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MOBILE ROBOT LOCALIZATION UNDER STOCHASTIC
COMMUNICATION PROTOCOL

Yanyang Lu and Bo Shen

In this paper, the mobile robot localization problem is investigated under the stochastic
communication protocol (SCP). In the mobile robot localization system, the measurement data
including the distance and the azimuth are received by multiple sensors equipped on the robot.
In order to relieve the network burden caused by network congestion, the SCP is introduced to
schedule the transmission of the measurement data received by multiple sensors. The aim of
this paper is to find a solution to the robot localization problem by designing a time-varying
filter for the mobile robot such that the filtering error dynamics satisfies the H∞ performance
requirement over a finite horizon. First, a Markov chain is introduced to model the transmission
of measurement data. Then, by utilizing the stochastic analysis technique and completing
square approach, the gain matrices of the desired filter are designed in term of a solution to two
coupled backward recursive Riccati equations. Finally, the effectiveness of the proposed filter
design scheme is shown in an experimental platform.

Keywords: localization, mobile robot, Riccati equations, stochastic communication pro-
tocol
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1. INTRODUCTION

Over the past decades, the mobile robot has a wide range of applications in various areas
such as industry, intelligent transportation, military, space exploration, and so on. As
a fundamental issue in robot field, the localization problem has received a great deal of
research attention and a great number of results have been reported in the literature,
see e. g. [1, 13, 18, 21, 24, 25, 33, 35]. For example, in [35], a novel robust extended H∞
filtering approach has been proposed to deal with the mobile robot localization prob-
lem. In [33], a new H∞ filter has been designed for discrete time-varying systems with
missing measurements and quantization effects and the filtering scheme proposed has
been successfully applied to the mobile robot localization problem. In [13], an extended
Kalman filtering algorithm has been proposed to solve the mobile robot localization
problem where a Doppler-azimuth radar is used to measure the Doppler-shift and az-
imuth measurements.
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In reality, when the robot moves, some obstacles may appear between the sensor
and the landmark. Therefore, the measurement data received by the sensor from the
landmark might be inaccurate at some time instants, which makes the localization in-
accurate. In order to reduce the inaccuracy of localization brought by the obstacle,
a multiple sensor strategy has been applied in the mobile robot localization problem,
see e. g. [2, 16, 17, 22, 23, 36]. However, the transmission of the measurement data will
increase the burden of communication network as the number of sensors increases. In
order to ease the network burden or avoid the network congestion, the communication
protocols have been often adopted in the networked systems such as weighted try-once-
discard protocol [39], round-robin protocol [6,26], event-triggered protocol [11,15,20,29],
stochastic communication protocol (SCP) [9, 38], and so on.

The SCP whose main idea is that only one sensor is allowed to access to the network
for signal transmission at a certain time instant, has gradually become a hot research
topic in networked systems [5,9,19,31,32,38]. For the purpose of effectively coping with
the phenomena of data congestion/collision, the SCP has been introduced in [5] and the
neural network based output-feedback control problem under SCP has been investigated
for a class of nonlinear systems. In [19], the observer-based stabilization problem has
been investigated for a class of discrete-time nonlinear stochastic networked systems
under SCP. In [31], the finite-horizon H∞ state estimation problem has been studied
for a class of discrete time-varying genetic regulatory networks with quantization effects
under SCP. Nevertheless, the mobile robot localization problem under SCP has not yet
gained adequate attention.

Motivated by the aforementioned discussions, in this paper, we aim to investigate
the mobile robot localization problem under SCP. Our focus is on the design of an H∞
filter to ensure that the filtering error satisfies the H∞ performance requirement over
a given finite horizon. The main challenges we encounter are listed as follows: 1) how
to formulate a mathematical model accounting for the SCP and 2) how to design the
filter and the corresponding filter based mobile robot localization algorithm? We shall
overcome the difficulties identified above by finding a solution to the so-called mobile
robot localization problem under SCP.

The main contributions of this paper can be summarized as follows:

1) the SCP is, for the first time, considered in mobile robot localization problem;

2) two coupled backward recursive Riccati difference equations are obtained to design
the filter gain matrices; and

3) based on the proposed filter design scheme, the localization algorithm of the mobile
robot is given.

Finally, the effectiveness of the proposed localization algorithm is verified in an experi-
mental platform.

The remainder of this paper is organized as follows. In Section 2, the mobile robot
kinematic model, the measurement model and the SCP are described. In Section 3,
the desired filter is designed and the localization algorithm is given. In Section 4, a
simulation experiment is implemented. Some conclusions are provided in Section 5.
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Notation. The notation used here is fairly standard except where otherwise stated.
Rn and Rn×m denote, respectively, the n dimensional Euclidean space and the set of
all n ×m real matrices. The notation X ≥ Y (X > Y ), where X and Y are real sym-
metric matrices, means that X − Y is positive semi-definite (positive definite). Prob{·}
means the occurrence probability of the event “ · ”. E{x} denotes the expectation of
the stochastic variable x. I represents the identity matrix of compatible dimensions.
diag{· · · } stands for a block-diagonal matrix. ‖x‖ refers to the Euclidean norm of a
vector x. MT and M† ∈ Rn×m represent the transpose and the Moore-Penrose pseudo
inverse of matrix M ∈ Rm×n.

2. PROBLEM FORMULATION

2.1. Mobile robot kinematic model

Consider a two-wheeled mobile robot which is shown in Figure 1.

Fig. 1. Mobile robot model.

The mobile robot kinematic model is described as follows [33,35]:
ẋ(t) = v(t) cos θ(t)

ẏ(t) = v(t) sin θ(t)

θ̇(t) = ω̄(t)

(1)

where (x(t), y(t)) is the position of mobile robot, θ(t) is the angle between the xG axis
and the mobile robot forward axis y′R, v(t) is the displacement of the mobile robot and
ω̄(t) is the angular velocity of the mobile robot. The displacement and angular velocity
of the robot are usually obtained by the odometer and they are assumed to be constant
over the sampling period. Then, the continuous-time system (1) is discretized to the
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following system: 
x(k + 1) = x(k) + ∆Tv(k) cos θ(k)

y(k + 1) = y(k) + ∆Tv(k) sin θ(k)

θ(k + 1) = θ(k) + ∆T ω̄(k)

(2)

where ∆T is the sampling period.

By setting X(k) =
[
xT (k) yT (k) θT (k)

]T
and u(k) =

[
∆Tv(k)
∆T ω̄(k)

]
:=

[
u1(k)
u2(k)

]
, the

system (2) can be rewritten as

X(k + 1) = f(X(k), u(k)) (3)

where

f(X(k), u(k)) = X(k) +

u1(k) cos θ(k)
u1(k) sin θ(k)

u2(k)

 .
By expanding the nonlinear function f(X(k), u(k)) in a Taylor series about the esti-

mate X̂(k), (3) can be further expressed by

X(k + 1) = A(k)X(k) + φ(k) (4)

where

A(k) =


∂fx
∂x(k)

∂fx
∂y(k)

∂fx
∂θ(k)

∂fy
∂x(k)

∂fy
∂y(k)

∂fy
∂θ(k)

∂fθ
∂x(k)

∂fθ
∂y(k)

∂fθ
∂θ(k)

∣∣∣∣∣
X(k)=X̂(k)

=

 1 0 −u1(k) sin θ̂(k)

0 1 u1(k) cos θ̂(k)
0 0 1


and φ(k) = f(X̂(k), u(k))−A(k)X̂(k) + %X(k). Here, %X(k) represents the higher order
terms occurring in the Taylor expansions of the nonlinear function f(X(k), u(k)).

Remark 2.1. It is well recognized that the evolution of the system (4) depends primar-
ily on the system matrix A(k) and the nonlinear term φ(k) (also known as linearization
error) plays a relatively less important role. As such, a conventional way is to treat the
nonlinear term φ(k) as one of the sources for disturbances. On the other hand, it is
inevitable that the system states are contaminated by external noises. For mathemat-
ical convenience, we slightly abuse the notation φ(k) to include both the linearization
errors and the externally environmental noises. Moreover, φ(k) is assumed to belong to
l2[0, N − 1].

2.2. Measurement model

The points Mi (i = 1, 2, 3 . . . L) are chosen as landmarks. Denote the measurement

vector of the ith sensor at the time instant k by z̃i(k) =
[
dTi (k) ϕTi (k)

]T
. As shown in
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Figure 2, the distance di(k) from mobile robot position (x(k), y(k)) to the ith landmark
Mi(xMi

, yMi
) can be expressed by

di(k) =
√

(xMi
− x(k))2 + (yMi

− y(k))2. (5)

The azimuth ϕi(k) at time instant k can be expressed by

Fig. 2. Absolute measurements.

ϕi(k) = θ(k)− arctan(
yMi
− y(k)

xMi
− x(k)

). (6)

Consequently, from (5) and (6), the measurement model can be obtained as follows

z̃i(k) = gi(X(k)) =

[ √
(xMi

− x(k))2 + (yMi
− y(k))2

θ(k)− arctan(
yMi−y(k)
xMi−x(k)

)

]
. (7)

Again, using Taylor series expansions, the measurement model (7) can be rewritten
as

z̃i(k) = Ci(k)X(k) + υi(k) (8)

where

Ci(k) =

[ ∂gdi(k)
∂x(k)

∂gdi(k)
∂y(k)

∂gdi(k)
∂θ(k)

∂gϕi(k)
∂x(k)

∂gϕi(k)
∂y(k)

∂gϕi(k)
∂θ(k)

]∣∣∣∣∣
X(k)=X̂(k)

=

 −(xMi−x̂(k))√
(xMi−x̂(k))2+(yMi−ŷ(k))2

−(yMi−ŷ(k))√
(xMi−x̂(k))2+(yMi−ŷ(k))2

0

−(yMi−ŷ(k))
(xMi−x̂(k))2+(yMi−ŷ(k))2

xMi−x̂(k)
(xMi−x̂(k))2+(yMi−ŷ(k))2

1
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and υi(k) represents linearization errors and the measurement noises which is also as-
sumed to belong to l2[0, N − 1].

Denote

z̃(k) =
[
z̃T1 (k) z̃T2 (k) · · · z̃TL (k)

]T ∈ R2L,

C(k) =
[
CT1 (k) CT2 (k) · · · CTL (k)

]T ∈ R2L×3,

υ(k) =
[
υT1 (k) υT2 (k) · · · υTL (k)

]T ∈ R2L.

Then, the measurement output z̃(k) can be described by the following compact ex-
pression

z̃(k) = C(k)X(k) + υ(k). (9)

2.3. Stochastic communication protocol

At each communication time instant, only one sensor has the privilege to transmit its
measurement data to the remote filters for the purpose of easing the communication
network burden. To this end, the SCP is introduced to manage which sensor acquires
the privilege to send its measurement data. Denote by `(k) the selected sensor at time
instant k and we regard `(k) ∈ {1, 2, 3 . . . L} as a random process described by a Markov
chain with the transition probability matrix Ξ(k) = [πqr(k)]L×L defined as follows

πqr(k) = Prob{`(k + 1) = r|`(k) = q}, ∀ q, r ∈ {1, 2, 3 . . . L}, (10)

where πqr(k) > 0 (q, r ∈ {1, 2, 3 . . . L}) means the transition probability form q to r at

time instant k and
∑L
r=1 πqr(k) = 1.

The measurement signal after the transmission via the network is described as follows

z(k) ,
[
zT1 (k) zT2 (k) · · · zTL (k)

]T ∈ R2L. (11)

The updating rule for zq(k) (q = 1, 2, 3 . . . L) under the SCP is expressed by

zq(k) =

{
z̃q(k) + ϕq(k), q = `(k),

zq(k − 1), otherwise,
(12)

where ϕq(k) is the exogenous disturbance which is also assumed to belong to l2[0, N−1].
Defining

Ψ`(k) , diag{δ(`(k)− 1)I2×2, δ(`(k)− 2)I2×2, . . . , δ(`(k)− L)I2×2} ∈ R2L×2L,

ϕ(k) ,
[
ϕT1 (k) ϕT2 (k) · · · ϕTL(k)

]T ∈ R2L,

where δ(·) stands for the Kronecker delta function taking values on 0 or 1, we obtain
the actually received measurements by the filter as follows

z(k) = Ψ`(k)

(
z̃(k) + ϕ(k)

)
+ (I −Ψ`(k))z(k − 1). (13)
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Let

X (k) ,
[
XT (k) zT (k − 1)

]T ∈ R2L+3,

w(k) ,
[
φT (k) υT (k) ϕT (k)

]T ∈ R4L+3.

For each possible `(k) = q ∈ {1, 2, 3 . . . L}, it is obtained from (4), (9) and (13) that{
X (k + 1) = Aq(k)X (k) + Bq(k)w(k)

z(k) = Cq(k)X (k) +Dq(k)w(k)
(14)

where

Aq(k) =

[
A(k) 0

ΨqC(k) I −Ψq

]
, Bq(k) =

[
I 0 0
0 Ψq Ψq

]
,

Cq(k) =
[

ΨqC(k) I −Ψq

]
, Dq(k) =

[
0 Ψq Ψq

]
.

We construct a filter for the augmented system (14) as follows

X̂ (k + 1) = Aq(k)X̂ (k) +Kq(k)(z(k)− Cq(k)X̂ (k)) (15)

where X̂ (k) represents the estimate of the state X (k) and Kq(k) is the gain matrix to
be designed.

By denoting e(k) = X (k)− X̂ (k), the following filtering error dynamics is obtained

e(k + 1) =
(
Aq(k)−Kq(k)Cq(k)

)
e(k) +

(
Bq(k)−Kq(k)Dq(k)

)
w(k). (16)

In this paper, our objective is to design a filter of structure (15) such that the error
dynamic system (16) satisfies the following performance requirement

E
{N−1∑
k=0

(
‖e(k)‖2 − γ2‖w(k)‖2

)}
− γ2eT (0)Se(0) < 0 (17)

where γ > 0 is the disturbance attenuation level and S > 0 is the given matrix.

3. MAIN RESULTS

In derivation of our main results, the following lemmas will be used.

Lemma 3.1. Let matrices G, M and Γ be given with appropriate dimensions. The
following matrix equation

GXM = Γ (18)

has a solution X if and only if GG†ΓM†M = Γ. Moreover, if the condition is met, the
solution to (18) can be represented by

X = G†ΓM† + Y −G†GYMM†

where Y is a matrix with appropriate dimensions.
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Lemma 3.2. Consider the system (4) under the SCP and let the filter gain matrix
{Kq(k)}0≤k≤N−1 (q ∈ {1, 2, 3 . . . L}), the disturbance attenuation level γ > 0 and the
matrix S > 0 be given. For any disturbance sequences {w(k)}0≤k≤N−1, the error dy-
namic system (16) satisfies the H∞ performance requirement (17) if there exists a fam-
ily of positive definite matrices {Pq(k)}0≤k≤N−1 (with final condition Pq(N) = 0, q ∈
{1, 2, 3 . . . L}) satisfying the following backward discrete Riccati difference equation

Pq(k) =
(
Aq(k)−Kq(k)Cq(k)

)T
P̄q(k + 1)

(
Aq(k)−Kq(k)Cq(k)

)
+ I

+
(
Aq(k)−Kq(k)Cq(k)

)T
P̄q(k + 1)

(
Bq(k)−Kq(k)Dq(k)

)
∆−1q (k)

×
(
Bq(k)−Kq(k)Dq(k)

)T
P̄q(k + 1)

(
Aq(k)−Kq(k)Cq(k)

)
(19)

with{
∆q(k) = γ2I −

(
Bq(k)−Kq(k)Dq(k)

)T
P̄q(k + 1)

(
Bq(k)−Kq(k)Dq(k)

)
> 0

Pq(0) ≤ γ2S
(20)

where

P̄q(k + 1) =

L∑
r=1

πqr(k)Pr(k + 1). (21)

P r o o f . Consider the following Lyapunov functional candidate for error system (16)

V`(k)(k) = eT (k)P`(k)(k)e(k). (22)

We construct the following equation:

J`(k)(k) =V`(k+1)(k + 1)− V`(k)(k) + eT (k)e(k)− γ2wT (k)w(k)

−
(
eT (k)e(k)− γ2wT (k)w(k)

)
. (23)

For `(k) = q, one has

E{Jq(k)} =E
{(

(Aq(k)−Kq(k)Cq(k))e(k)

+ (Bq(k)−Kq(k)Dq(k))w(k)
)T

× P̄q(k + 1)
(
(Aq(k)−Kq(k)Cq(k))e(k)

+ (Bq(k)−Kq(k)Dq(k))w(k)
)

− eT (k)Pq(k)e(k) + eT (k)e(k)

− γ2wT (k)w(k)−
(
eT (k)e(k)− γ2wT (k)w(k)

)}
. (24)

Applying the completing square technique, we have

E{Jq(k)} =E
{
eT (k)

((
Aq(k)−Kq(k)Cq(k)

)T
P̄q(k + 1)
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×
(
Aq(k)−Kq(k)Cq(k)

)
− Pq(k) + I

)
e(k)

+
(
w∗(k)

)T
∆q(k)w∗(k)

−
(
w(k)− w∗(k)

)T
∆q(k)

(
w(k)− w∗(k)

)}
− E

{
eT (k)e(k)− γ2wT (k)w(k)

}
(25)

where

w∗(k) =∆−1q (k)
(
Bq(k)−Kq(k)Dq(k)

)T
P̄q(k + 1)

(
Aq(k)−Kq(k)Cq(k)

)
e(k).

Taking the sum on both sides of (25) from 0 to N − 1 with respect to k, we obtain

E
{
eT (N)P`(N)(N)e(N)− eT (0)P`(0)(0)e(0)

}
=E
{
−
N−1∑
k=0

(
w(k)− w∗(k)

)T
∆q(k)

(
w(k)− w∗(k)

)
−
N−1∑
k=0

(
eT (k)e(k)− γ2wT (k)w(k)

)}
. (26)

Since ∆q(k) > 0, Pq(0) 6 γ2S and Pq(N) = 0, we have

E
{N−1∑
k=0

(
‖e(k)‖2 − γ2‖w(k)‖2

)}
− γ2eT (0)Se(0)

=E
{
−
N−1∑
k=0

(
w(k)− w∗(k)

)T
∆q(k)

(
w(k)− w∗(k)

)
+ eT (0)

(
P`(0)(0)− γ2S

)
e(0)

}
< 0, (27)

which means that the H∞ performance requirement (17) is satisfied. The proof is
complete. �

So far, we have conducted the H∞ performance analysis in terms of the solvability of
a backward Riccati equation in Lemma 3.2. In the next stage, we compute the desired
filter gain matrix Kq(k) under the worst situation w(k) = w∗(k). For this purpose, we
rewrite the error system (16) as follows

e(k + 1) = Āq(k)e(k) + Υq(k), (28)

where

Āq(k) =Aq(k) +
(
Bq(k)−Kq(k)Dq(k)

)
Ωq(k),

Υq(k) =−Kq(k)Cq(k)e(k),

Ωq(k) =∆−1q (k)(Bq(k)−Kq(k)Dq(k))T P̄q(k + 1)(Aq(k)−Kq(k)Cq(k)) (29)
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and define a cost function as follows

J̄∗q (k) = E
{N−1∑
k=0

(‖e(k)‖2 + ‖Υq(k)‖2)
}
. (30)

Theorem 3.3. Consider the system (4) under the SCP constraints. Let the distur-
bance level γ > 0 and the matrix S > 0 be given. The error system (16) satisfies the
H∞ performance requirement (17) if there exists a family of positive definite matri-
ces (Pq(k), Qq(k))0≤k≤N−1 and matrix Kq(k)0≤k≤N−1 (q ∈ {1, 2, 3 . . . L}) satisfying the
recursive RDE (19) and the following RDE{

Qq(k) = ĀTq (k)Q̄q(k + 1)Āq(k) + I − ĀTq (k)Q̄q(k + 1)Λ−1q (k)Q̄q(k + 1)Āq(k)

Qq(N) = 0

(31)

with {
Pq(0) 6 γ2S, Pq(N) = 0,

Λq(k) = Q̄q(k + 1) + I > 0,
(32)

where

Q̄q(k + 1) =

L∑
r=1

πqr(k)Qr(k + 1). (33)

Moreover, if the above condition is met, the filter gain matrix is given by

Kq(k) = Nq(k)C†q(k) + Yq(k)− Yq(k)Cq(k)C†q(k), (34)

whereNq(k) = Λ−1q (k)Q̄q(k+1)Āq(k) and Yq(k) is a matrix with appropriate dimensions.
Meanwhile, the minimum of the cost function of (30) is given by

J̄∗q (k) = eT (0)Q`(0)(0)e(0) (35)

P r o o f . First, it follows from Lemma 3.2 that, if there exists a solution Pq(k) such that
(19) holds with ∆q(k) > 0 and Pq(0) ≤ γ2S, the system satisfies the H∞ performance
requirement. In this case, the worst–case disturbance can be expressed as w∗(k) =
Ωq(k)e(k). In what follows, by employing the worst–case disturbance, we aim to provide
a design scheme for the gain matrices of the time-varying filter, i. e., Kq(k)0≤k≤N−1. For
this purpose, we define

J`(k)(k) = eT (k + 1)Q`(k+1)(k + 1)e(k + 1)− eT (k)Q`(k)(k)e(k). (36)

For `(k) = q, noticing (28) and taking mathematical expectation on both sides of
(36), we have

E{Jq(k)} =E
{(
Āq(k)e(k) + Υq(k)

)T
Q̄q(k + 1)

(
Āq(k)e(k) + Υq(k)

)
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− eT (k)Qq(k)e(k)
}

=E
{
eT (k)

(
ĀTq (k)Q̄q(k + 1)Āq(k)−Qq(k)

)
e(k)

+ 2eT (k)ĀTq (k)Q̄q(k + 1)Υq(k) + ΥT
q (k)Q̄q(k + 1)Υq(k)

}
. (37)

Then, it follows that

E{Jq(k)} =E
{
eT (k)

(
ATq (k)Q̄q(k + 1)Aq(k)−Qq(k)

)
e(k)

+ 2eT (k)ĀTq (k)Q̄q(k + 1)Υq(k) + ΥT
q (k)Q̄q(k + 1)Υq(k)

}
+ E

{
‖e(k)‖2 + ‖Υq(k)‖2 − ‖e(k)‖2 − ‖Υq(k)‖2

}
=E
{
eT (k)

(
ĀTq (k)Q̄q(k + 1)Āq(k)−Qq(k) + I

)
e(k)

+ 2eT (k)ATq (k)Q̄q(k + 1)Υq(k)

+ ΥT
q (k)(Q̄q(k + 1) + I)Υq(k)− ‖e(k)‖2 − ‖Υq(k)‖2

}
. (38)

Applying the completing square method again, we have

E{Jq(k)} =E
{
eT (k)

(
ĀTq (k)Q̄q(k + 1)Āq(k)−Qq(k) + I

−ATq (k)Q̄q(k + 1)Λ−1q (k)Q̄q(k + 1)Āq(k)
)
e(k)

+ (Υq(k)− Ῠq(k))TΛq(k)(Υq(k)− Ῠq(k))− ‖e(k)‖2 − ‖Υq(k)‖2
}
, (39)

where

Ῠq(k) = −Λ−1q (k)Q̄q(k + 1)Āq(k)e(k). (40)

Therefore, it follows from (31) that

J̄∗q (k) =E
{N−1∑
k=0

(‖e(k)‖2 + ‖Υq(k)‖2)
}

=E
{N−1∑
k=0

((
Υq(k)− Ῠq(k)

)T
Λq(k)

(
Υq(k)− Ῠq(k)

))}
+ eT (0)Q`(0)(0)e(0).

(41)

In order to minimize the cost of J̄∗q (k), Υq(k) is taken as Υq(k) = Ῠq(k), from which
we can obtain

Kq(k)Cq(k) = Λ−1q (k)Q̄q(k + 1)Āq(k) = Nq(k). (42)

According to Lemma 3.1, it is known that Kq(k) has the form of (34) and, meanwhile,
the minimum of the cost function is given by (35). The proof is complete. �
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Algorithm 1 : Mobile Robot Localization Under SCP.

Step 1: Set the mobile robot system parameters including the H∞ performance index γ , the
positive definite matrix S and the transition probability matrix Ξ(k). Let Pq(N) =
Qq(N) = 0 and k = N .

Step 2: Calculate ∆q(k), Λq(k), Nq(k) with known Pq(k+1) and Qq(k+1) via the first equation
of (20) and (32) and (33), respectively.

Step 3: If k 6= 0, ∆q(k) > 0 and Λq(k) > 0, then derive the filter gain matrix Kq(k) by (34),
obtain Pq(k) and Qq(k) by (19) and the first equation of (31), respectively, set k = k−1
and go to Step 2; else this algorithm is infeasible, stop.

Step 4: Stop.

By means of Theorem 3.3, we give an algorithm for the mobile robot localization with
SCP as shown in Algorithm 1.

Until now, the localization algorithm of mobile robot under the SCP has been de-
signed. The advantages of the proposed algorithm can be highlighted as follows: 1)
compared with the existing results in [13, 33, 35], a multiple sensor strategy has been
applied to the mobile robot localization problem and hence the localization accuracy is
expected to be improved; 2) compared with the localization methods of using the mul-
tiple sensors in [17,22,23], the SCP is, for the first time, introduced in the mobile robot
localization problem which effectively handles the issue of data congestion/collision. In
the next section, an simulation experiment is implemented to show the effectiveness of
the proposed localization algorithm.

4. EXPERIMENTAL RESULTS

In this section, we verify the effectiveness of the proposed localization algorithm on an
experimental platform.

Let the sampling period of robot’s odometer, the displacement velocity and the
angular velocity be 150ms, 400mm/s and 6rad/s, respectively. The initial states are
set as x(0) = 0.1m, y(0) = 0.1m and θ(0) = 0.1rad. The positions of landmarks
M1, M2 and M3 are set as (xM1

= 5m, yM1
= 5m), (xM2

= 7m, yM2
= 7m) and

(xM3
= 10m, yM3

= 10m), respectively. The system and measurement noises are cho-

sen as φ(k) =
[

0.2 sin(0.01k) 0.2 sin(0.01k) 0.2 cos(0.01k)
]T

and υ1(k) = υ2(k) =

υ3(k) =
[

0.2 sin(0.01k) 0.2 sin(0.01k)
]T

. The H∞ disturbance attenuation level and
the positive definite matrix S are chosen as γ = 3 and S = diag{1, 1, 1, 1, 1, 1, 1, 1, 1},

respectively. The transition probability matrix is taken as Ξ(k) =

[
0.2 0.3 0.5
0.5 0.2 0.3
0.3 0.5 0.2

]
.

The length of the finite horizon is set as N = 300.

We define the mean errors of the estimates as follows

Ex :=
1

N

N∑
k=1

|x̂(k)− x̆(k)|, (43)
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Ey :=
1

N

N∑
k=1

|ŷ(k)− y̆(k)|, (44)

Eθ :=
1

N

N∑
k=1

|θ̂(k)− θ̆(k)|, (45)

and the maximum deviations of the estimates as follows

Mex := max
1≤k≤N

|x̂(k)− x̆(k)|, (46)

Mey := max
1≤k≤N

|ŷ(k)− y̆(k)|, (47)

Meθ := max
1≤k≤N

|θ̂(k)− θ̆(k)|. (48)

Based on Algorithm 1, the simulation results are shown in Figures 3 – 6. Figures 3 – 4

depict the robot position and the angle and their estimates. The position error and the
angle error are shown in Figures 5 – 6, respectively. The mean errors of x(k), y(k) and
θ(k) are computed as 0.116m, 0.068m and 0.147rad, respectively and their maximum
deviations is obtained as 0.260m, 0.193m and 0.325rad, respectively. The simulation
results show that the proposed localization algorithm is effective.
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Fig. 3. Actual robot trajectory in the x− y plane and its estimate.

5. CONCLUSIONS

In this paper, we have studied the mobile robot localization problem under the SCP. For
easing the network burden and reducing network congestion, the SCP has been intro-
duced to govern the transmission of the measurement data. By utilizing the stochastic
analysis technique and completing square approach, the filter gain matrices have been
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Fig. 4. Actual robot angle and its estimate.
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Fig. 5. Mobile robot’s position error.
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166 Y. LU AND B. SHEN

designed by solving two coupled backward recursive RDEs. Based on the proposed fil-
ter design scheme, a localization algorithm of mobile robots has been given. Finally,
the effectiveness of the proposed localization algorithm has been demonstrated in an
experimental platform. Our future research topics would to investigate the localization
problem for multiple robots by using the consensus protocol [3, 4, 10, 12, 34, 37, 40] and
an energy harvesting sensor based filtering approach [30]. Moreover, our future research
topics would also include the extension of the results obtained to the cases of robot
systems with cyber–attacks [7, 8, 14] and stochastic noises [27,28].
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