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DISTRIBUTED FILTERING OF NETWORKED DYNAMIC
SYSTEMS WITH NON-GAUSSIAN NOISES OVER SENSOR
NETWORKS: A SURVEY

Derui Ding, Qing-Long Han, and Xiaohua Ge

Sensor networks are regarded as a promising technology in the field of information perception
and processing owing to the ease of deployment, cost-effectiveness, flexibility, as well as reliabil-
ity. The information exchange among sensors inevitably suffers from various network-induced
phenomena caused by the limited resource utilization and complex application scenarios, and
thus is required to be governed by suitable resource-saving communication mechanisms. It is
also noteworthy that noises in system dynamics and sensor measurements are ubiquitous and
in general unknown but can be bounded, rather than follow specific Gaussian distributions as
assumed in Kalman-type filtering. Particular attention of this paper is paid to a survey of re-
cent advances in distributed filtering of networked dynamic systems with non-Gaussian noises
over sensor networks. First, two types of widely employed structures of distributed filters are
reviewed, the corresponding analysis is systematically addressed, and some interesting results
are provided. The inherent purpose of adding consensus terms into the distributed filters is pro-
foundly disclosed. Then, some representative models characterizing various network-induced
phenomena are reviewed and their corresponding analytical strategies are exhibited in detail.
Furthermore, recent results on distributed filtering with non-Gaussian noises are sorted out in
accordance with different network-induced phenomena and system models. Another emphasis
is laid on recent developments of distributed filtering with various communication schedul-
ing, which are summarized based on the inherent characteristics of their dynamic behavior
associated with mathematical models. Finally, the state-of-the-art of distributed filtering and
challenging issues, ranging from scalability, security to applications, are raised to guide possible
future research.
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1. INTRODUCTION

Sensor networks represent one of the most cornerstone technologies in the era of Indus-
try 4.0 and have broad applications in the areas of military sensing, physical security,
environment monitoring as well as industrial and manufacturing automation. Spatially
deployed sensing devices (i. e. sensor nodes) are usually small, power-constrained and
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low-cost, and perform various predetermined tasks in a collaborative manner. The infor-
mation exchange among these devices commonly leverages a distributed communication
network with self-organization, whose topologies could be bus, tree, star, ring, mesh,
circular, grid and so forth. In the past few decades, various communication protocols
are specifically designed to adapt efficient, fast, and resource-friendly requirements.

As an interdisciplinary topic, the distributed filtering over sensor networks has per-
sistently attracted increasing research interest in recent years due to the flexibility of the
parallel processing, the reliability of distributed implementation and the robustness of
estimated results[8]. To be specific, in comparison with traditionally centralized filter-
ing, each sensor node in a distributed setting is equipped with a filter that employs both
local and neighboring information to obtain the true estimates [45]. In other words, a
key idea of distributed filtering is to decentralize the function of the fusion center to
each intelligent sensor in such a way that the calculation and communication burden
are significantly alleviated. On the other hand, the distributed fusion of neighboring
information in this process is generally realized by making use of iterative consensus
algorithms or constructed consensus terms in the designed filter structures. Although
offering computation and communication advantages, the resultant distributed filtering
schemes in practical engineering often result in several inherent challenges ranging from
design cost, resource constraints, external disturbances and communication protocols to
cyber-attacks. For example, network-induced phenomena inevitably encounter because
of the limited bandwidth of the communication channel, and sparse measurements could
artificially occur due to the usage of scheduling protocols to ease communication burden.
As such, it is not surprising that the desired performance of the filtering algorithm could
not be ensured if these factors are not adequately handled. Over the past decade, a rich
body of literature has appeared on this topic and a great number of filtering algorithms
are proposed by resorting to the technologies of Kalman consensus filtering, H∞ con-
sensus filtering, set-membership filtering, or recursive least squares, see, e. g., the recent
surveys [7, 25] for more details.

As one of the most fashionable approaches, consensus Kalman filtering usually de-
pends on the assumption of accurate statistics of Gaussian noises. The latest research
developments have been systematically surveyed in [7]. However, such an assumption
is not true in practical engineering. Noises existed could be unknown-but-bounded or
energy bounded, from which the effect can be evaluated by the hard bound or the H∞
performance of the filtering error dynamics. As such, it is desirable to survey what re-
sults have been developed in the field of distributed filtering over sensor networks subject
to non-Gaussian noises, and further identify what challenging issues need to be dealt
with. Recently, some interesting reviews about distributed filtering have been reported
in accordance with network-induced phenomena, event-triggered protocols and so forth.
However, there is a lack of comprehensive reviews and summaries of distributed filter-
ing focusing on the dynamic systems subject to non-Gaussian noises. For this purpose,
this paper attempts to provide an overview of the state-of-the-art of distributed filter-
ing dealing with non-Gaussian noises, especially when the concerned sensor network are
subject to various network-induced phenomena or communication scheduling protocols.
Specifically, we first outline two typical structures of distributed filters and particu-
larly expound the corresponding analysis procedures. According to network-induced
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phenomena and communication scheduling protocols, their representative models are
systematically reviewed, the inherent characteristics of their dynamic behavior are pro-
foundly identified, and recent results in these two topics are sorted out. Finally, several
challenging issues are provisioned to guide possible future research.

The remainder of this paper is organized as follows (see also Figure 1). In Section
2, typical analysis frameworks for both stability-based and set-membership-based dis-
tributed filtering are summarized in light of Lyapunov-function-based techniques. In
Section 3, distributed filtering with network-induced phenomena are presented. An
overview with communication scheduling is summarized in Section 4 from the aspect
of the categories on protocol modeling, typical analysis approaches, and corresponding
results. Latest developments and challenging issues are raised in Section 5 to guide the
future research.
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Fig. 1. Main structure of this survey.

2. THE TYPICAL ANALYSIS FRAMEWORK OF DISTRIBUTED FILTERING

2.1. The typical analysis frameworks

It is assumed that the sensor network consists of n sensor nodes which connect with each
other according to a topology represented by a weighted digraph G = (V ,E ,W ) with the
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set of nodes V ={1, 2, . . . , n}, the set of edges E ∈ V × V , and the weighted adjacency
matrix W = [wij ] with nonnegative adjacency element wij . The set of neighbors of node
i ∈ V is denoted by Ni = {j ∈ V : (i, j) ∈ E }.

Consider a physical system modeled by the following nonlinear state-space equation

x+ = Ax(t) + f(x(t)) +Bv(t) (1)

with n sensors
yi(t) = Cix(t) +Div(t), i = 1, 2, . . . , n, (2)

where x(t) ∈ Rnx is the state of the target that cannot be observed directly, yi(t) ∈ Rny

is the measurement output from sensor i, f(x(t)) ∈ Rnx is a vector-valued function,
and v(t) denotes the noise (or disturbance or modeling error) input. In this paper, a
uniform notation x+ is exploited to stand for ẋ(t) for continuous-time systems or x(t+1)
for discrete-time systems. Of course, the nonlinear function f(x(t)) impacts the filtering
performance, and its some certain information should be reflected in sufficient conditions
to handle the filter design. In the literature, the assumption is widely adopted as follows.

Assumption. The vector-valued function in (1) satisfies the constraint

(f(x(t)) + δ)− f(x(t)))THδ ≤ 0

or

(f(x(t) + δ)− f(x(t)))TH(f(x(t) + δ)− f(x(t))) ≤ θ‖δ‖,

where H is a known matrix, and θ is a known positive scalar.

In the networked setting, the noise v(t) can be described by an ellipsoid {v(t) :
vT (t)Qv(t) ≤ 1} with a shape matrix Q > 0, or modeled as an energy bounded signal
v(t) ∈ l2[0, ∞) i. e.

∑∞
t=0 ‖v(t)‖2 < ∞. The corresponding filtering approaches are

mainly set-membership filtering, l2 − l∞ filtering or H∞ filtering. Compared with the
H∞ performance, the l2 − l∞ criterion generally guarantees the energy-to-peak bound.
Furthermore, the desired filter gain can be easily obtained in terms of linear matrix
inequalities (LMIs) guaranteeing some tractable design criteria.

In comparison with centralized filtering, one of the main characteristics of distributed
filtering is that the filtering performance can be improved by fusing the neighbor infor-
mation, which can be realized by two information fusion approaches: the measurement
fusion approach [7, 64] and the estimate fusion approach [25, 58, 87]. More specifically,
the two approaches above generally lead to the following distributed filter structures:

x̂+
i = Ax̂i(t) + f(x̂i(t)) +Ki(yi(t)− Cix̂i(t)) + Li

∑
j∈Ni

wij(yj(t)− Cj x̂j(t)) (3)

or
x̂+
i = Ax̂i(t) + f(x̂i(t)) +Ki(yi(t)− Cix̂(t)) + ε

∑
j∈Ni

wij(x̂j(t)− x̂i(t)), (4)

where x̂i(t) ∈ Rnz is the estimated state on sensor node i, the scalar ε is the coupled
strength, and Ki and Li are the filter gain matrices to be determined.
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Note that the term “ε
∑
j∈Ni

wij(x̂j(t)− x̂i(t))” in (4) is usually called the consensus
term which is first introduced by Reza Olfati-Saber in [56]. Since then, the consensus-
based ditributed filtering has received an intensive research interest. Usually, the local
filtering algorithm on each node (sensor/estimator) cannot guarantee the so-called con-
sensus of filtering, and therefore the role of added consensus term is to reduce the
disagreement potential

∑
(i,j)∈E ‖x̂j − x̂i‖2, see [56] for more details. Furthermore, both

the optimality and the stability are extensively discussed in [57], while the optimized
filter gains are dependent on the cross-variance of neighboring filtering errors, which,
unfortunately, limits the scope of the practical application. Similar results can also be
found in [72] by utilizing the H∞ filtering approach combined with the theory of vector
dissipativeness. From the viewpoint of system performance, the disagreement potential
is actually a constraint that is more stringent the traditional minimum covariance or the
stability. In other words, the larger the coupling strength ε is, the more complex the
dynamic behavior is. Furthermore, such a parameter can provide a trade-off between
the traditional filtering performance and the consensus performance. There is no doubt
that the selection of coupling strength ε has a considerable effect on the convergence of
the filtering errors, which lies in the range of (0, 1/∆) (∆ = maxibNic) where bNic is the
number of in-neighbors, see Theorem 3.1 in [89]. Finally, compared with the structure
(4), one can find that the term

∑
j∈Ni

wij(yj(t)− Cj x̂j(t)) in (3) can be rewritten as

∑
j∈Ni

wij(yj(t)− Cj x̂j(t)) =
∑
j∈Ni

wij(yj(t)− Cj x̂i(t))−
∑
j∈Ni

wijCj(x̂j(t)− x̂i(t)).

Obviously, the fist term on the right-hand side of the above equation can be utilized to
guarantee the union observability, which plays a critical role in the filter design, and the
second one is employed to evaluate the consensus performance among estimates.

In what follows, denoting ei(t) = x(t) − x̂i(t) and f̃(ei(t)) = f(x(t)) − f(x̂i(t)), one
has, respectively, from (1), (3) and (4) that

e+
i = (A−KiCi)ei(t) + f̃(ei(t))−

∑
j∈Ni

wijLiCjej(t)−KiDiv(t)−
∑
j∈Ni

wijLiDjv(t)

or

e+
i = (A−KiCi)ei(t) + f̃(ei(t)) + ε

∑
j∈Ni

wij(ej(t)− ei(t))−KiDiv(t). (5)

In light of the Kronecker product, the augmented error dynamics is then written as

e+ =
(
A−

(
K + L(W ⊗ I)

)
C
)
e(t) + F (e(t))−

(
K + L(W ⊗ I)

)
DInv(t) (6)

or

e+ =
(
A−KC + ε(W − W̄)⊗ I

)
e(t) + F (e(t))−KDInv(t), (7)
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where

e(t) = [ eT1 (t) eT2 (t) · · · eTn (t) ]T ,

F (e(t)) = [ f̃T (e1(t)) f̃T (e2(t)) · · · f̃T (en(t)) ]T ,

A = I ⊗A, C = diagn{Ci}, D = diagn{Di}, K = diagn{Ki},

L = diagn{Li}, W̄ = diagn

{ n∑
j=1

wij

}
, In = [ I I · · · I ]T .

The filtering issue is then transformed into the analysis of stability, the noise rejection
as well as the ellipsoid estimation of the filtering error dynamics above. Obviously,
the stability is determined by the system matrix A −

(
K + L(W ⊗ I)

)
C (or A − KC +

ε(W − W̄)⊗ I) and the nonlinear function F (e(t)). In the framework of LMIs, one can
construct a suitable Lyapunov function candidate V (t) = eT (t)Pe(t) for the filtering
error dynamics (6) and then calculate its derivative or difference, resulting in

V + = eT (t)P
(
A−

(
K + L(W ⊗ I)

)
C
)
e(t) + eT (t)PF (e(t))

− eT (t)P
(
K + L(W ⊗ I)

)
DInv(t)

+ eT (t)
(
A−

(
K + L(W ⊗ I)

)
C
)TPe(t) + FT (e(t))Pe(t)

− vT (t)ITnDT
(
K + L(W ⊗ I)

)TPe(t)
for a continuous-time case or

V + = eT (t)
(
A−

(
K + L(W ⊗ I)

)
C
)TP(A− (K + L(W ⊗ I)

)
C
)
e(t)

+ 2eT (t)
(
A−

(
K + L(W ⊗ I)

)
C
)TPF (e(t))

− 2eT (t)
(
A−

(
K + L(W ⊗ I)

)
C
)TP(K + L(W ⊗ I)

)
DInv(t)

+ FT (e(t))PF (e(t))− 2FT (e(t))P
(
K + L(W ⊗ I)

)
DInv(t)

+ vT (t)ITnDT
(
K + L(W ⊗ I)

)TPL(W ⊗ I)
)
DInv(t)− eT (t)Pe(t)

(8)

for a discrete-time case. Furthermore, considering the nonlinear function f(x(t)) and
letting V + < 0, one can obtain the desired condition on the stability, the input-to-state
stability or the H∞ performance, by adding the following constraints

− ρFT (e(t))(I ⊗H)e(t) ≥ 0 (9)

or
ρθeT (t)e(t)− ρFT (e(t))(I ⊗H)F (e(t)) ≥ 0, (10)

where ρ is a positive scalar which is commonly regarded as a decision variable to adjust
the solvability of the corresponding LMIs.

On the other hand, when the set-membership performance [24, 25] is a concern, the
desired recursive conditions can be readily obtained via replacing

• “−eT (t)Pe(t)” by “−1” in (8)

• “e(t)” by “e(t) = Θη(t)” in (8) and (9) (or (10)),
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where the auxiliary variable η(t) satisfies ‖η(t)‖ < 1 and the matrix Θ guarantees
eT (t)ΘΘT e(t) < 1, which depends on the estimated ellipsoid set at the time instant t.
Similar results on the filtering error dynamics (7) can be derived, see, e. g., [10, 24, 47, 50]
and the references therein.

2.2. Some scalable methods and corresponding results

Inspired by [36], authors in [11] select a Lyapunov function as follows:

V (t) =

n∑
i=1

eTi (t)Pei(t). (11)

Denote ηi(t) = [ eTi (t) f̃T (ei(t)) vT (t)]T and assume ‖v(t)‖2 ≤ ς. Along the error
dynamics (5), one can easily calculate that

∆V (t) = V (t+ 1)− V (t)

=

n∑
i=1

{
eTi (t+ 1)Pei(t+ 1)− χieTi (t)Pei(t)

}
+ (χi − 1)

n∑
i=1

{
eTi (t)Pei(t)

}
≤ πeT (t)e(t) +

n∑
i=1

ηTi (t)Π1iηi(t)

+ (χi − 1)

n∑
i=1

{
eTi (t)Pei(t)

}
+ %ς,

where

Π1i =

 Π11i Π12i Π13i

∗ Π22i Π23i

∗ ∗ Π33i

 ,
Π11i =(1 + σ1i)(A−KiCi)

TP (A−KiCi) + ρθI − χiI,
Π12i =(A−KiCi)

TP, Π13i = −(A−KiCi)
TPKiDi

Π22i =(1 + σ2i)P − ρH, Π23i = −PKiDi

Π33i =(1 + σ3i)D
T
i K

T
i PKiDi − %I.

Here, the introduced scalars ρ and θ come from the second assumptions about nonlinear
function f̃(ei(t)), and % is any positive scalar induced by %‖v(t)‖2 ≤ %ς. Based on the
above analysis, we have the following simplified result.

Theorem 2.1. Consider the discrete-time nonlinear system (1) with the measurement
(2). For given scalars µ > 1 and ε as well as matrices Ki (i = 1, 2, . . . , n), the estimation
error dynamics (5) is input-to-state stable, if there exist a positive-definite matrix P and
positive scales ρ, %, χi and σji (j = 1, 2, 3) such that the following inequalities

Π1i < 0, $i = 1− χi − π > 0 (12)
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hold, where

π =ε2(1 + σ−1
1i + σ−1

2i + σ−1
3i )λmax(P )λmax((W − W̄)T (W − W̄)).

In what follows, let us provide a recursive filtering with a similar Kalman-type frame-
work based on set-membership approaches [10, 48]. Assume Bv(t) ∈ E(0, BV BT ) and
denote the current estimated state as x̂∗i,t|t on filter i. The well-known Lagrange remain-

der ri,t along the system dynamics (1) is

ri,t =
1

2
diag(x(t)− x̂∗i,t|t)

T ∂
2f(x)

∂x2

∣∣∣
x=ϕi,t

(x(t)− x̂∗i,t|t). (13)

Here, ϕi,t is a vector taking some suitable value over an interval Xi,t = [−pi,t, pi,t] with

pi,t =
[√

P ∗1,1i,t|t ,
√
P ∗2,2i,t|t , . . . ,

√
P ∗n,ni,t|t

]T
,

where P ∗m,mi,t|t stands for the (m,m) element of the shape matrix P ∗i,t|t on instant t. In

addition, extending (13) to all states yields

R̄i,t =
1

2
diagn(XT

i,t)
∂2f(x)

∂x2

∣∣∣
x∈Xi,t+x̂∗i,k|k

Xi,t, (14)

where R̄i,t is an interval vector that can be determined via interval mathematics.
The Lagrange remainder ri,t can be bounded by an ellipsoid E(0, W̄i,t) with minimal

volume:

[W̄i,t]m,n =

{
2(R̄n+

i,t − R̄
n−
i,t )2, m = n;

0 otherwise,
(15)

where [W̄i,t]m,n stands for the (m,n) element of the matrix W̄i,t and the subscripts “+”

and “−” denote, respectively, the maximum and minimum values of the interval R̄i,t.
Next, taking the process disturbances and the linearization error into account, one has

ω̃i,t = Bv(t) + ri,t ∈ E(0, BV BT )⊕ E(0, W̄i,t) ⊆ E(0, Ŵi,t), (16)

where Ŵi,t = BV BT

αi,t
+

W̄i,t

1−αi,t
.

In light of the above preparation, we have the following result, whose proof is omitted
for simplicity of presentation.

Theorem 2.2. Let πij,t+1 > 0 and βi,t ∈ (0, 1) be given. Suppose that the system state
x(t) lies in the ellipsoid E(x̂∗i,t|t, P

∗
i,t|t). The system state x(t+ 1) derived by (1) involves

in the ellipsoid E(x̂∗i,t+1|t+1, P
∗
i,t+1|t+1) with parameters:

P ∗i,t+1|t+1 =
( ∑
j∈Ni∪{i}

λij,t+1(P ij,t+1|t+1)−1
)−1

,

Υi
j,t+1 = λij,t+1(P ij,t+1|t+1)−1x̂ij,t+1|t+1,

x̂∗i,t+1|t+1 =
∑

j∈Ni∪{i}

P ∗i,t+1|t+1Υi
j,t+1,

(17)
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in which the positive scalar λij,k+1 satisfies

x̂∗Ti,t+1|t+1(P ∗i,t+1|t+1)−1x̂∗i,t+1|t+1 +
∑

j∈Ni∪{i}

λij,t+1 − 1

−
∑

j∈Ni∪{i}

λij,t+1x̂
iT
j,t+1|t+1(P ij,t+1|t+1)−1x̂ij,t+1|t+1 ≤ 0,

where
x̂ii,t+1|t+1 = Ax̂∗i,t|t + f(x̂∗i,t|t) +Kij,t+1ξ

i
j,t+1,

P ij,t+1|t+1 = σij,t+1

(
I −Kij,t+1Cj

)
P ij,t+1|t,

x̂ij,t+1|t = Ax̂∗i,t|t + f(x̂∗i,t|t), ~ij,t+1 = yj(t+ 1)− Cj x̂ij,t+1|t,

P ij,t+1|t = (1− βi,t)−1(A+Ai,t)P
∗
i,t|t(A+Ai,t)

T + β−1
i,t Ŵi,t,

Oij,t+1 = (πij,t+1)−1DjV D
T
j + CjP

i
j,t+1|tC

T
j ,

Kij,t+1 = P ij,t+1|tC
T
j (Oij,t+1)−1, Ai,t =

∂f(x)

∂x

∣∣∣
x=x̂∗

i,t|t

,

σij,t+1 = 1 + πij,t+1 − ~iTj,t+1(Oij,t+1)−1~ij,t+1.

3. DISTRIBUTED FILTERING WITH NETWORK-INDUCED PHENOMENA

In this section, some typical network-induced phenomena will be discussed according to
their mathematical models and analytic strategies. Furthermore, recent developments
in this regard are systematically summarized based on various system dynamics with
different network-induced phenomena.

3.1. Typical network-induced phenomena

Communication conditions cannot reach the ideal state in an end-to-end setting due
to both the large scale of sensor networks and the limited communication resources,
and therefore various network-induced phenomena could occur in a random way. These
phenomena include, but not limited to, quantization, signal fadings, packet dropout as
well as time-delays, see Table 1 for their mathematical models and some representative
references. In this table, ỹij(t) is the received measurement of filter i from sensor j; each
stochastic variable αis,t (s = 0, 1, . . . , l) takes a value on the interval [0, 1]; βit is a binary
stochastic variable taking the value in set {0, 1}; q(·) is a quantization function with a
predetermined quantization level; πt stands for a time delay which could be time-varying
with known upper- and lower-bound information; and ε(t) is a channel noise.

It is worth noting that the proposed packet dropout model above represents the
successive packet dropouts, which includes the traditional model ỹij(t) = βityj(t) as a
special case. Furthermore, the received signal ỹij(t) with zero-order-hold compensation,
denoted as ỹij(t) = βityj(t) + (1− βit)ỹij(t− 1), is naturally adopted for various control
and filtering issues. On the other hand, the time-delayed model ỹij(t) = βityj(k − πt)
is regarded as the randomly occurring time-delays. Furthermore, the quantizer q(·) is
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Types Models References

Quantization ỹij(t) = q(yj(t)) + ε(t) [13, 19, 82]

Fadings ỹij(t) = αi0,tyj(t) +
∑l
s=1 α

i
s,tyj(t− s) [5, 14, 45]

Packet dropout ỹij(t) = βityj(t)+(1−βit)βit−1yj(t−1)+· · · [19, 41, 63, 91]

Time-delays
ỹij(t) = yj(k − πt) or

[15, 18, 21, 55]
ỹij(t) = βityj(k − πt)

Tab. 1. Mathematical models of typical network-induced phenomena.

generally a symmetrical piecewise function with respect to the origin, and maps input
values to output values with an infinite countable number of levels. Typical quantizers
involve uniform quantizers and logarithmic quantizers. Additionally, the dynamic quan-
tizer with function qu(·) = uq(·/u) has recently attracted an ever-increasing research
attention, where u is a dynamic variable named as a “zoom” variable. There is no doubt
that the received data by distributed filters could be incomplete or non-real-time because
of these phenomena and therefore the filtering performance may be deteriorated for the
designed distributed filters if they are not appropriately considered.

3.2. Basic analysis schemes and research developments

From the technical perspective, the challenge from quantization is trivial due to the
mathematical transformation. Specifically, the uniform quantizer can be denoted as the
traditional measurement with a bounded noise

q(yj(t)) = yj(t) + ζj(t)

where the quantization error ζj(t) is determined by the number of bits of digital sensors,
and the quantization error of logarithmic quantizers can be transformed into a norm
uncertainty or a sector-bounded nonlinearity

q(yj(t)) = (1 + ∆j(t))yj(t), or q(yj(t)) = yj(t) + ζj(t)

where the quantization error ∆j(t) or ζj(t) satisfies ‖∆j(t)‖ ≤ κ or ζTj (t)(ζj(t) −
2κyj(t)) ≤ 0, respectively. Here, the parameter κ is determined by the adopted quanti-
zation level, see [103] for more details.

A unified framework is developed in [19] by two mutually independent sets of Bernoulli
distributed white sequences to describe the phenomena of both quantization and succes-
sive packet dropouts, where quantization errors are regarded as bounded noises. Based
on such a model, a set of distributed finite-horizon filters are designed to ensure the
redescribed average filtering performance over lossy sensor networks. A similar mixed
model is constructed in [95] for a class of nonlinear systems described by T-S fuzzy models
over sensor networks with switching topologies, where quantization errors are modeled
as norm-bounded uncertainties. With the help of the average dwell time, the desired
gains of distributed filters and the permitted noise rejection level are obtained. Further-
more, a similar result by resorting to a Lur’e-type Lyapunov function can be found in
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[107] for discrete-time Markov jump Lur’e systems, where the transmitted model has
the capability of describing quantization and randomly occurring packet dropouts under
redundant channels. Besides, a more generally switched system subject to quantization
effect is discussed in [94], where the switches come from both the varying sampling pe-
riod and the varying communication topologies to govern the sensor scheduling. The
designed filters guarantee that the filtering error system is exponentially stable with
a determined decay rate and achieves the H∞ performance with a solution-dependent
attenuation level. Finally, as a class of special switching topologies, sensor networks
with M -periodic topologies are considered in [38] for discrete-time stochastic periodic
systems with topology-dependent logarithmic quantizers. A sufficient condition with
M-periodic LMIs is derived to deal with the design of distributed H∞ state estimators
with the help of a topology-dependent Lyapunov function and the well-known robust
control approach.

When the sequences of stochastic variables αis,t or βit are unknown in accordance
with the adopted communication coding, the error dynamics is impossibly autonomous
even if omitting noises, that is, dependent on the system state. In other words, the
error dynamics and the system are coupled with each other and therefore should be
augmented together for the purpose of performance analysis and gain design. In what
follows, we will employ the simplest model ỹij(t) = βityj(t) as a special case to show the
analysis procedure.

Denote the probability of P{βit = 1} as β̄i and therefore the received measurements
can be written as

ỹij(t) = β̄iyj(t) + (βit − β̄i)yj(t)
= β̄iCjx(t) + β̄iDjv(t) + (βit − β̄i)(Cjx(t) +Djv(t)).

(18)

Then, the desired filter structure is given as

x̂+
i = Ax̂i(t) + f(x̂i(t)) +Ki(yi(t)− Cix̂i(t)) + L

∑
j∈Ni

wij(ỹij(t)− β̄iCj x̂j(t)),

which results in the following modified error dynamics

e+ =
(
A−

(
K + L((Φ̄βW)⊗ I)

)
C
)
e(t) + F (e(t))−

(
K + L((Φ̄βW)⊗ I)

)
DInv(t)

− L((Φβ(t)W)⊗ I)CInx(t)− L((Φβ(t)W)⊗ I)DInv(t), (19)

where
L = I ⊗ L, Φ̄β = diagn{β̄i}, Φβ(t) = diagn{βit − β̄i}.

It is not difficult to see from the equation above that the main challenge comes from
the last two terms of the right hand side of the equation. When the performance analysis
is a concern, the expectations of the products of these two terms and the other terms
are zero, which, therefore, does not obstruct the utilization of the Schur complement
lemma for handling the results of the first three terms. Furthermore, their variances are
not zero and can be derived by selecting a special matrix in the Lyapunov function. In
particular, this function usually takes the following form

V (t) = eT (t)(I ⊗ P )e(t) + xT (t)Qx(t).
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Then, by resorting to the property of Kronecker product, one has the (I ⊗ P )-weighted
variance of L((Φβ(t)W)⊗ I)CInx(t) as

E
{
xT (t)ITn CT ((Φβ(t)W)⊗ I)TLT (I ⊗ P )L((Φβ(t)W)⊗ I)CInx(t)}

= E
{
xT (t)ITn CT ((WTΦTβ (t)Φβ(t)W)⊗ (LTPL))CInx(t)}

= E
{
xT (t)ITn CT ((WT Φ̃βW)⊗ (LTPL))CInx(t)}

= E
{
xT (t)ITn CT ((Φ̃d,βW)⊗ I)T L̃T (I ⊗ P−1)L̃((Φ̃d,βW)⊗ I)CInx(t)}

with Φ̃β = diagn{β̄i(1− β̄i)}, Φ̃d,β = diagn{
√
β̄i(1− β̄i)} and L̃ = I ⊗ (PL).

In comparison with the analysis in Section 2, the main differences are summarized
from three aspects: (i) a uniform gain L and an adjust estimation β̄iCj x̂j(t) are, respec-
tively, utilized to replace Li and Cj x̂j(t) in the filter structure; (ii) a diagonal matrix
I ⊗ P is adopted to substitute a general matrix P in the employed Lyapunov function;
and (iii) there exist some additional terms on Φ̃d,β in the derived quadratic polynomial,
which impacts the solvability of the obtained LMIs.

Inspired by the analysis process above, distributed sampled-data filtering is addressed
in [100] for sensor networks with nonuniform sampling periods, where a switching signal
with average dwell-time is adopted to govern the aperiodic sampled-data filtering system.
A similar approach is adopted in [85] to discuss the distributed filtering with time-
varying switching topologies and packet losses, and in [86] for repeated scalar nonlinear
systems with asynchronous switching. Compared with the filter structure [85] with the
standard Luenberger type, all matrices of filter dynamics in [86] have to be designed
because asynchronous switching causes the indeterminacy of system matrices. It should
be pointed out that a co-positive Lyapunov function with the form eT (t)P (P is a positive
vector) should be selected for distributed filtering issue of positive systems although other
process are similar. In order to evaluate the capability of noise attenuation, the H∞
performance is usually replaced by the average l∞ performance index, see [77] for more
details.

Benefiting from the merit of linear systems, the distributed nonlinear filtering can be
investigated by means of the celebrated T-S fuzzy models, under which the challenges
on the approximation accuracy and the calculation burden are still open issues. For
example, a distributed fuzzy filter is designed in [69], where the mathematic models of the
considered random link failures are the same as the ones of packet dropouts. Recently,
a distributed Luenberger-type fuzzy filter is developed in [80] for nonlinear multirate
networked double-layer industrial processes, where the measurements are subject to both
random packet dropouts and time delays. It should be pointed out that the well-known
lifting technology is utilized to transform the multi-rate system into a traditional analysis
framework. In the results above, the packet dropout rate is assumed to be known, which
may be unrealistic in many engineering practice due to the variable network states as well
as inadequate statistical tests. For this purpose, the effect from random packet dropouts
with uncertain packet dropout rate is verified in [98] by employing a scalar small gain
theorem. In comparison with existing results, matrix dimensions of the obtained LMIs
are smaller and not dependent on the scale of senor networks.

Note that the phenomena of both fading and time-delays occurred in communication
will result in that the dynamics of filtering errors is essentially a time-delayed system,
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and therefore the performance analysis can be performed by adding some time-related
terms in the Lyapunov function in order to disclose the impact from time-delays. These
added terms do not cause additional difficulties when the design conservatism based
on various integral inequalities or free weight matrices is not a concern. For instance,
a full-order channel-dependent estimator is deployed in [90] to provide accurate state
estimates against the channel switching and the transmission delays, and a distributed
H∞ filter is designed in [5] by means of the convex optimization, which is obtained via
a multiple Lyapunov functional approach. We refer readers to [101, 102, 104, 105] for
some most recent results on various time-delayed systems.

4. DISTRIBUTED FILTERING WITH COMMUNICATION SCHEDULING

In this section, some latest and representative results on distributed filtering with various
communication scheduling protocols will be reviewed and summarized based on different
mathematical models, and the inherent characteristics of their dynamical behavior will
also be identified to provide an insight of the analysis procedures.

4.1. Typical communication protocols

Communication scheduling is regarded as one of the most effective schemes to reduce the
resource consumption. Consequently, the network congestion could be greatly alleviated
and the serve life of sensor nodes could be prolonged. Scheduling can be carried out in
a periodic manner, an aperiodic manner or a random manner while the transmission is
only activated when some specific events occur [93]. Representative protocols involve
event-triggered (ET) protocols, try-once-discard (TOD) protocols, Round-Robin (RR)
protocols, as well as stochastic communication (SC) protocols. It should be noted that
the first one could be performed in application layers and the other three ones, typical
time-division multiple access (TDMA) protocols, could be implemented in physical lay-
ers. Table 2 provides their mathematical models with zero-order-holders (ZOHs) and
some representative references.

Types Models References

TOD protocol ỹi(t) =

{
yi(t), i = φ1,t

ỹi(t− 1), otherwise
[78, 108]

RR protocol ỹi(t) =

{
yi(t), i = φ2,t

ỹi(t− 1), otherwise
[12, 73, 76, 84, 110, 111]

SC protocol ỹi(t) =

{
yi(t), i = φ3,t

ỹi(t− 1), otherwise
[9, 75, 109]

ET protocol ỹi(t) =

{
yi(tk), φ4,t < 0

yi(t), otherwise
[10, 11, 23, 24, 99]

Tab. 2. Mathematical models of communication protocols.
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In Table 2, ỹi(t) is the received measurement by each neighbor of sensor i via broad-
casting, φs,t (∀ s = 1, 2, 3, 4) denotes the scheduling functions usually predetermined
on the basis of some practical requirements, yi(t

i
k) is the broadcast measurement at

the latest time (or latest event time) tik, ξi(t) is the gap and generally defined as
ξi(t) = yi(t) − yi(t

i
k). More specifically, the access token in the first three protocols

is, respectively, φ1,t = arg maxi∈{1,...,n} ‖yi(t) − yi(tik)‖2, φ2,t = mod(t − 1, n) + 1, and
the stochastic variable φ3,t ∈ {1, 2, . . . , n} with

∑n
i=1 P{φ3(t) = i|φ3(t − 1) = j} = 1.

If a weighted parameter W is adopted in ‖yi(t)− yi(tik)‖2W , the corresponding protocol
is referred as a weighted TOD protocol. For the fourth protocol, the event generator
φ4,t = g(yi(t), ξi(t), κi) : Rny × Rny × R 7→ R determines whether or not the current
measurements yi(t) need to be broadcasted via the comparison with the broadcast mea-
surement yi(t

i
k). If the threshold κi is time-varying, the corresponding protocol is called

as a dynamic event-triggered one [20, 22]. Finally, if the filter structure (4) is employed,
the received signal and the broadcast signal will be denoted as x̂r,i(t) and x̂i(t), and the
function φ4,t will be g(x̂i(t), ξi(t), κi) with ξi(t) = x̂i(t)− x̂i(tik).

It is not difficult to see that the communication burden is almost the same for TOD,
RR and SC protocols, because only one sensor is authorized to access the shared network.
However, when a certain sensor is investigated, the ratio of obtaining the token is the
same with the others under RR protocols, and is predetermined according to the given
probabilities under SC protocols. Obviously, the TOD and ET protocols reflect the
conception of on-demand transmission, and their transmission ratios usually cannot be
determined in theory.

4.2. Basic analysis schemes and research developments

Define the matrix Ξ(s) = diag{δ(1−s)I, δ(2−s)I, . . . , δ(n−s)I}, where δ(a) is a binary
function taking a value of 1 for a = 0 and 0 otherwise. By this definition, one can rewrite
the received measurements as

ỹi(t) = δ(i− φs,t)yi(t) + (1− δ(i− φs,t))ỹi(t− 1), s = 1, 2, 3.

Furthermore, the received measurements ỹi(t) under the ET protocol can be transformed
into

ỹi(t) = yi(t) + ξi(t),

where, obviously, the gap ξi(t) satisfies the nonlinear constraint φ4(yi(t), ξi(t), κi) < 0.

In what follows, taking the modes above into consideration, one has the desired filter
via replacing

• “yj(t)−Cj x̂j(t)” by “ỹj(t)− δ(j−φs,t)Cj x̂j(t)” for s = 1, 2, 3 or “ỹj(t)−Cj x̂j(t)”
for s = 4 in (3),

• “x̂j(t)− x̂i(t)” by “x̂r,j(t)− δ(j − φs,t)x̂i(t)” for s = 1, 2, 3 or “x̂r,j(t)− x̂i(t)” for
s = 4 in (4).

In the following, we only consider the filtering structure (3) and then have the fol-
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lowing modified error dynamics
e+ =

(
A−

(
K + L(W ⊗ I)Ξ(φs,t)

)
C
)
e(t) + F (e(t))

− L(W ⊗ I)(I − Ξ(φs,t))ỹ(t− 1)−
(
K + L(W ⊗ I)Ξ(φs,t)

)
DInv(t)

ỹ(t) = Ξ(φs,t)y(t) + (I − Ξ(φs,t))ỹ(t− 1)

(20)

under the first three protocols (i. e. s = 1, 2, 3) and

e+ =
(
A−

(
K + L(W ⊗ I))

)
C
)
e(t)

+ F (e(t))− L(W ⊗ I)ξ(t)−
(
K + L(W ⊗ I)

)
DInv(t) (21)

under the ET protocol, where

y(t) = [ yT1 (t) yT2 (t) · · · yTn (t) ]T ,

ỹ(t) = [ ỹT1 (t) ỹT2 (t) · · · ỹTn (t) ]T ,

ξ(t) = [ ξT1 (t) ξT2 (t) · · · ξTn (t) ]T .

It follows from (20) and (21) that the error dynamics is enslaved to the system state x(t)
hiding in y(t) or ξ(t). Furthermore, (20) is essentially a switching system, in which the
switching signal is φs,t (s = 1, 2, 3). It can be observed that the filtering error system
possesses a general switching under the TOD protocol, a periodic switching under the RR
protocol as well as a Markov switching under the SC protocol. As such, one can employ
the various available analysis tools according to the properties of switching signals and
then derive the related results in the different forms of LMIs with ADT, periodic LMIs[12]
or probability-dependent LMIs [9]. For the dynamics (21) induced by ET protocols, ξ(t)
will be regarded as an external signal and V + is written as

V + = [ eT (t) FT (e(t)) ξT (t) ]M [ eT (t) FT (e(t)) ξT (t) ]T ,

where M is a matrix determined by the corresponding quadratic polynomial. Further-
more, the nonlinear constraint φ4 will be added into V + via a similar scheme on nonlinear
function F (e(t)) in (9).

In order to avoid the augmented structure of the system state, ZOHs should be
omitted in the first three protocols, and the error dynamics (20) will be simplified as

e+ =
(
A−

(
K + L(W ⊗ I)Ξ(φs,t)

)
C
)
e(t)

+ F (e(t))−
(
K + L(W ⊗ I)Ξ(φs,t)

)
DInv(t).

(22)

In addition, the event generator function φ4 in the ET protocol should select an absolute
form such as g(yi(t), ξi(t), σi) = ξTi (t)Qξi(t)− κi, see [10] for more details.

In contrast to periodic mechanisms, an event-triggered mechanism offers conspicuous
advantages since the sampled data is released after the occurrence of some well-designed
event-triggered condition rather than the elapse of a fixed period of time [97]. Recently,
various event generator functions are systematically surveyed in [17, 25]. Considering
the implementation of event-triggered communication mechanisms, it is necessary to
ensure a strictly positive minimal interval time between consecutive twice triggering. In
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the continuous-time paradigm, some rigorous design should be performed to avoid Zeno
behavior, which is still an open yet challenging issue especially for the cases based on
measurement outputs. In this case, it is generally difficult to derive a rigorous condition
because the measurement matrix Ci is not invertible commonly. At the same time, an
inherent requirement for the implementation of ET protocols is real-time monitoring,
which could lead to the excessive usage of sensor power. An alternative approach is to
design a self-triggered condition [17, 31] so that the next event instant is predicted based
on the last triggered data and knowledge of the system dynamics [25]. In the discrete-
time paradigm, the event generator is dependent on the sampled data, and therefore the
real-time monitoring can be circumvented with the worst case of the inter-event time
equivalent to the sampled period.

Extensive studies of event-triggered distributed filtering have been emerging in recent
years. For example, a delay-fractioning approach is employed in [34] to deal with the
event-triggered distributed state estimation of nonlinear stochastic time-varying delayed
systems. In term of the solutions of a series of recursive LMIs, a distributed filter is
designed in [79] for a class of stochastic parameter systems such that both the H∞ re-
quirement and the variance constraint are satisfied over a given finite-horizon against
the random parameter matrices, successive missing measurements as well as stochas-
tic noises. A complex event-triggered scheme, related to the general consensus term,
the innovation and the estimation-based consensus term, is proposed in [96] to deal
with distributed H∞ filtering for 2-DOF quarter-car suspension systems. At the same
time, some distributed filtering schemes are developed for systems subject to saturated
constraints, where the state-saturation is transformed as a convex hull [39], sensor satu-
rations are processed into a bounded nonlinear constraint [43, 50, 71], or the saturation
level is driven by a dynamical equation which is augmented into the filtering errors [81].
Furthermore, the feasibility of the optimization algorithm is profoundly discussed in [50]
for a set of bilinear matrix inequalities in light of the properties of unique ergodicity
and irregularity of the series generated by chaos. In [68], the event-triggered Kalman-
consensus filtering method is developed to tackle a two-target tracking problem over
sensor networks. Based on Lyapunov functional method and matrix theory, sufficient
conditions are derived to guarantee the stability of the filtering error system.

Note that the number of transmitted data packets is closely related to thresholds.
Some co-design algorithms obtaining both the filter gains and the thresholds are devel-
oped in [16, 21] to achieve the trade-off between communication resource utilization and
the weighting average H∞ performance. Note also that the developed co-design is a hi-
erarchical one, where the threshold is determined by simulations over a fixed interval to
realize the expected average transmission rate. However, the rigorous theoretical analy-
sis is still demanded. It should be also emphasized that all event-triggered mechanisms
specified above are commonly known as static event-triggered mechanisms. Besides, dy-
namic event-triggered schemes and adaptive event-triggered schemes [23, 24, 40, 42, 97]
are two kinds of emergent approaches to further adjust the resource utilization. Specif-
ically, the time-varying thresholds could lie on an interval [23] or be governed by an
artificial dynamics [24, 42, 97]. For the first case, the threshold-dependent Lyapunov
function is constructed and a polytope-like transformation is performed to make all
matrices involve in convex compact sets so as to avoid infinite LMIs. For the second
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one, the utilization of triggering conditions has no essential difficulties for finite-horizon
issues or set-membership filtering [24], but the biggest triggering interval needs to be
obtained in order to transform the error system into a time-varying delayed system [42]
or a conservative condition dependent on the initial threshold should be employed to
bypass the challenge coming from the dynamics of threshold [97].

The RR protocol is another commonly used protocol, which allows only one node
to communicate with its neighbors during scheduled time slots and therefore leads to
bandwidth savings. Preliminary research on H∞ consensus filtering can be found in
[73] and, subsequently, has gained increasing attention by making use of the time-delay
approach [44] as well as the periodic system analysis method [47, 76, 84]. For example,
distributed set-membership filtering is addressed in [47] for multi-rate systems which
are transformed into a traditional discrete-time system by means of lifting techniques.
Distributed state estimation over finite-horizon is investigated in [84], where the index of
average stochastic finite-time boundedness is developed to evaluate the estimation per-
formance. It is worth mentioning that the developed LMIs via periodic system analysis
have more slack variables which could reduce the design conservatism, whereas LMIs via
time-delayed approaches possess higher computational complexity. On the other hand,
it should be pointed out that distributed filtering under both SC protocols and TOD
protocols has not attracted enough attention, due possibly the fact that issues under SC
protocols suffer less essential difficulties in comparison with Markov systems [75] while
the existing approaches under TOD protocols cannot profoundly reveal the effect on
the system performance from the scheduling rules themselves [78]. Furthermore, there
often requires a scheduling center for RR protocols and TOD protocols, which is usually
unpractical for filtering issues in a distributed way.

4.3. Some scalable methods and corresponding results

Without loss of generality, the event-triggered function is selected as φ4(yi(t), ξi(t), κi) =
‖ξi(t)‖2 − κi. Adopting the same approach in Subsection 2.2 and denoting

ηi(t) = [ eTi (t) f̃T (ei(t)) ξTi (t) vT (t)]T ,

one has

∆V (t) = V (t+ 1)− V (t)

≤ πeT (t)e(t) +

n∑
i=1

ηTi (t)Π2iηi(t)

+ (χi − 1)

n∑
i=1

{
eTi (t)Pei(t)

}
+ %ς + σ

n∑
i=1

κi,

where

Π2i =


Π̄11i Π̄12i Π̄13i Π̄14i

∗ Π̄22i Π̄23i Π̄24i

∗ ∗ Π̄33i Π̄34i

∗ ∗ ∗ Π̄44i

 ,
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Π̄11i =(1 + 2σ1i)(A−KiCi)
TP (A−KiCi) + ρθI − χiI,

Π̄12i =(A−KiCi)
TP, Π̄13i = (A−KiCi)

TP,

Π̄14i =− (A−KiCi)
TPKiDi, Π̄22i = (1 + 2σ2i)P − ρH,

Π̄23i =P, Π̄24i = −PKiDi, Π̄33 = P − σQ, Π̄34 = PKiDi,

Π̄44i =(1 + 2σ3i)D
T
i K

T
i PKiDi − %I.

Now, we have the following theorem.

Theorem 4.1. Consider the discrete-time nonlinear system (1) with the measurement
(2) and the event-triggered condition ‖ξi(t)‖2Q ≥ κi. For given scalars µ > 1 and ε as
well as matrices Ki (i = 1, 2, . . . , n), the estimation error dynamics (5) is input-to-state
stable, if there exist a positive-definite matrix P and positive scales σ, ρ, %, χi and σji
(j = 1, 2, 3) such that the following inequalities

Π2i < 0, $i = 1− χi − π̄i > 0 (23)

hold, where

π̄i =ε2(1 + 2σ−1
1i + 2σ−1

2i + 2σ−1
3i )λmax(P )λmax((W − W̄)T (W − W̄)).

In what follows, define

Cij =

{
wijCi, i 6= j,
Ci, i = j;

Sij,t+1 =

{
[wijI − wijI], t 6= tjk − 1,

[wijI 0], t = tjk − 1;

V̂ij =

{
diag{BTV B,wijκiI} i 6= j,

diag{BTV B, 0}, i = j.

Similar to Theorem 2.2, we have the following result on the set-membership filtering.

Theorem 4.2. Let πij,t+1 > 0 and βi,t ∈ (0, 1) be given. Suppose that the system
state x(t) lies in the ellipsoid E(x̂∗i,t|t, P

∗
i,t|t). The system state x(t + 1) derived by (1)

involves in the ellipsoid E(x̂∗i,t+1|t+1, P
∗
i,t+1|t+1) determined by (17), under which the

corresponding parameters are

P ij,t+1|t+1 = σij,t+1

(
I −Kij,t+1Cij

)
P ij,t+1|t,

~ij,t+1 = yj(t+ 1)− Cj x̂ij,t+1|t,

Oij,t+1 = (πij,t+1)−1Sij,t+1V̂ij(Sij,t+1)T + CijP ij,t+1|tC
T
ij ,

and other parameters are the same with ones in Theorem 2.2.

It should be pointed out that the stability-based distributed filtering including the
well-known H∞ filtering will essentially generate some point estimates which provide
the desired estimate values on the real states while distributed set-membership filtering
provides a confidential set/region which includes the real states within.
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5. LATEST DEVELOPMENTS AND CHALLENGING ISSUES

1) Scalable requirements of design algorithms

Sensor networks usually consist of a large number of wireless sensor nodes, and the
dimensions of augmented dynamics of filtering errors are directly related to the number
of nodes. Obviously, the LMI-based algorithms discussed above meet with the scalability
issue that the computational burden usually linearly increases when the number goes
larger, and the solvability is dramatically affected by the communication topology which
is global information. There is no doubt that such a shortcoming inevitably restricts the
application in practical engineering. As such, the distributed filter algorithms must be
able to effectively and efficiently overcome the shortcoming and satisfy the requirements
of the scalable design.

Two representative strategies can be summarized as follows: the first one is the vector
dissipativity method of large-scale systems combined with the small-gain condition, and
the other is the decoupling scheme via the basic matrix inequality 2aT b ≤ κaTa+κ−1bT b.
For instance, an H∞-consensus metric is firstly proposed in [72] and then expanded in
[29, 30] with a finite-time version to evaluate both the filtering accuracy of each node
and the consensus among neighbor nodes. In light of missing measurements, the concept
of stochastic vector dissipativity is proposed and the dissipation matrix is formulated by
a nonsingular substochastic matrix in [30]. Furthermore, a similar substochastic matrix
is constructed in [29] to handle filtering issues over networks subject to multiplicative
noises and deception attacks. Scalable design algorithms based on the second strategy
are recently developed in [36] for nonlinear stochastic systems, where nonlinear functions
are bounded by a pseudo-Lipschitz condition and the upper bound of mean-square error
is optimized via a presented criterion. A similar idea is employed in [11] to develop a
joint estimation of system states and unknown parameters over sensor networks with
switching topologies. Under these two strategies, the conservatism of decoupling seems
to be relatively large and hence more effective and efficient approaches are demanded.

2) Security requirements of distributed filtering

Due to technological and cost limitations, data transmission among sensors via vari-
ous communication networks could undergo unavoidable security vulnerabilities. In the
realm of sensor networks, typical cyber-attacks include, but not limited to, denial of
service attacks, replay attacks as well as false data injection attack [13, 26]. There is
no doubt that any successful attacks may lead to a serious impact on system monitor-
ing, which could cause great economic loss and confusion of society. Recently, from the
perspective of adversaries, various scheduling strategies on denial of service attacks are
developed to realize the attack objective or bypass attack detections by resorting to the
stability theory of Kalman filtering, see [6] for more details.

As analyzed in [6], denial of service attacks are similar to packet dropouts in models,
and therefore filtering performances can be investigated by employing typical approaches
for packet dropouts but the effect from the admissible attack frequency or the maximum
number of consecutive attacks are considerable. On the other hand, replay attacks can
be modeled by time-varying delays and therefore the admissible maximum upper bounds
can be calculated by applying the time-delayed system theory together with some op-
timization approaches. False data injection attacks, however, are essentially bounded
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disturbances without any prior about the intensity and the duration. In other words, the
developed results are of great conservatism in the frameworks of input-to-state stability
or set-membership filtering. For instance, the filtering error is modeled as a switched
system in light of a time-delay approach, which characterizes the impact from both
event-triggering schemes and nonperiodic DoS jamming attacks [35]. Considering a
class of randomly occurring deception attacks, theoretical analysis on finite-time l1-gain
boundedness and the design of desired positive filters are carried out in [83] for a class
of positive discrete-time linear system, where sensor networks also suffer from random
communication link failures. In [27], a cunning adversary who intentionally launches de-
ception attacks is carefully modeled by considering the simultaneously injected spurious
data into both the system state and the exchanged measurements among neighboring
sensors, behaving like the true system disturbance and measurement noises. Then, a
Krein space-based joint distributed resilient estimation and attack detection approach
is developed such that the corrupted system state as well as the unknown attack and/or
disturbance signals can be locally estimated, and the effects caused by attacks can be dif-
ferentiated from the true disturbance and noise. In [49], variance-constrained distributed
filtering is discussed for time-varying systems where deception attack signals are assumed
to be confined into some ellipsoid sets and the locally filtering performance is optimized
via a formulated optimization problem based on the constraints of recursive LMIs. Very
recently, additional control inputs are introduced into distributed observers in [74] to
suppress biasing misappropriation attacks. It is worth mentioning that, compared with
relatively mature techniques under traditional distributed frameworks, distributed fil-
tering with security perspective has not received adequate attention, thus deserving a
deeper investigation.

3) Applications in cyber-physical systems

Sensor networks are usually seamlessly integrated into industrial cyber-physical sys-
tems to facilitate real-time sensing, monitoring, and control. Typical applications in-
clude the supervisory control and data acquisition (SCADA) of both distributed power
systems or industrial process control systems, and the tracking of maneuvering targets
[3, 4, 7, 53, 88, 92, 99]. It is noteworthy that, different from fashionable distributed
filtering of the single system, there are essentially two simultaneous configurations of in-
teractions/connections of a cyber-physical system (CPS): the physical connection among
subsystems and cyber connection among units of information processing [3]. This will
result in a considerable feature that the dynamics of filtering errors is nonautonomous
even if noises are omitted when network-induced phenomena or communication pro-
tocols are taken into account. As such, there is an unavoidable stumbling block for
practical applications of developed filtering approaches, especially when the scalability
is a concern.

In the past few years, applications in the scenarios above have received significant
progress in the framework of Kalman filtering, while the stability of developed algorithms
still represents an open yet challenging issue due mainly to the utilization of subopti-
mal strategies during the distributed implementation. Interested readers are referred to
the survey papers [2, 7, 25]. Recently, based on LMIs, an application of a distributed
set-membership filtering is investigated in [88] for the islanding detection of distributed
gird-connected solar PV generation systems. Especially, an intersection between the es-
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timation ellipsoid produced by the system without islanding and the estimation ellipsoid
produced by the practical system is proposed to judge whether the islanding fault occurs
or not. Furthermore, for large-scale power systems with limited bandwidth constraints,
distributed estimators are designed in [46] to predict the needed but no available in-
formation by utilizing remote telemetry units. Unfortunately, the conditions on desired
gains are almost unsolvable. In summary, the applications of distributed filtering with
various network-induced phenomena or communication still remain at an infant stage
and thus require further research efforts.

Note that the homogeneous architecture of sensor networks inevitably brings about
poor fundamental limits and performance due mainly to the diversity of information
in cyber-physical systems. Therefore, the effective information processing dependent
on distributed, dynamical and heterogeneous multi-platform measurements is usually
an indispensable step in the implementation of collaborative tasks [28, 67, 106]. For
instance, the sequential design approach coupled with the minimum principle of Pon-
tryagin and the Lagrange multiplier method has been employed in [106] to deal with the
heterogeneity of sensors to realize the unbiasedness and optimality of distributed con-
sensus filtering. For the asynchronization induced by heterogeneous sensors, a stochastic
competitive transmission strategy has been developed in [66] to govern sensors’ trans-
missions and then an H∞ filter has been designed to periodically generate estimates.
We should point out how to handle the heterogeneity of sensors to facilitate the filter
design still remain largely unexplored.

4) The construction of actual platforms

Actual platforms of sensor networks are also an ever-increasing research area benefit-
ing from the improving capabilities of local processing and computing of both processors
and memories [32]. Some representative platforms have been developed in the past few
years. According to the embedded microcontrollers, there are (a) MCU-based nodes
such as Mica2, MicaZ and TelosB developed by the University of California (UC) at
Berkeley, µAMPS proposed by MIT, BTnode developed by ETH Zurich, EARN-PIPE
designed by University of Sfax and so forth; (b) sensor nodes based on FPGA/SoPC,
such as nodes consisting of a Spartan 3-2000 FPGA and a XEMICS DP-1203 radio
transceiver, as well as nodes including nios SOPC cyclone II; (c) nodes based on hybrid
architectures, see [37] for more details. For instances, the Mica platform adopts an Atmel
Atmega processor running the TinyOS operating system, and microcontrollers utilized
in Particle and µNode are, respectively, PIC18f6720 and MSP430, see Figure 2 and Fig-
ure 3 for their nodes [33, 52]. The research on sensor platforms is still open despite the
diversity and the wealth of the node design. Representative topics include, but are not
limited to, the concrete evaluation for power consumption and real field deployments,
the development of new useful modules to facilitate the life time of the battery and the
capability of nodes. On the other hand, the tests in the above platforms concentrate on
Kalman type algorithms and least square based methods. However, the corresponding
tests about algorithms with the form of matrix inequalities are very scarce due possibly
to their low scalability and high communication burden.

A potential solution is to employ a fog architecture to facilitate the interconnection
of sensor nodes with the back-end cloud so that it is able to make self decision for re-
ducing computational time or energy consumption [59]. In this framework, sensor nodes
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Fig. 2. Mica node.

 

Fig. 3. Sensor node: Particle and µNode.

are utilized to perform some initial operations, such as collection, translation, filtering
as well as aggregation, and fog nodes providing enough computing and storage resource
deal with complex processing and analysis on the collected data[60]. In essence, fog com-
puting, a geographically distributed computing architecture, composed of heterogeneous
connected devices at the edge of the network and not exclusively supported by cloud
services [54]. In other words, fog can be regarded as a basic extension of the distant
cloud to the edge of the network, closer to sensor networks or other devices accessing
it [61]. In summary, the merits of fog computing mainly involve (a) quick response to
delay-sensitive requirements, (b) data aggregation from heterogeneous devices, (c) data
protection and security for sensitive data applications due to avoiding to send data to
the cloud, and (d) avoiding unnecessary communication, see [1] for more details. Re-
cently, some preliminary results on fog computing for sensor networks are published
in the literature, such as edge node reconfiguration [51, 60], the choice of the sensing
routing [70], as well as network architecture managements [54, 62]. It should be stressed
that fog computing, being in its infancy stage, exposes several challenges that need to
be further addressed, such as fog-cloud collaboration, service scalability, fog scalability,
storage security and communication security, tradeoff between energy consumption and
communication efficiency and so forth.

6. CONCLUSIONS

The recent results of distributed filtering have been systematically reviewed for dynami-
cal systems that are operated over sensor networks subject to network-induced phenom-
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ena or communication scheduling protocols. The typical models have, respectively, been
exhibited with regard to different distributed filter structures, various network-induced
phenomena as well as distinct communication protocols. Combing with the inherent
characteristics of their dynamic behavior, the corresponding analysis procedures have
been disclosed with the help of LMI techniques and set-membership filtering approaches.
Some latest and representative results along this line of research have been sorted out.
Finally, the state-of-the-art of distributed filtering has been further surveyed and some
important and yet challenging issues worthy of further investigations have been sug-
gested in accordance with scalability, security and applications.

ACKNOWLEDGEMENT

This work was supported in part by the National Natural Science Foundation of China under
Grant 61973219 and 61933007, and in part by the Natural Science Foundation of Shanghai
under Grant 18ZR1427000.

(Received September 17, 2019)

R E F E R E N C E S

[1] M. Aazam, S. Zeadally, and K. A. Harras: Fog computing architecture, evaluation,
and future research directions. IEEE Comm. Magazine 56, (2018), 5, 2018, 46–52.
DOI:10.1109/mcom.2018.1700707

[2] F. Ahmad, A. Rasool, E. Ozsoy, S. Rajasekar, A. Sabanovic, and M. Elitaş: Distribution
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