE Trans. Systems Mand Cybernet.: Systems 48 (2017), 10, 1667-1675.   DOI:10.1109/tsmc.2017.2720968
  38. D. Wang and J. Huang: Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Networks 16 (2005), 1, 195-202.   DOI:10.1109/tnn.2004.839354
  39. L. Wu, Y. Gao and J. Liu: Event-triggered sliding mode control of stochastic systems via output feedback. Automatica 82 (2017), 79-92.   DOI:10.1016/j.automatica.2017.04.032
  40. L. Xu, Q. Guo and T. Yang: Robust routing optimization for smart grids considering cyber-physical interdependence. IEEE Trans. Smart Grid 10 (2018), 5, 5620-5629.   DOI:10.1109/tsg.2018.2888629
  41. X. Ye: Global adaptive control of nonlinearly parametrized systems. IEEE Trans. Automat. Control 48 (2003), 1, 169-173.   DOI:10.1109/tac.2002.804464
  42. J. Yang, Y. Chen and L. Cui: Multiple-mode adaptive state estimator for nonlinear switched systems. Int. Control Automat. Syst. 15 (2017), 4, 1485-1493.   DOI:10.1007/s12555-016-0331-0
  43. J. Yu, Y. Ma and H. Yu: Adaptive fuzzy dynamic surface control for induction motors with iron losses in electric vehicle drive systems via backstepping. Inform. Sci. 376 (2017), 172-189.   DOI:10.1016/j.ins.2016.10.018
  44. Q. Yu and B. Wu: Robust stability analysis of uncertain switched linear systems with unstable subsystems. Int. J. Systems Sci. 46 (2015), 7, 1278-1287.   DOI:10.1080/00207721.2013.816089
  45. D. Zhai, L. An and J. Dong: Switched adaptive fuzzy tracking control for a class of switched nonlinear systems under arbitrary switching. IEEE Trans. Fuzzy Syst. 26 (2018), 2, 585-597.   DOI:10.1109/tfuzz.2017.2686378
  46. G. Zhai, B. Hu and K. Yasuda: Stability analysis of switched systems with stable and unstable subsystems: an average dwell time approach. Int. J. Systems Sci. 32 (2001), 8, 1055-1061.   DOI:10.1080/00207720116692
  47. D. Zhai, C. Xi and L. An: Prescribed performance switched adaptive dynamic surface control of switched nonlinear systems with average dwell time. IEEE Trans. Systems Man Cybernet.: Systems 47 (2017), 7, 1257-1269.   DOI:10.1109/tsmc.2016.2571338
  48. H. Zhang, P. Cheng and L. Shi: Optimal denial-of-service attack scheduling with energy constraint. IEEE Trans. Automat. Control 60 (2015), 11, 3023-3028.   DOI:10.1109/tac.2015.2409905
  49. T. P. Zhang and S. S. Ge: Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form. Automatica 44 (2008), 7, 1895-1903.   DOI:10.1016/j.automatica.2007.11.025
  50. X. M. Zhang, Q. L. Han and X. Ge: Networked control systems: A survey of trends and techniques. IEEE/CAA J. Automat. Sinica (2019), 1-17.   DOI:10.1109/jas.2019.1911651
  51. T. Zhang, M. Xia and Y. Yi: Adaptive neural dynamic surface control of pure-feedback nonlinear systems with full state constraints and dynamic uncertainties. IEEE Trans. Systems Man Cybernet.: Systems. 47 (2017), 8, 2378-2387.   DOI:10.1109/tsmc.2017.2675540
  52. Z. Zuo, Q. L. Han and B. Ning: An overview of recent advances in fixed-time cooperative control of multi-agent systems. IEEE Trans. Industr. Informat. 14 (2018), 6, 2322-2334.   DOI:10.1109/tii.2018.2817248
  53. A. M. Zou, Z. G. Hou and M. Tan: Adaptive control of a class of nonlinear pure-feedback systems using fuzzy backstepping approach. IEEE Trans. Fuzzy Syst. 16 (2008), 4, 886-897.   DOI:10.1109/tfuzz.2008.917301