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DISTRIBUTED RESILIENT FILTERING OF LARGE-SCALE
SYSTEMS WITH CHANNEL SCHEDULING

Lili Xu, Sunjie Zhang and Licheng Wang

This paper addresses the distributed resilient filtering for discrete-time large-scale systems
(LSSs) with energy constraints, where their information are collected by sensor networks with
a same topology structure. As a typical model of information physics systems, LSSs have an
inherent merit of modeling wide area power systems, automation processes and so forth. In this
paper, two kinds of channels are employed to implement the information transmission in order
to extend the service time of sensor nodes powered by energy-limited batteries. Specifically,
the one has the merit of high reliability by sacrificing energy cost and the other reduces the
energy cost but could result in packet loss. Furthermore, a communication scheduling matrix
is introduced to govern the information transmission in these two kind of channels. In this
scenario, a novel distributed filter is designed by fusing the compensated neighboring estimation.
Then, two matrix-valued functions are derived to obtain the bounds of the covariance matrices
of one-step prediction errors and the filtering errors. In what follows, the desired gain matrices
are analytically designed to minimize the provided bounds with the help of the gradient-based
approach and the mathematical induction. Furthermore, the effect on filtering performance
from packet loss is profoundly discussed and it is claimed that the filtering performance becomes
better when the probability of packet loss decreases. Finally, a simulation example on wide area
power systems is exploited to check the usefulness of the designed distributed filter.
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1. INTRODUCTION

In the past few years, large-scale systems (LSSs) have attracted an increasing research
attention due to their practical application insights in various engineering fields, such as
wide area power systems, automation processes, biological systems as well as transporta-
tion networks, see [1,7,12,15,23,32,38,39] and the references therein. In comparison with
traditional centralized networked control systems, LSSs usually consist of lots of subsys-
tems geographically distributed in a certain area with a topology, which is predetermined
to govern the connection both in physics and in communication [2]. For instance, the
new energy, energy storage units and users are integrated with the distribution network
of power systems through the multi-level transmission network [1, 7]. In the operation
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monitoring of LSSs, a straightforward solution is to design a centralized filter by utilizing
traditional filtering approaches, such as Kalman filtering and its extended version [18],
H∞ filtering [13, 20], or moving horizon estimation [24]. Unfortunately, such a solution
is usually dependent on the assumptions that there exists a calculation centre to carry
out the parameter design and the information collection via affiliated sensor networks.
There is no doubt that this kind of centralized paradigms is inevitably exposed to the
challenges of the high dimension, the high computation and communication cost.

It is worth noting that, up to now, there are two kinds of representative approaches
to deal with the above mentioned shortages: the decoupling technologies [12,19] and the
distributed design paradigms [4, 34]. For the first one, the existence condition of filter
gains for addressed LSSs can be decoupled into a series of matrix inequalities by utilizing
the well-known small gain theory or vector passivity theory and these matrix inequalities
can be effectively handled to obtain the desired parameters in an off-line scenario [6]. In
other words, it is still incapable to recursive filtering with the on-line implementation. As
such, distributed filtering has been developed with the help of the own measurement and
the estimation from its neighboring subsystems, and some interesting results have been
published in the literature [2,4, 19,26]. For instance, a distributed Kalman filtering has
been investigated in [4] for discrete sequential systems, and the corresponding stability
condition has been provided to guarantee the boundedness of estimated error dynamics.
Furthermore, a distributed filtering algorithm has been developed in [2] to solve the
monitoring of power systems subject to denial-of-service attacks.

When the filtering issue is a concern, a sensor network with the same topology of
LSSs usually need to be deployed to collect and process the information of subsystems.
Different from traditional distributed ones applying to centralized systems [9, 14, 36],
filtering structures emerge complex dynamical coupling due to the inherently physical
coupling of LSSs. It is a pity that this kind of coupling cannot be completely removed
in order to guarantee the essential filtering function, and therefore greatly limits the
robustness and the scalability of developed distributed filters. In other words, most ex-
isting filtering algorithms do not effectively deal with the design challenges of addressed
filtering issues of LSSs. Besides, the rounding of implemented filtering algorithms in
digital platforms inevitably results in unpredictable uncertainties or gain perturbations,
which arouses a new research concern on nonfragility or resilience, see [21, 22, 35] and
the references therein. As such, a seemingly natural requirement is that the designed
distributed filter of LSSs is with the advantage of insensitivity against possible uncer-
tainties or gain perturbations, which constitutes one of main research motivations in
this paper.

On the other hand, the deployed sensor nodes or subsystems could be powered by
energy-limited batteries and the main energy is costed in communication especially in
wireless communication. It should be pointed out that batteries could not be replaceable
or recharged in complex environments and hence reducing the energy consumption is of
crucial importance to prolong the service life [11,37,40]. In other words, one of the most
important researches is how to save the energy of information transmission while ensuring
the necessary filtering quality [41]. To this end, an effective approach is to design a
reasonable scheduling strategy to govern the information exchange, see [10,16,27,31] for
examples. Among literature, the scheduling is usually controlled by a remote estimator
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and the scheduling signal need to been transformed in real time, which is not suitable
for the application scenario of distributed filtering of LSSs. As a promising alternative,
the data can be exchanged via preallocated channels with different energy requirements
among sensor nodes or subsystems. Usually, channels with enough energy allocation can
realize the reliability of data transmission and channels with low energy allocation could
lead to packet dropouts with some certain probability [5, 27]. For instance, a recursive
distributed fusion scheme with the form of Kalman filtering has been developed in [5] by
resorting to developed strategies compensating the no transmitted components. So far,
to the best of the authors’ knowledge, the distributed filtering for discrete-time LSSs
with energy constraints is still an open yet challenging issue. It is, therefore, the main
purpose of this paper to shorten such a gap.

According to the above analysis, it would be interesting to propose an effective design
framework to satisfy the requirements of energy constraint and low calculation burden.
For this purpose, we aim to initiate a study on the the distributed resilient filtering of
discrete-time LSSs with energy constraints. The main contributions of this paper can
be highlighted as follows:

1) for a class of discrete-time LSSs modeling some typical engineering practice, a novel
distributed filter subject to gain perturbations is designed by fusing the compen-
sated neighboring estimation;

2) two matrix-valued functions are derived to obtain the bounds of the covariance
matrices of one-step prediction errors and the filtering errors, which are further
minimized to analytically obtain the desired gain matrices;

3) the impact on filtering performance from packet loss is profoundly disclosed in
light of properties of conditional expectation; and

4) a wide area power systems is employed to check the usefulness of the designed
distributed filter.

Notation. The notations used throughout the paper are fairly standard except where
otherwise stated. Rn×m and Rn denote, respectively, the set of all n ×m real matrix
space and the n-dimensional Euclidean space. For given matrix X, Tr{X} and XT

represent the operation of the trace and the transpose, respectively. E{ξ} denotes the
expectation of stochastic variable ξ, and P{ξ} represents the occurrence probability of
event ξ.

2. STATEMENT OF THE PROBLEM

Consider the following LSSs consisting of M interconnected subsystems, each of which
is described by: 

xi,k+1 = Aiixi,k +
∑
j∈Γi

Aijxj,k + wi,k

yi,k = Cixi,k + vi,k,

(1)
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where xi,k ∈ Rn and yi,k ∈ Rm are, respectively, the state vector and the measurement
output of subsystem i. Aii, Aij , and Ci are known system matrices of suitable dimen-
sions. Furthermore, assume that wi,k ∈ Rn and vi,k ∈ Rm are zero-mean white noises
with E{wi,kwTj,k} = Qiδij and E{vi,kvTj,k} = Riδij , where covariance matrices Qi > 0
and Ri > 0 are known. If Aij 6= 0, subsystem j is called as a neighbor of subsystem i.
In addition, for subsystem i, the set of neighboring subsystems is denoted as Γi and the
number of neighboring subsystems is denoted as bΓic, which is equal to the number of
Aij 6= 0 for any j with j 6= i. The topology matrix is defined as A = [aij ]M×M where
aii = 0 and aij = 1 if Aij 6= 0 otherwise aij = 0.

Considering the distributed filtering issue, we denote x̂i,k|k as the estimation of state
xi,k at current instant k. It must be transmitted to the neighboring subsystem via some
common communication channels to calculate the estimation x̂j,k+1|k+1. Notice that
the communication bandwidth and the battery energy are usually limited, and therefore
two kinds of channels are employed to implement the information transmission: the one
(named as a reliable channel) has the merit of high reliability by sacrificing energy cost,
and the other (called as a general channel) could be subject to packet loss due to the
application of low energy cost.

Assume that, at a particular time k, rs (1 6 rs < m) components of state x̂i,k are
admitted to be transmitted to neighbors via a reliable channel and the rest is trans-
mitted via a general channel with data missing phenomenon. Usually, the missing
phenomenon can be detected in time with the help of well-known data coding tech-
niques, such as transmission control protocols (TCPs). In this scenario, we introduce a
Bernoulli-distributed white sequence {αi,k} and a diagonal matrix

Hi,k = diag{γi1,k, γi2,k, · · · , γim,k}, (2)

where γij,k (j = 1, 2, · · · ,m) are the binary variables satisfying

n∑
j=1

γij,k = rs, i ∈ {1, 2, · · · ,M}. (3)

Obviously, γij,k = 1 stands for that the jth component of local estimation x̂i,k|k is
selected to send to its neighbors via the reliable channel.

According to above discussion, the received estimation x̂ri,k|k is described by

x̂ri,k|k = Hi,kx̂i,k|k + αi,k(I −Hi,k)x̂i,k|k. (4)

Note that the time-varying matrix Hi,k is usually known via the communication coding
protocol, and is regarded as a communication scheduling matrix.

In the case of limited communication channels and energy supply constraints, a set
of distributed filters are designed for the addressed power systems. Note that there
may be a large amount of mathematical calculations or tuning uncertainties in practical
applications. Obviously, the performance of the filters may be degraded by the disturbed
gain parameter, and therefore the design considering filter gain variations has important
engineering significance.
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For the above spatially distributed power systems, a two-step distributed filter is
designed as follows:

x̂i,k+1|k = Aiix̂i,k|k +
∑
j∈Γi

Aij x̂
r
j,k|k

x̂i,k+1|k+1 = x̂i,k+1|k + (Li,k+1 + ∆Li,k+1)(yi,k+1 − Cix̂i,k+1|k),

(5)

where x̂i,k+1|k is the one-step prediction at time k+ 1 and Li,k+1 is the filter gain to be
determined. The term ∆Li,k+1 ∈ Rnx×ny models the computation or implementation
error associated with the filter gain, and is assumed to have zero mean and a bounded
moment, i. e.

E{∆Li,k+1} = 0, E{∆Li,k+1,∆L
T
i,k+1} ≤ δiI,

where δi is a known positive scalar. Moreover, ∆Li,k, wi,k and vi,k are mutually inde-
pendent.

Remark 2.1. For filtering algorithms performed in networked environment [25, 28],
the microprocessor with limited types plays an irreplaceable role, and therefore the
implementation or computation of theoretical filter gain Li,k+1 is inevitably subject to
the distortion error, which is regarded as the filter gain perturbation ∆Li,k+1. As such,
it is of great practical value to investigate the effect from such a perturbation.

Remark 2.2. Taking the structure of LSSs into consideration, a Kalman-type dis-
tributed filter is constructed by fusing the received information from neighboring subsys-
tems. In other words, such a distributed filter keeps the hierarchical structure of plant
systems, and the function of information is performed via the inherent topology of plant
systems. In comparison with existing results obtained via augmented approaches, the
adopted filtering structure is very crucial to the development and the implementation
of filtering strategy to be designed in the next section.

For the convenience of subsequent analysis, the error vectors of local prediction and
local estimation are respectively defined as follows

x̃i,k+1|k = xi,k+1 − x̂i,k+1|k

x̃i,k+1|k+1 = xi,k+1 − x̂i,k+1|k+1.

It follows from (1) and (5) that
x̃i,k+1|k = Aiix̃i,k|k +

∑
j∈Γi

Aij
(
x̃j,k|k

+ (1− αj,k)(I −Hj,k)x̂j,k|k
)

+ wi,k

x̃i,k+1|k+1 =
(
I − (Li,k+1 + ∆Li,k+1)Ci

)
x̃i,k+1|k

−
(
Li,k+1 + ∆Li,k+1

)
vi,k.

(6)

The aim of this paper is to develop a recursive filtering algorithm for a class of power
systems with energy constrained channels. Specifically, we plan to design Kalman-type
filters capable of online calculating such that, for all possible filter gain perturbations,
the filtering error covariance satisfies the following condition in finite-horizon:

E{x̃i,k|kx̃Ti,k|k} ≤ Φi,k|k, k ∈ {0, 1, 2, · · · , N},
where {Φi,k|k} is a set of positive-definite matrices.
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3. MAIN RESULTS

In this section, two Riccati-like difference equations are first derived to describe the
upper bound of error covariance matrices in light of the framework of classical Kalman
filtering. Then, the desired filter gains are obtained by resorting to the minimum of such
an upper bound. To this end, two lemmas are needed for the following analysis.

Lemma 3.1. Assume that there are two matrix-value function Qhk(X) = QhTk (X) ∈
Rn×n and Shk (X) = ShTk (x) ∈ Rn×n for the given matrix X ∈ Rn×n. If there exists
Y ≥ X > 0 such that

Qhk(X) ≤ Qhk(Y ), Qhk(Y ) ≤ Shk (Y ),

then the recursive solutions Φk and Ψk associated with these two matrix value functions

Φk+1 = Qhk(Φk), Ψk+1 = Shk (Ψk), Φ0 = Ψ0 > 0,

satisfy Φk ≤ Ψk.

Lemma 3.2. For matrices R, S, X and P with appropriate dimensions, one has the
following differential operations on trace functions

∂(RXS)

∂(X)
= RTST ,

∂(RXTS)

∂(x)
= RS,

∂(RXSXTL)

∂(X)
= RTLTXST + LRXS.

Define the covariance matrix Pi,k|k−1 of one-step prediction errors and the covariance
matrix Pi,k|k of filtering errors

Pi,k|k = E{x̃i,k|kx̃Ti,k|k}, Pi,k|k−1 = E{x̃i,k|k−1x̃
T
i,k|k−1}.

By resorting to stochastic analysis and matrix operation, one has the following two
theorems.

Theorem 3.3. For the designed distributed filter (6) with given gains Li,k and any
positive scalars ε0i,k and ε1i,k, the covariance matrices Pi,k+1|k and Pi,k+1|k+1 obey:

Pi,k+1|k ≤ Φi,k+1|k, Pi,k+1|k+1 ≤ Φi,k+1|k+1, (7)

where

Λi,k = (1 + ε1i,k)Ωi,k + (1 + ε−1
1i,k)ℵi,kℵTi,k, (8)

Φi,k+1|k = (1 + ε0i,k)AiiΦi,k|kA
T
ii +Qi + (1 + ε−1

0i,k)Λi,k, (9)

Φi,k+1|k+1 = (I − Li,k+1Ci)Φi,k+1|k(I − Li,k+1Ci)
T

+ δiλmax(Ri + CiΦi,k+1|kC
T
i )I + Li,k+1RiL

T
i,k+1, (10)

with

ℵi,k =
∑

j∈Γi

(1− αj,k)Aij(I −Hj,k)x̂j,k|k, Ωi,k = bΓic
∑
j∈Γi

AijΦj,k|kA
T
ij .
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P r o o f . Due to the detectability of sequences of {αi,k}, we first define Υi,k = {αj,k|j ∈
Γi} and then denote the covariance of prediction error dynamics as

Pi,k+1|k = E{x̃i,k+1|kx̃
T
i,k+1|k|Υi,k}.

Then, along with the trajectory (6), one has

Pi,k+1|k

= AiiPi,k|kA
T
ii +Qi + E

{(∑
j∈Γi

Aij
(
x̃j,k|k + (1− αj,k)(I −Hj,k)x̂j,k|k

))
×
(∑
j∈Γi

Aij
(
x̃j,k|k + (1− αj,k)(I −Hj,k)x̂j,k|k

))T ∣∣∣Υi,k

}
+ E

{
Aiix̃i,k|k

(∑
j∈Γi

Aij
(
x̃j,k|k + (1− αj,k)(I −Hj,k)x̂j,k|k

))T ∣∣∣Υi,k

}
+ E

{∑
j∈Γi

Aij

(
x̃j,k|k + (1− αj,k)(I −Hj,k)x̂j,k|k

)
x̃Ti,k|kA

T
ii

∣∣∣Υi,k

}
, (11)

is rewritten as follows

Pi,k+1|k

= AiiPi,k|kA
T
ii +Qi

+ E
{(∑

j∈Γi

Aij x̃j,k|k + ℵi,k
)(∑

j∈Γi

Aij x̃j,k|k + ℵi,k
)T ∣∣∣Υi,k

}
+ E

{
Aiix̃i,k|k

(∑
j∈Γi

Aij x̃j,k|k + ℵi,k
)T ∣∣∣Υi,k

}
+ E

{(∑
j∈Γi

Aij x̃j,k|k + ℵi,k
)
x̃Ti,k|kA

T
ii

∣∣∣Υi,k

}
. (12)

On the other hand, in light of some element matrix inequalities, one has

E
{∑
j∈Γi

Aij x̃j,k

(∑
j∈Γi

x̃Tj,kA
T
ij

)∣∣∣Υi,k

}
≤ Ω̃i,k, (13)

where Ω̃i,k = bΓic
∑
j∈Γi

AijPj,k|kA
T
ij . Then, we further obtain

E
{(∑

j∈Γi

Aij x̃j,k|k + ℵi,k
)(∑

j∈Γi

Aij x̃j,k|k + ℵi,k
)T ∣∣∣Υi,k

}
= E

{∑
j∈Γi

Aij x̃j,k

(∑
j∈Γi

x̃Tj,kA
T
ij

)∣∣∣Υi,k

}
+ E

{∑
j∈Γi

Aij x̃j,k|kℵTi,k
∣∣∣Υi,k

}
+ E

{∑
j∈Γi

ℵi,kx̃Tj,k|kA
T
ij

∣∣∣Υi,k

}
+ ℵi,kℵTi,k
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≤ (1 + ε1i,k)Ω̃i,k + (1 + ε−1
1i,k)ℵi,kℵTi,k := Λ̃i,k. (14)

Taking (14) into consideration, we further deal with (12) as follows

Pi,k+1|k ≤ (1 + ε0i,k)AiiPi,k|kA
T
ii +Qi + (1 + ε−1

0i,k)Λ̃i,k

:= Qhk(Pi,k|k). (15)

In what follow, let us calculate the covariance matrix Pi,k|k of filtering errors. Ac-
cording to the updated dynamics, one has

Pi,k+1|k+1

= E
{(
I − (Li,k+1 + ∆Li,k+1)Ci

)T
Pi,k+1|k

× (I − (Li,k+1 + ∆Li,k+1Ci)
)

+ (Li,k+1 + ∆Li,k+1)Ri(Li,k+1 + ∆Li,k+1)T
}

= (I − Li,k+1Ci)Pi,k+1|k(I − Li,k+1Ci)
T

+ E
{

∆Li,k+1CiPi,k+1|kC
T
i ∆LTi,k+1

}
+ Li,k+1RiL

T
i,k+1 + E

{
∆Li,k+1Rk∆LTi,k+1

}
≤ (I − Li,k+1Ci)Pi,k+1|k(I − Li,k+1Ci)

T

+ δiλmax(Rk + CiPi,k+1|kC
T
i )I + Li,k+1RiL

T
i,k+1. (16)

Finally, select the matrix value function

Shk (X) = (1 + ε0i,k)AiiXA
T
ii +Qi + (1 + ε−1

0i,k)Λi,k.

When Pi,0|0 ≤ Φi,0|0, one has Pi,1|0 ≤ Φi,1|0 with the help of Lemma 3.1. Furthermore,
it is not difficult to find that

Pi,1|1 − Φi,1|1

≤ (I − Li,1Ci)(Pi,1|0 − Φi,1|0)(I − Li,1Ci)T

+ δiλmax(Ri + Ci(Pi,1|0 − Φi,1|0)CTi )I

≤ 0.

Assuming that Pi,k|k ≤ Φi,k|k is true, we can also derive that Pi,k+1|k ≤ Φi,k+1|k and
Pi,k+1|k+1 ≤ Φi,k+1|k+1 hold via Lemma 3.1. According to the mathematical induction,
we deduce that (7) is true for any instant k and hence the proof is complete. �

Up to now, the upper bound of the covariance of the filtering error has been given.
Next, we use a gradient-based method to obtain the desired filter gain and meanwhile
minimize such an upper bound.

Theorem 3.4. For the addressed discrete-time LSSs (1) with energy constraints, the
upper bound of estimation error variance Φi,k+1|k+1 is locally minimized when the gain
of constructed resilient filter (5) is

Li,k+1 = Φi,k+1|kC
T
i (CiΦi,k+1|kC

T
i +Ri)

−1, (17)

where Φi,k+1|k and Φi,k+1|k+1 are the same with that of Theorem1 3.3.
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P r o o f . Firstly, taking the trajectories on both sides of (10) leads to

Tr{Φi,k+1|k+1}
= Tr

{
Φi,k+1|k − Li,k+1CiΦi,k+1|k − Φi,k+1|kC

T
i L

T
i,k+1

+ Li,k+1

(
CiΦi,k+1|kC

T
i +Ri

)
LTi,k+1

}
+ δiλmax{Ri + CiΦi,k+1|kC

T
i }. (18)

Via Lemma 3.2, taking the partial derivative of Tr(Φk+1|k+1) with respect to Li,k+1,
one has

∂ Tr(Φi,k+1|k+1)

∂Li,k+1
= 2Li,k+1(CiΦi,k+1|kC

T
i +Ri)− 2Φi,k+1|kC

T
i . (19)

To minimize the upper bound of error covariance, let (19) be equal to zero:

2Li,k+1(CiΦi,k+1|kC
T
i +Ri)− 2Φi,k+1|kC

T
i = 0,

which implies

Li,k+1 = Φi,k+1|kC
T
i (CiΦi,k+1|kC

T
i +Ri)

−1,

and there the proof is complete. �

To evaluate the impact on filtering performance from the missing probability due to
energy constraints, assuming that statistical features are identified, then the following
results are obtained.

Theorem 3.5. Suppose that the probabilities of two information missing sequences
{α1j,k} and {α2j,k} (j ∈ Γi) are identified and satisfy P{α1j,k = 0} < P{α2j,k = 0}. For
the prefixed ε0i,k = ε0i and ε1i,k = ε1i for any instant k, the following relationship is
satisfied:

E{Φα1j,k

i,k+1|k} ≤ E{Φα2j,k

i,k+1|k},E{Φ
α1j,k

i,k+1|k+1} ≤ E{Φα2j,k

i,k+1|k+1}

where Φ
α∗j,k
i,k+1|k ( or Φ

α∗j,k
i,k+1|k+1 ) stands for the minimized upper bound of Φi,k+1|k ( or

Φi,k+1|k+1) under the given sequence {α∗j,k} .

P r o o f . Without loss of generality, denote Γ̃i = Γi/{j}, Υ̃i,k = {αj,k|j ∈ Γ̃i} and
P
{
αj,k = 1

}
= ᾱj . For any sequence {αj,k} (j ∈ Γi), one has

E{Φαj,k

i,k+1|k}

= E{Φαj,k

i,k+1|k|Υ̃i,k, {αj,k = 0}}P
{

Υ̃i,k, αj,k = 0
}

+ E{Φαj,k

i,k+1|k|Υ̃i,k, {αj,k = 1}}P
{

Υ̃i,k, αj,k = 1
}

= (1− ᾱj)E{Φ
αj,k

i,k+1|k|Υ̃i,k, {αj,k = 0}}P
{

Υ̃i,k

}
+ ᾱjE{Φ

αj,k

i,k+1|k|Υ̃i,k, {αj,k = 1}}P
{

Υ̃i,k

}
. (20)
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For the second term in the right side of (20), we have

ᾱjE{Φ
αj,k

i,k+1|k|Υ̃i,k, {αj,k = 1}}P
{

Υ̃i,k

}
= ᾱj

(
(1 + ε0i)AiiΦi,k|kA

T
ii +Qi + (1 + ε−1

0i )Λ̂i,k)P
{

Υ̃i,k

}
,

where

ℵ̃i,k =
∑

j∈Γ̃i

(1− αj,k)Aij(I −Hj,k)x̂j,k|k

Λ̂i,k = (1 + ε1i)Ωi,k + (1 + ε−1
1i )ℵ̃i,kℵ̃Ti,k.

Substituting it into (20), one has

E{Φαj,k

i,k+1|k}/P
{

Υ̃i,k

}
= ᾱj

(
(1 + ε0i)AiiΦi,k|kA

T
ii +Qi + (1 + ε−1

0i )Λ̂i,k)

+ (1− ᾱj)
(
(1 + ε0i)AiiΦi,k|kA

T
ii +Qi + (1 + ε−1

0i )Λi,k).

Taking the derivation of E{Φαj,k

i,k+1|k}/P
{

Υ̃i,k

}
on the probability ᾱj leads to

d

dᾱj
E{Φαi,k

i,k+1|k}/P
{

Υ̃i,k

}
= (1 + ε−1

0i )(Λ̂i,k − Λi,k)

= (1 + ε−1
0i )(ℵ̃i,kℵ̃Ti,k − ℵi,kℵTi,k)

= − (1 + ε−1
0i )(1 + ε−1

1i )

× (Aij(I −Hj,k)x̂j,k|k)(Aij(I −Hj,k)x̂j,k|k)T

≤ 0.

On the other hand, denote

=0
i,k = E{Φαj,k

i,k+1|k|Υ̃i,k, {αj,k = 0}}

= (1 + ε0i)AiiΦi,k|kA
T
ii +Qi + (1 + ε−1

0i )Λi,k

=1
i,k = E{Φαj,k

i,k+1|k|Υ̃i,k, {αj,k = 1}}

= (1 + ε0i)AiiΦi,k|kA
T
ii +Qi + (1 + ε−1

0i )Λ̂i,k,

and have =0
i,k ≥ =1

i,k.
Then, it follows from (10) and (17) that

Φi,k+1|k+1 =(Φ−1
i,k+1|k + CTi RiCi)

−1 + δiλmax{Ri + CiΦi,k+1|kC
T
i }I.

Furthermore, it follows that

E{Φαj,k

i,k+1|k+1}/P
{

Υ̃i,k

}
= (1− ᾱj)E{Φ

αj,k

i,k+1|k+1|Υ̃i,k, {αj,k = 0}}+ ᾱjE{Φ
αj,k

i,k+1|k+1|Υ̃i,k, {αj,k = 1}}
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= (1− ᾱj)
(
((=0

i,k)−1 + CTi RiCi)
−1 + δiλmax{Ri + Ci=0

i,kC
T
i }I

)
+ ᾱj

(
((=1

i,k)−1 + CTi RiCi)
−1 + δiλmax{Ri + Ci=1

i,kC
T
i }I

)
.

Finally, taking the derivation of above equation on the probability ᾱj leads to

d

dᾱj
E{Φαj,k

i,k+1|k+1}/P
{

Υ̃i,k

}
= ((=1

i,k)−1 + CTi RiCi)
−1 − ((=0

i,k)−1 + CTi RiCi)
−1

+ δiλmax{Ri + Ci(=1
i,k −=0

i,k)CTi }I
≤ 0.

Therefore, it conclude that the filtering performance becomes better when the probabil-
ity ᾱj increases, which completes the proof. �

Remark 3.6. In Theorem 3.3, the introduced positive scalars can be selected as

ε1i,k =

√
Tr(Ωi,k)

Tr(ℵi,kℵTi,k)
, ε0i,k =

√
Tr(AiiΦi,k|kA

T
ii)

Tr(Λi,k)

such that the trace of covariance matrices is small as much as possible. However, the
analysis of filtering performance in this case is nontrivial due to the complex calculation
of ε0i,k and ε1i,k and therefore it constitutes our future research topic.

4. SIMULATION RESULTS

In this section, the developed filtering algorithm will be applied into the representative
power systems in order to illustrate its effectiveness. To this end, we employ a power
system, which consists of 4 coupled power generation areas shown in Figure 1. In this
figure, the predetermined topology a12 = a21 = a23 = a24 = a32 = a34 = a42 = 1. Note
that it is just the scenario 1 of the Hycon2 Project proposed in [30].

Fig. 1. A framework of distributed resilient filtering for a power

system.
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∆θi Deviation of the angular displacement of the rotor with respect
to the stationary reference axis on the stator.

∆wi Speed deviation of rotating mass.
∆Pmi

Deviation of the mechanical power.
∆Pvi Deviation of the steam valve position.
∆Prefi Deviation of the reference set power.
∆PLi Deviation of the nonfrequency-sensitive load change.
Hi Inertia constant defined as

Hi =
Kinetic energy at rated speed

Machine rating
.

Ri Speed regulation.
Di Defined as

Di =
Percent change in load

Change in frequency
.

Tti Prime mover time constant.
Tgi Governor time constant.
Pij Slope of the power angle curve at the initial operating angle

between area i and area j.

Tab. 1. System variables of power system.

Area1 Area2 Area3 Area4
Hi 12 10 8 10
Ki 0.05 0.0625 0.08 0.05
Di 0.7 0.9 0.9 0.86
Tti 0.65 0.4 0.3 0.8
Tgi 0.1 0.1 0.1 0.15

Tab. 2. Parameters of the four-area power systems.

Pij j = 1 j = 2 j = 3 j = 4
i = 1 4
i = 2 4 2
i = 3 2 2
i = 4 2

Tab. 3. Parameters of the four-area power systems.
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Time (k) 1 2 3 4 5 6 · · ·
γi1,k 1 1 1 1 1 1 · · ·
γi2,k 1 1 0 1 1 0 · · ·
γi3,k 1 0 1 1 0 1 · · ·
γi4,k 0 1 1 0 1 1 · · ·

Tab. 4. Parameters of the four-area power systems.

In what follows, the dynamic of each power generation region in continuous-time case
is modeled as follows

ẋi(t) = A′iixi(t) +
∑
j∈Ni

A′ijxj(t) + L′i∆PLi
+B′iui,

where xi = [ ∆θi ∆wi ∆Pmi
∆Pvi ]T is the state of area i, ui = ∆Prefi represents

the control effort of area i, and ∆PLi
is the local power load. Furthermoer, the definitions

of elements (i. e. system variables of power systems) are shown in Table 4 and Table 4
and their values are listed in Table 4. Finally, the system matrices are further described
as

A′ii =


0 1 0 0

−
∑

j∈Ai
Pij

2Hi
− Di

2Hi

1
2Hi

0

0 0 − 1
Tti

1
Tti

0 − 1
RiTgi

0 − 1
Tgi

 ,

B′i =


0
0
0
1
Tgi

 , A′ij =


0 0 0 0
Pij

2Hi
0 0 0

0 0 0 0
0 0 0 0

 ,

L′i =


0
− 1

2Hi

0
0

 , Ci =

 1 0 0 0.6
0 1 0 0.3
0 0 1 0.5

 .
According to the filtering issure, the knwon inputs do not affect the filtering perfor-

mance and thereby the known constants ∆Prefi and ∆PLi
are removed from the system

addressed above. Similar to the method of reference [29], we discretize the continu-
ous system that the covariance matrices of Gaussian noise sequences wi,k and vi,k are
selected as Qi = 0.1I and Ri = 0.1I for any subsystem i.

In order to save the energy, two kinds of channels are employed to implement the
information transmission where the scalar ri is predetermined as 3 and the selection
schmem of reliable channels Hi,k = diag{γi1,k, γi2,k, γi3,k, γi4,k} are shown in Table 4 for
all i. Furthermore, the bound of gain variation is δi = 0.001 for all subsystem i.

In the simulation, the corresponding discrete-time model is not difficult to be obtained
by selecting the sampling period T = 1s, and the initial conditions of power systems
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and filtering error covariance are chosen as

x1,0 = [5.6, 6, 5.2, 5.6]T , x2,0 = [4.4, 4.8, 7.2, 5.2]T ,

x3,0 = [4.4, 11.2, 11.2, 6.4]T , x4,0 = [5.2, 5.2, 4.4, 5.6]T ,

Ψi,0|0 = I, (i = 1, 2, 3, 4).
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Fig. 2. The true value θi and its estimation θ̂i (i = 1, 2, 3, 4).
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Fig. 3. The true value wi and its estimation ŵi (i = 1, 2, 3, 4).
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Fig. 4. The true value Pmi and its estimation P̂mi (i = 1, 2, 3, 4).
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Fig. 5. The true value Pvi and its estimation P̂vi (i = 1, 2, 3, 4).

Furthermore, the square of filtering errors, defined by SEi,k = eTi,k|kei,k|k, is uti-
lized to evaluate the filtering performance. The proposed scheme is tested in MATLAB
(R2014a). The simulation results are depicted in Figures 2 – 6, where Figures 2 – 5 de-
scribe the trajectories of the true states xi,k(i = 1, 2, 3, 4) and its estimation x̂i,k|k.
Figure 6 plots the logarithmic trace of matrix Φi,k|k and the logarithmic square of es-
timation error (SEi,k). The simulation example illustrates that the developed filtering
algorithm performed well.
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Fig. 6. The upper bound of Ωi,k|k and SEi,k.

5. CONCLUSIONS

In this paper, we have investigated a distributed resilient filtering for discrete-time LSSs,
where energy constraints have been governed by two kinds of channels with different
energy allocation. For the addressed issue, a novel distributed filter subject to gain per-
turbations has been designed with the help of compensated neighboring estimation. The
bounds of the covariance matrices of one-step prediction errors and the filtering errors
have been obtained and then minimized to analytically obtain the desired gain matrices.
The proposed distributed filtering algorithm satisfies the requirements of low calcula-
tion burden and scalability although it is suboptimal. Furthermore, it has been disclosed
that the filtering performance becomes better when the probability of packet loss de-
creases. Further research topics will focus on distributed resilient filtering of large-scale
systems under more complex scenarios, such as cyber attacks [2,17,33], communication
protocols [3], as well as performance optimization [8].

(Received June 26, 2019)
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