This paper is concerned with the distributed filtering problem for nonlinear time-varying systems over wireless sensor networks under random link failures. To achieve consensus estimation, each sensor node is allowed to communicate with its neighboring nodes according to a prescribed communication topology. Firstly, a new hybrid consensus-based filtering algorithm under random link failures, which affect the information exchange between sensors and are modeled by a set of independent Bernoulli processes, is designed via redefining the interaction weights. Second, a novel observability condition, called parameterized jointly uniform observability, is proposed to ensure the stochastic boundedness of the error covariances of the hybrid consensus-based filtering algorithm. Finally, an example is given to demonstrate the effectiveness of the derived theoretical results.
extended Kalman filter, hybrid consensus filter, sensor network, distributed state estimation, random link failure