Kybernetika 56 no. 1, 81-106, 2020

Event-based multi-objective filtering for multi-rate time-varying systems with random sensor saturation

Hui Li, Ming Lyu and Baozhu DuDOI: 10.14736/kyb-2020-1-0081


This paper focuses on the multi-objective filtering of multirate time-varying systems with random sensor saturations, where both the variance-constrained index and the $H_\infty$ index are employed to evaluate the filtering performance. According to address issues, the high-frequency period of the internal state of the system is nondestructively converted to the low-frequency period, which determined by the measurement devices. Then the saturated output of multiple sensors is modeled as a sector bounded nonlinearity. At the same time, in order to reduce the communication frequency between sensors and filters, a communication scheduling rule is designed by the utilization of an event-triggered mechanism. By means of random analysis technology, the sufficient conditions are given to guarantee the preset $H_\infty$ performance and variance constraint performance indexes of the system, and then the solution of the desired filter is obtained by using linear matrix inequalities. Finally, the validity and effectiveness of the proposed filter scheme are verified by numerical simulation.


stochastic saturation, $H_\infty $ filtering, variance-constraints, event-triggered scheme, multi-rate time-varying system




  1. W. Chen, D. Ding, X. Ge, Q.-L. Han and G. Wei: $H_\infty$ containment control of multi-agent systems under event-triggered communication scheduling: The finite-horizon case. IEEE Trans. Cybernet. 50 (2020), 4, 1372-1382.   DOI:10.1109/tcyb.2018.2885567
  2. W. Chen, D. Ding, H. Dong and G. Wei: Distributed resilient filtering for power systems subject to denial-of-service attacks IEEE Trans. Systems Man Cybernet.: Systems49 (2019), 8, 1688-1697.   DOI:10.1109/tsmc.2019.2905253
  3. D. Ding, Z. Wang and Q.-L. Han: A set-membership approach to event-triggered filtering for general nonlinear systems over sensor networks IEEE Trans. Automat. Control. 1-11.   DOI:10.1109/tac.2019.2934389
  4. D. Ding, Z. Wang, Q.-L. Han and G. Wei: Neural-network-based output-feedback control under Round-Robin scheduling protocols. IEEE Trans. Cybernet, 49 (2019), 6, 2372-2384.   DOI:10.1109/tcyb.2018.2827037
  5. H. Dong, Z. Wang, D. Ho and H. Gao: Variance-constrained $H_\infty$ filtering for nonlinear time-varying stochastic systems with multiple missing measurements: The finite-horizon case. IEEE Trans. Signal Process. 58 (2010), 5, 2534-2543.   DOI:10.1109/tsp.2010.2042489
  6. X. Ge and Q.-L. Han: Distributed formation control of networked multi-agent systems using a dynamic event-triggered communication mechanism. IEEE Trans. Industr. Electron. 64 (2017), 10, 8118-8127.   DOI:10.1109/tie.2017.2701778
  7. X. Ge, Q.-L. Han and Z. Wang: A threshold-parameter-dependent approach to designing distributed event-triggered $H_\infty$ consensus filters over sensor networks. IEEE Trans. Cybernet. 49 (2019), 4, 1148-1159.   DOI:10.1109/tcyb.2017.2789296
  8. X. Ge, Q.-L. Han and Z. Wang: A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks. IEEE Trans. Cybernet. 49 (2019), 1, 171-183.   DOI:10.1109/tcyb.2017.2769722
  9. C. Hu, W. Qin, B. He and G. Liu: Distributed $H_\infty$ estimation for moving target under switching multi-agent network. Kybernetika 51 (2015), 5, 814-829.   DOI:10.14736/kyb-2015-5-0814
  10. Y. Liang, T. Chen and Q. Pan: Multi-rate optimal state estimation. Int. J. Control 82 (2009), 11, 2059-2076.   DOI:10.1080/00207170902906132
  11. Y. Liang, T. Chen and Q. Pan: Multi-rate stochastic $H_\infty$ filtering for networked multi-sensor fusion. Kybernetika 46 (2010), 2, 437-444.   CrossRef
  12. S. Liu, Z. Wang, L. Wang and G. Wei: On quantized $H_\infty$ filtering for multi-rate systems under stochastic communication protocols: The finite-horizon case. Inform. Sci. 459 (2018), 211-223.   DOI:10.1016/j.ins.2018.02.050
  13. B. Lv, Y. Huang, T. Li, X. Dai, M. He, W. Zhang and Y. Yang: Simulation and performance analysis of the IEEE$1588$ PTP with Kalman filtering in multi-hop wireless sensor networks. J. Networks 9 (2014), 12, 3445-53.   DOI:10.4304/jnw.9.12.3445-3453
  14. L. Ma, Z. Wang, J. Hu, Y. Bo and Z. Guo: Robust variance-constrained filtering for a class of nonlinear stochastic systems with missing measurements. Signal Process. 90 (2010), 6, 2060-2071.   DOI:10.1016/j.sigpro.2010.01.010
  15. L. Ma, M. Xu, R. Jia and H. Ye: Exponential $H_\infty$ filter design for stochastic markovian jump systems with both discrete and distributed time-varying delays. Kybernetika 50 (2014), 4, 491-511.   DOI:10.14736/kyb-2014-4-0491
  16. B. Shen, H. Tan, Z. Wang and T. Huang: Quantized/saturated control for sampleddata systems under noisy sampling intervals: a confluent vandermonde matrix approach. IEEE Trans. Automat. Control 62 (2017), 9, 4753-4759.   DOI:10.1109/tac.2017.2685083
  17. B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. Jordan and S. Sastry: Kalman filtering with intermittent observations. IEEE Trans. Automat. Control 49 (2004), 9, 1453-1464.   DOI:10.1109/tac.2004.834121
  18. H. Su, Z. Li and Y. Ye: Event-triggered Kalman-consensus filter for two-target tracking sensor networks. ISA Trans. 71 (2017), 103-111.   DOI:10.1016/j.isatra.2017.06.019
  19. A. Subramanian and A. H. Sayed: Multiobjective filter design for uncertain stochastic time-delay systems. IEEE Trans. Automat. Control 49 (2004), 1, 149-154.   DOI:10.1109/tac.2003.821422
  20. H. Tan, B. Shen, Y. Liu, A. Alsaedi and B. Ahmad: Event-triggered multi-rate fusion estimation for uncertain system with stochastic nonlinearities and colored measurement noises. Inform. Fusion 36 (2017), 313-320.   DOI:10.1016/j.inffus.2016.12.003
  21. F. Tian and B. Cui: Consensus based minimum variance filter with packet dropouts. Computer Engrg. Appl. 52 (2016), 12, 123-6, 157.   CrossRef
  22. Z. Wang, B. Shen and X. Liu: $H_\infty$ filtering with randomly occurring sensor saturations and missing measurements. Automatica 48 (2012), 3, 556-562.   CrossRef
  23. Y. Xiao, Y. Cao and Z. Lin: Robust filtering for discrete-time systems with saturation and its application to transmultiplexers. IEEE Trans. Signal Process. 52 (2004), 5, 1266-1277.   DOI:10.1109/tsp.2004.826180
  24. F. Yang and Y. Li: Set-membership filtering for systems with sensors aturation. Automatica 45 (2009), 8, 1896-1902.   DOI:10.1016/j.automatica.2009.04.011
  25. W. Zhang, G. Feng and L. Yu: Multi-rate distributed fusion estimation for sensor networks with packet losses. Automatica 48 (2012), 9, 2016-2028.   DOI:10.1016/j.automatica.2012.06.027
  26. X.-M Zhang and Q.-L. Han: A decentralized event-triggered dissipative control scheme for systems with multiple sensors to sample the system outputs. IEEE Trans. Cybernet. 46 (2016), 12, 2745-2757.   DOI:10.1109/tcyb.2015.2487420
  27. X.-M Zhang, Q.-L. Han and B. Zhang.: An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems. IEEE Trans. Industr. Inform. 13 (2017), 1, 4-16.   DOI:10.1109/tii.2016.2607150
  28. X.-M Zhang, Q.-L. Han, X. Ge, D. Ding, L. Ding, D. Yue and C. Peng: Networked control systems: a survey of trends and techniques. IEEE/CAA J. Automat. Sinica (2019), 1-17.   DOI:10.1109/jas.2019.1911651
  29. Y. Zhang, Z. Wang and L. Ma: Variance-Constrained state estimation for networked multi-rate systems with measurement quantization and probabilistic sensor failures. Int. J. Robust Nonlinear Control 26 (2016), 16, 3507-3523.   DOI:10.1002/rnc.3520
  30. Y. Zhang, Z. Wang, L. Zou and H. Fang: Event-based finite-time filtering for multirate systems with fading measurements. IEEE Trans. Aerospace Electron. Systems 53 (2017), 3, 1431-1441.   DOI:10.1109/taes.2017.2671498
  31. M. Zhong, H. Ye, S. Ding and G. Wang: Observer-based fast rate fault detection for a class of multirate sampled-data systems. IEEE Trans. Automat. Control 52 (2007), 3, 520-525.   DOI:10.1109/tac.2006.890488
  32. L. Zou, Z. Wang, J. Hu and H. Gao: On $H_\infty$ finite-horizon filtering under stochastic protocol: dealing with high-rate communication networks. IEEE Trans. Automat. Control 62 (2017), 9, 4884-4890.   DOI:10.1109/tac.2017.2691310