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SWITCHED STACKELBERG GAME ANALYSIS OF FALSE
DATA INJECTION ATTACKS ON NETWORKED CONTROL
SYSTEMS

Yabing Huang, Jun Zhao

This paper is concerned with a security problem for a discrete-time linear networked control
system of switched dynamics. The control sequence generated by a remotely located controller
is transmitted over a vulnerable communication network, where the control input may be
corrupted by false data injection attacks launched by a malicious adversary. Two partially
conflicted cost functions are constructed as the quantitative guidelines for both the controller
and the attacker, after which a switched Stackelberg game framework is proposed to analyze the
interdependent decision-making processes. A receding-horizon switched Stackelberg strategy for
the controller is derived subsequently, which, together with the corresponding best response of
the attacker, constitutes the switched Stackelberg equilibrium. Furthermore, the asymptotic
stability of the closed-loop system under the switched Stackelberg equilibrium is guaranteed
if the switching signal exhibits a certain average dwell time. Finally, a numerical example is
provided to illustrate the effectiveness of the proposed method in this paper.
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1. INTRODUCTION

The recent advances of sensing, wireless communication, and computing technologies
have boosted the emergence of networked control systems, where the communication
network acts as the transmission medium of information flows among various system
components including sensors, controllers and actuators. The main advantage of these
networked control systems is that the tight coordination of communication network
and physical processes and components offers greater autonomy, efficiency, functionality,
reliability, and adaptability [3], thus promising great application potential in a wide range
of fields including military, factory, industrial process automation and home automation.

The introduction of communication networks in networked control systems provides
a flexible two-way communication among the various spatially distributed system com-
ponents such as sensors, controllers and actuators [8], while also renders certain levels
of network-induced constraints such as data losses [2, 28], communication delays [25],
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intermittent sampling/transmission periods [5, 7, 27], and random network topologies
[6, 31, 34] inevitable during the analysis and synthesis of the networked control sys-
tem. Up until now, there are several available systematic reviews on dealing with
such network-induced constraints. We refer the interested readers to the recent sur-
veys [32, 33] for detailed discussions on the modeling and methodologies. On the other
hand, the openness and vulnerability of the communication network may be exploited
intentionally by malicious adversaries such that the information flow through the com-
munication network can be deliberately falsified and manipulated, which makes the
security issue of networked control systems fundamentally significant. In this regard,
some typical malicious attacks such as deception attacks [9, 11, 29] and denial-of-service
(DoS) (or jamming) attacks [12, 13, 15] have been widely explored and their impacts on
the system performance have been qualitatively assessed by assuming different attack
models and attack strategies. As a powerful tool handling multi-player decision making
processes, the concept of noncooperative games has been introduced to deal with the
competition between the networked controllers and the sophisticated attacker in the
cyber-world. The remote state estimation under DoS attacks was considered in [13],
where a Markov game framework was proposed to model the interaction between the
sensor and the attacker. In [15], both the sensor and the attacker were modelled as the
directly opposed players participating in a zero-sum game, and the Nash equilibrium
was constructed under the energy constraint for both players.

Apart from the prominent Nash games which models simultaneous decision making
process, Stackelberg games [1], which have superiority in modelling sequential decision
making processes, have been introduced to analyze the security of networked control
systems as well. A static Stackelberg game in [14] modelled the interactive decision-
making procedure between the defender and the attacker, where the defender attempts
to allocate defense resources to defend against the false data injection attack launched
by the malicious attacker. In [37], a dynamic Stackelberg game was proposed in the
resilient control problem for discrete-time linear systems, and sufficient conditions are
established for the stability of the closed-loop system corresponding to the Stackelberg
equilibrium. However, the above mentioned works consider scenarios of non-switched
dynamics only. It is worth mentioning that the system dynamics may be scheduled
according to a certain external switching mechanism, which complicates the evolution of
system states but also breeds some interesting features that any subsystem does not have.
As a result, switched systems has evolved into a mushrooming avenue of research, and
a fruitful collection of literatures on various topics have proliferated, including stability
[19, 23, 36], input-to-state stability [17, 18, 24], small-gain theorem [20, 21], L2 gain [26]
and dissipativity [35], which motivates this study on switched Stackelberg games.

In this paper, the security problem of single-loop networked control systems is con-
sidered where the plant and the controller are spatially distributed and the information
exchange is implemented via an unsafe communication network. The dynamics of state
evolution are modeled as switched linear systems in discrete time, which offers a step
forward in modelling much sophisticated scenarios. The main contributions of this paper
can be then summarized as follows:

• A two-layer switched Stackelberg dynamic game is formulated to model the com-
petitive interaction between the controller and the attacker who can launch false
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data injection attacks. Furthermore, the switched Stackelberg equilibrium is con-
structed to quantitatively evaluate the performance of both players.

• By making use of the average dwell time concept, the switches between subsystems
are restricted not to occur too frequently in the average sense. The asymptotic
stability of the closed-loop systems under the switched Stackelberg equilibrium is
guaranteed if the switching signal satisfies a certain average dwell time constraint.

The remainder of this paper is structured as follows. In Section 2, the networked
control systems with switched dynamics are described before formulating the switched
Stackelberg game. Section 3 presents the construction of the switched Stackelberg equi-
librium in a receding horizon manner. Specifically, an assumption is made for the seeking
of the switched Stackelberg strategy. Section 4 provides the main result concerning the
asymptotic stability of the closed-loop systems under the switched Stackelberg equilib-
rium. Finally, an illustrative example presented in Section 5 validates the correctness of
the proposed method and some concluding remarks are given in Section 6.

2. PROBLEM FORMULATION

2.1. Dynamics of a switched networked control system

Consider the remotely-controlled system whose dynamics are described by the following
switched linear time invariant system in discrete time

x(t+ 1) = Aσ(t)x(t) +Bσ(t)u(t), (1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control input and σ(t) ∈ M :=
{1, . . . ,M} is the switching signal orchestrating the activation modes among the M
subsystems.

2.2. Corrupted control input under false data injection attacks

The architecture of the remote control framework for the concerned system (1) under
attacks is illustrated in Figure 1. In this paper, our focus is laid on the network commu-
nication channel between the remote controller and the actuator as the control sequence
{u(t)}t∈R calculated by the suitable control law may be maliciously falsified by an adver-
sary via injecting some spurious signals into the desired control sequences when they are
transmitted over the network. More specifically, the system state x(t) of (1) is sampled
at every sampling instant t ∈ Z and then fed into a remotely located controller. Then the
control input u(t) is generated consequently and transmitted back to the plant through
a communication network, which closes the control loop. Meanwhile, there exists an
attacker locating between the controller and the actuator, which means the attacker
decides his attack input after he observes the control input generated by the remotely
located controller. Moreover, the attacker corrupts the control input by injecting some
false data as follows

uc(t) = u(t) + ua(t) (2)
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Fig. 1. The architecture of a corrupted networked control system in

the presence of a malicious attacker-

where u(t) is the desired control input calculated by the control law and also observed
by the attacker at current instant, ua(k) is the spurious attack input signal, and uc(k)
is the corrupted control input which is received and implemented by the actuator.

In the following, it is assumed that the attacker pursues two partly conflicted objec-
tives: (1) being an malicious assailant, the attacker seeks to destabilize the system by
steering the system state as far away from the origin as possible, which can be quantita-
tively described by the maximization of the distance between the origin to the state of
next sampling instant; (2) being a rational adversary, the attacker takes into account the
cost of launching the attack injection, namely, incorporating the energy of the injected
false data ‖ua(k)‖2. Then the objective of the attacker can be translated mathemat-
ically into a minimization problem which serves as the guideline during the strategy
conducting process of the attacker:

(Pa) : min
ua(t)∈Rm

Ja(σ(t), x(t), u(t), ua(t)) := −xT (t+ 1|t)Qσ(t)x
T (t+ 1|t)

+ uTa (t)Raσ(t)ua(t)

s.t. x(t+ 1|t) = Aσ(t)x(t) +Bσ(t)(u(t) + ua(t))

where Qi ≥ 0, Rai > 0,∀i ∈ M. The solution is parameterized by (σ(t), x(t), u(t)) and
denoted as u∗a(t) := BRa(σ(t), x(t), u(t)) :M×Rn ×Rm → Rm.

As for the controller, a conventional linear quadratic functional over finite horizon is
considered as the cost functional to be minimized, whose mathematical interpretation,
denoted as Ju(σ(t), x(t), u(t)), will be discussed fully in Section 3. The solution of this
minimization process is denoted as u∗(t) := BR(σ(t), x(t)).
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It is worth mentioning that the system matrices (Ai, Bi),∀i ∈ M are the common
knowledge availabe to both the controller and the attacker. Moreover, the switch signal
and the system state (σ(t), x(t)) are available in real time. At any stage, the controller
and the attacker solve their own minimization problems, respectively, only after collect-
ing the current value of (σ(t), x(t)).

2.3. Framework of switched Stackelberg game

The competition between the controller and the attacker is modelled as a switched
Stackelberg game whose players act in rather a sequential manner than the simultaneous
way in Nash games. Therefore, the asymmetric roles of these two players lead to a
hierarchical structure of the decision making procedure. On the one hand, the controller
is modelled as the leader according to his superior role compared with the attacker and
is located at the high level of this hierarchy, thus has full information including the cost
function of the attacker and takes his action first. On the other hand, the attacker,
located on the data route between the controller and the actuator, is modelled as the
follower who is unaware of the cost function of the controller but makes his own decision
after he observes the action of the controller.

Remark 2.1. The notations “leader” and “follower” adopted here are to differentiate
the asymmetric information structures and the sequential order of decision making be-
tween these two players, which are distinct from that in the field of multi-agent systems.

Remark 2.2. The objective of the attacker can have specific physical significances un-
der certain circumstances, such as maximizing the signal-to-interference-and-noise ratio
(SINR) [13], minimizing the cost for launching an attack [14]. Therefore, the controller
can realize the cost function of the attacker based on these features in real-life situations.
On the other hand, the controller can attain the information about the cost function of
the attacker with the help of the statistical characteristics based on the history infor-
mation.

The switched Stackelberg equilibrium, as the solution of the switched Stackelberg
game formulated above is defined as below.

Definition 2.3. (Switched Stackelberg Equilibrium) A pair of strategies (u∗(t), u∗a(t)), t =
0, 1, . . . ,∞, is called a switched Stackelberg equilibrium if the following inequalities hold:

u∗a(t) ∈ BRa(σ(t), x(t), u∗(t))

and

max
ua(t)∈BRa(σ(t),x(t),u∗(t))

Ju(σ(t), x(t), u∗(t)))

≤ max
ua(t)∈BRa(σ(t),x(t),u(t))

Ju(σ(t), x(t), u(t))).

(3)

The definition of switched Stackelberg equilibrium above is an extension of the conven-
tional Stackelberg equilibrium, see more information in [1] and [22]. Even though the
switching signal in this paper is not a design freedom but an external input/disturbance,
the introduction of switched dynamics still makes a step further to model much sophis-
ticated circumstances.
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Remark 2.4. Different from the simultaneous decision making characterized by the
well-known Nash equilibrium [1, 4], the Stackelberg equilibrium discussed here has the
advantage of handling the sequential decision making process due to the asymmetric
information structures of all players. The Stackelberg equilibrium also safeguards each
player against any attempt by the other to deviate, but in a sequential manner. To
be detailed, the leader has no better choice than to adopt his Stackelberg strategy,
then, he has no incentive to cheat since he knows that his control action is continuously
monitored by the follower; the follower has no better choice than to react according to
his Stackelberg strategy either, since the Stackelberg strategy of the follower is the best
response to the Stackelberg strategy of the leader. In this sense the Stackelberg strategy
is also an equilibrium point.

3. RECEDING-HORIZON CONTROL LAW

In this section, the cost functional of the controller will be clarified first. In contrast to
the myopic behavior of the attacker, a receding horizon manner is adopted in the decision
making process of the controller. Specifically, an accumulation of running cost over a
moving fixed-horizon window is adopted as the guideline of the controller, where the
size of the window bounds the size of this optimization problem. Compared with that
of the attacker, the cost function of the controller reflects the preference for long-term
“average” effects over just instantaneous effects.

3.1. Virtual attacker

The best response of the attacker is defined as a one-step function due to the myopic
nature, which makes it impossible to make use of this best response directly in the
optimization of the controller. Therefore, a virtual attacker is introduced to imitate
the myopic pattern of the attacker over the same horizon with that of the controller,
so that the corresponding best response is an attack sequence of the same length with
the horizon of the controller. The best response of the virtual attacker, instead of the
one-step best response of the attacker, is the reaction predicted by the controller to
construct the optimal control input.

Given the information including σ(t) ∈ M, x(t) and a sequence of N future inputs
u(t) := [u(t|t), u(t + 1|t), . . . , u(t + N − 1|t)], the sequence of states x(t) := [x(t), x(t +
1|t), . . . , x(t+N − 1|t), x(t+N |t)] depends on the control input sequence of the virtual
attacker accordingly and can be predicted using recursively the model, where the positive
integer N is the prediction horizon. The objective of the virtual attacker is to construct
his optimal solution uvir(t) := [uvir(t|t), uvir(t+1|t), . . . , uvir(t+N−1|t)], where uvir(t+
τ |t) can be obtained by solving the stage-wise quadratic program repeatedly for 0 < τ <
N − 1.

(Pvir) : min
uvir(t+τ |t)∈Rm

Jvir(σ(t), x(t),u(t)) := −xT (t+ τ + 1|t)Qσ(t)x(t+ τ + 1|t)

+ uTvir(t+ τ |t)Raσ(t)uvir(t+ τ |t)
s.t. x(t+ τ + 1|t) = Aσ(t)x(t+ τ |t) +Bσ(t)u(t+ τ |t)

+Bσ(t)uvir(t+ τ |t), τ = 0, 1, . . . , N − 1,

x(t|t) = x(t),
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and the solution is denoted as uvir(t) := BRvir(σ(t), x(t),u(t)).

Remark 3.1. The introduction of a moving fixed-horizon window makes it possible to
get rid of the dependence on the future information of the switching sequence. As in the
field of conventional optimal control of switched systems, take the well-known two-stage
framework proposed in [30] for example, where the optimizing variables include both
the control law and the switching signal. During the design process of the control law,
a full knowledge of the parameterized switching signal, including the mode sequence
and the parameterized switching instants, is needed a priori so that the optimal control
problem of switched systems degenerates into a conventional optimal control of piecewise
dynamic systems which can be handled with the aid of Pontryagin’s Maximum Principle
and Dynamic Programming. The dependence on the switching signal over the whole
optimization horizon, makes it pretty challenging to extend the two-stage framework
from finite horizon case to infinite horizon case. On the contrary, only the current value
of switching signal σ(t) instead of the full knowledge is needed in this receding horizon
technique, which alleviates the computational burden and also offers an opportunity to
take not only optimality but also stability into consideration.

3.2. Controller

Once BRvir(σ(t), x(t),u(t)) is determined, the strategy constructing process of the con-
troller can be transformed into the N -horizon minimax problem:

(Puminimax) : min
u(t)

max
uvir(t)

Ju(σ(t), x(t)) :=

N−1∑
τ=0

(
xT (t+ τ |t)Qσ(t)x(t+ τ |t)

+ uT (t+ τ |t)Rσ(t)u(t+ τ |t)
)

+ xT (t+N |t)Qfσ(t)x(t+N |t)

s.t. x(t+ τ + 1|t) = Aσ(t)x(t+ τ |t) +Bσ(t)u(t+ τ |t)
+Bσ(t)uvir(t+ τ |t), τ = 0, 1, . . . , N − 1,

x(t|t) = x(t),

uvir(t) ∈ BRvir(σ(t), x(t),u(t))).

Since the design of the weighting matrices in the cost function is a kind of freedom,
the appropriate choices will simplify the construction of the optimal solution.

Assumption 1. The weight matrices Qi and Rai in the cost function of the attacker
satisfy the following inequalities:

Rai −BTi QiBi > 0, ∀i ∈M. (4)

The maximization problem of the virtual control jammer is actually a series of point-
wise maximizing, then it can be solved in a divide-and-conquer manner. The maximizing
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problem can be transformed into the equivalent version

min
uvir(t+τ |t)∈Rm

−
(
Aσ(t)x(t+ τ |t) +Bσ(t)u(t+ τ |t) +Bσ(t)uvir(t+ τ |t)

)T
·Qσ(k)

·
(
Aσ(t)x(t+ τ |t) +Bσ(t)u(t+ τ |t) +Bσ(t)uvir(t+ τ |t)

)
+ uTvir(t+ τ |t)Raσ(t)uvir(t+ τ |t)

(5)

= min
uvir(t+τ |t)∈Rm

−
(
Aσ(t)x(t+ τ |t) +Bσ(t)u(t+ τ |t)

)T
Qσ(k)

·
(
Aσ(t)x(t+ τ |t) +Bσ(t)u(t+ τ |t)

)
− 2uTvir(t+ τ |t)BTσ(t)Qσ(t)

(
Aσ(t)x(t+ τ |t) +Bσ(t)u(t+ τ |t)

)
+ uTvir(t+ τ |t)

(
Raσ(t) −B

T
σ(t)Qσ(t)Bσ(t)

)
uvir(t+ τ |t).

(6)

By taking advantage of Assumption 1 on positive definiteness, the equivalent maximizing
problem is strictly convex which admits a unique solution

uvir(t+ τ |t) =(Raσ(t) −B
T
σ(t)Qσ(t)Bσ(t))

−1BTσ(t)Qσ(k)

· (Aσ(t)x(t+ τ |t) +Bσ(t)u(t+ τ |t)), (7)

therefore indicating the uniqueness of the best response BRvir(σ(t), x(t),u(t)).
It is worth mentioning that due to the uniqueness of the best response of the attacker

with respect to the decision of the controller, the N -horizon minimax problem Puminimax

can be equivalently transformed into a simplified version PuN by discarding the max-
operator and substituting the unique best response of the attacker

(PuN ) : min
u(t)

N−1∑
τ=0

(
xT (t+ τ |t)Qσ(t)x(t+ τ |t) + uT (t+ τ |t)Rσ(t)u(t+ τ |t)

)
+ xT (t+N |t)Qfσ(t)x(t+N |t)

s.t. x(t+ τ + 1|t) = (I + Sσ(t))(Aσ(t)x(t+ τ |t) +Bσ(t)u(t+ τ |t))
:= Āσ(t)x(t+ τ |t) + B̄σ(t)u(t+ τ |t), 0 ≤ τ ≤ N − 1,

x(t|t) = x(t),

where Sσ(t) := Bσ(t)(R
a
σ(t) −B

T
σ(t)Qσ(t)Bσ(t))

−1BTσ(t)Qσ(t).
Clearly, PuN is a typical linear quadratic regulator problem parameterized by the

current value of the switching signal σ(t). For any instant t, the optimal control sequence
u∗(t) can be solved with the aid of the conventional finite horizon optimal control theory:

u∗(t+ τ |t) = −(B̄Tσ(t)P
τ+1
σ(t) B̄σ(t) +Rσ(t))

−1B̄Tσ(t)P
τ+1
σ(t) Āσ(t)x(t+ τ |t), τ = 0, . . . , N − 1,

(8)
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and the corresponding value function at instant t is

Vσ(t)(x(t)) = xT (t)P 0
σ(t)x(t), (9)

where the matrices P τσ(t), τ = 0, . . . , N−1 satisfy the matrix difference Riccati equations

P τσ(t) = ĀTσ(t)

[
P τ+1
σ(t) − P

τ+1
σ(t) B̄σ(t)

(
B̄Tσ(t)P

τ+1
σ(t) B̄σ(t) +Rσ(t)

)−1

B̄Tσ(t)P
τ+1
σ(t)

]
Āσ(t) +Qσ(t),

(10)

with the terminal condition

PNσ(t) = Qfσ(t). (11)

The first component of the obtained optimal solution u∗(t) is applied to the system
which is denoted as the receding-horizon control law, i. e.,

uRH(t) = u∗(t|t) = −(B̄Tσ(t)P
1
σ(t)B̄σ(t) +Rσ(t))

−1B̄Tσ(t)P
1
σ(t)Āσ(t)x(t) (12)

:= KRH
σ(t)x(t). (13)

Remark 3.2. The time-invariance of the subsystem dynamics leads to the time-invariance
of the corresponding difference Riccati equations with respect to different sampling in-
stants, as a result the constant gain matrix of the receding horizon control law for each
subsystem can be calculated off-line.

Lemma 3.3. Suppose Assumption 1 holds for all i ∈ M. Then, uRH(t) = KRH
σ(t)x(t) is

the Stackelberg strategy of the controller, and (uRH(t),BRa(σ(t), x(t), uRH(t)) consti-
tutes a switched Stackelberg equilibrium.

P r o o f . The proof can be trivially completed by verifying the inequalities in Definition
2.3, and is omitted here thereupon. �

The real-time running procedure can be summarized as the following iteration:
At any sample instant t ≥ 0,

1. The sensor first samples and transmits the measurement of x(t). Meanwhile, the
current value of the switching signal σ(t) is known by the controller and the at-
tacker.

2. After receiving x(t), the controller generates the receding horizon control input
u(t) = uRH(t) by solving the N -horizon linear quadratic optimal control problem
PuN , and sends it to the actuator through the communication channel.

3. The attacker corrupts u(t) by adding ua(t) = BRa(σ(t), x(t), u(t)).

4. The actuator receives and then implements the corrupted control input uc(t).

5. The system states evolve into that of next stage according to the currently activated
system dynamics.
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4. STABILITY ANALYSIS

In this section, the asymptotic stability of the closed-loop system is investigated under
the switched Stackelberg equilibrium. Before going any further, the concept of average
dwell time is introduced to characterize the feature of the switching signal in the time
scale.

Definition 4.1. (Average dwell time) (Hespanha and Morse [10], Liberzon [16]) A
switching signal σ(t) has average dwell time τa if there exist scalar N0, τa > 0 such that
the inequality

Nσ(T, t) ≤ N0 +
T − t
τa

, ∀T ≥ t ≥ 0 (14)

holds, where Nσ(T−t) denotes the number of switches occuring in the interval (t, T ]. N0

characterizes the chattering bound which admits the possibility of some fast switches.
As an extension of dwell time, the concept of average dwell time imposes a restriction of
slow switching in the sense of average, i. e., τa timeslots must lie between two consecutive
switches in average.

In the following, we will show that the closed-loop system under the switched Stack-
elberg equilibrium is asymptotically stable if the average dwell time of the switching
signal σ satisfies an a priori bound.

Theorem 4.2. Suppose Assumption 1 holds for all i ∈M. If

Θi :=

P 0
i − ĀTi

[
I − P 1

i B̄i(B̄
T
i P

1
i B̄i +Ri)

−1B̄Ti

]
· P 0

i ·
[
I − B̄i(B̄Ti P 1

i B̄i +Ri)
−1B̄Ti P

1
i

]
Āi

> 0 (15)

holds for all i ∈M, where P 0
i , P

1
i satisfy the matrix difference Riccati equations (10) –

(11) of the ith subsystem, and Āi and B̄i are shorthands

Āi = (I + Si)Ai, (16)

B̄i = (I + Si)Bi, (17)

Si = BTi (Rai −BTi QiBi)−1BTi Qi, (18)

then, the closed-loop system, obtained by applying the switched Stackelberg equilib-
rium, is asymptotically stable if the switching signal σ satisfies the average dwell time
constraint

τa ≥ τ∗a = − lnµ

ln(1− α)
, (19)

where α = mini
λmin(Θi)
λmax(P 0

i )
, and µ = maxi,j∈M,i6=j µij = maxi,j∈M,i6=j

λmax(P 0
i )

λmin(P 0
j )

.
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P r o o f . The positive definite value function of each subsystem is employed as the
candidate Lyapunov function.

For any state x ∈ Rn, during the activation interval of each subsystem i ∈ M,
denote x+ := Aix+Bi

(
uRH + BRa(i, x, uRH)

)
, then the evolution of the value function

corresponding to the ith subsystem is

Vi(x
+)− Vi(x) =xT ĀTi

[
I − P 1

i B̄i(B̄
T
i P

1
i B̄i +Ri)

−1B̄Ti

]
· P 0

i

·
[
I − B̄i(B̄Ti P 1

i B̄i +Ri)
−1B̄Ti P

1
i

]
Āix− xTP 0

i x

≤− λmin(Θi)

λmax(P 0
i )
· Vi(x)

≤− αVi(x),

from which we can get

Vi(x
+) ≤ (1− α) · Vi(x), (20)

which indicates that exponential convergence of the value function according to each
subsystem is guaranteed during the activation interval.

The value functions of any two instinct subsystems satisfy the following inequality

Vi(x) = xTP 0
i x ≤ λmax(P 0

i ) ≤ λmax(P 0
i )

λmin(P 0
j )
· Vj(x) = µij · Vj(x) ≤ µVj(x) (21)

for ∀i, j ∈M and all x ∈ Rn.
The switched value function Vσ(t)(x(t)) is employed to prove asymptotic stability

of the resulted closed-loop system. Denote a sequence of switching instants as {τ0 =
0, τ1, τ2, . . . , τk, τk+1, . . . }. For any two switching instants τk, τk+1, the inequality is
expressed as

Vσ(τk+1)(x(τk+1)) ≤ µVσ(τk)(x(τk+1))

≤ µ · (1− α)τk+1−τk · Vσ(τk)(x(τk)). (22)

Iterating this inequality from k = 0 to k = Nσ(t, 0) yields

Vσ(t)(x(t)) ≤ µNσ(t,0) · (1− α)t · Vσ(0)(x(0))

≤ µN0+ t
τa · (1− α)t · Vσ(0)(x(0))

= e(N0+ t
τa

) lnµ+t ln(1−α) · Vσ(0)(x(0))

= eN0·lnµ+t·
(

ln(1−α)+ lnµ
τa

)
· Vσ(0)(x(0)). (23)

Since τa satisfies the lower bound

τa ≥ τ∗a = − lnµ

ln(1− α)
,

we can draw the conclusion that Vσ(t)(x(t)) converges to zero as t → ∞, which proves
the asymptotic stability of the closed-loop system. �
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Remark 4.3. For the sake of brevity, the weight matrix Qσ(t) in the cost function Ju is
chosen as the same as that in the cost function Ja. There exists no difficulty in applying
the previous method to the case of different weight matrix, therefore a different weight
matrix can be adopted which will brings very few modifications.

5. AN ILLUSTRATIVE EXAMPLE

In this section, a numerical example is provided to validate the effectiveness of the
derived result.

Consider a networked control system (1) consists of two linear subsystems whose
system matrices are given as

A1 =

[
1 0.8
−0.7 −0.5

]
, B1 =

[
0
1

]
, A2 =

[
−0.8 −0.2
0.5 1

]
, B2 =

[
1
0

]
.

The weight matrices in the cost functions Ju and Ja, corresponding to the controller
and the attacker, respectively, are constructed as

Q1 =

[
1 1
1 1.5

]
, Ra1 = 8, R1 = 10, Qf1 =

[
1.5 0.8
0.8 2

]
,

Q2 =

[
2 1
1 0.8

]
, Ra2 = 10, R2 = 8, Qf2 =

[
2.5 1.5
1.5 1

]
.

It is easy to confirm that Assumption 1 holds with the given system and weight matrices
by simple calculation.

Hence, the switched Stackelberg strategy of the controller u∗(t) can be achieved
by solving the minimization problem PuN over finite horizon, and the resulting mode-
dependent control gain matrices are

KRH
1 =

[
−0.2433 −0.0777

]
,KRH

2 =
[
0.2405 −0.1027

]
.

Therefore, the switched Stackelberg strategy of the attacker can be obtained by substi-
tuting the Stackelberg strategy of the controller u∗(t) = KRH

σ(t)x(t) into the best response
of the attacker, which is also in the form of state feedback:

u∗a(t) =BRa(σ(t), x(t), u∗(t)) := Ka
σ(t)x(t),

where the gain matrices are

Ka
1 =

[
0.0746 −0.0102

]
,Ka

2 =
[
−0.0774 0.0493

]
.

A conclusion can be made that the strategy pair (u∗(t), u∗a(t)) is a switched Stackelberg
equilibrium according to Lemma 3.3.

Furthermore, the average dwell time constraint of the stabilizing switching signal can
be calculated by solving equation (19) along with equation (15), and a lower bound of
this constraint is provided as

τ∗a = 22.17.
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Fig. 2. A switching signal with average dwell time.

Then a prescribed switching signal provided in Figure 2 satisfies the average dwell time
constraint in Theorem 4.2, which is then sufficient to guarantee the asymptotical stability
of the closed-loop system under the switched Stackelberg equilibrium.

The resulting trajectory of the system states under the given switching signal and
the switched Stackelberg equilibrium is portrayed in Figure 3, which vividly show the
convergence of the system states to the origin point, therefore validates the asymptotic
stability of the closed-loop dynamics.
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Fig. 3. Trajectory of the system states.
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Moreover, the resulting actions of the switched Stackelberg equilibrium (u∗(t), u∗a(t))
scheduled by this switching signal are illustrated in Figure 4 and Figure 5, respectively.
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Fig. 4. The switched Stackelberg action of the controller.
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Fig. 5. The switched Stackelberg action of the attacker.

The attacker launches the false data injection attack based on the minimization of
his cost function, which means that the attacker chooses his optimal solution based on
the transmitted control input at every instant. However, due to the superior hierarchy
in this coupled decision making process, the controller takes the reaction of the attacker
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into consideration and counteracts the potential attack in the generation of the control
input u(t). The asymmetric information structures make it possible for the controller to
suppress the negative effects brought by the attacker and maintain the stability of the
closed-loop system even with the presence of the malicious adversary.

6. CONCLUSION

In this paper, a game theoretic method was provided for the security problem of net-
worked control systems. The definition of the switched Stackelberg equilibrium between
the controller and the attacker was proposed before constructing the switched Stack-
elberg strategy of the controller in a receding-horizon manner. We showed that cer-
tain restriction posed on the weight matrices of the cost functions would simplify the
equilibrium seeking procedure. Subsequently, with the obtained switched Stackelberg
equilibrium, a sufficient condition is derived under which the asymptotic stability of
the closed-loop system is maintained. Finally, a numerical example was presented and
illustrated the effectiveness of the proposed method.
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