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ON ASYMPTOTIC BEHAVIORS AND CONVERGENCE
RATES RELATED TO WEAK LIMITING DISTRIBUTIONS
OF GEOMETRIC RANDOM SUMS

Tran Loc Hung, Phan Tri Kien and Nguyen Tan Nhut

Geometric random sums arise in various applied problems like physics, biology, economics,
risk processes, stochastic finance, queuing theory, reliability models, regenerative models, etc.
Their asymptotic behaviors with convergence rates become a big subject of interest. The main
purpose of this paper is to study the asymptotic behaviors of normalized geometric random sums
of independent and identically distributed random variables via Gnedenko’s Transfer Theorem.
Moreover, using the Zolotarev probability metric, the rates of convergence in some weak limit
theorems for geometric random sums are estimated.
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1. INTRODUCTION

Let {Xj , j ≥ 1} be a sequence of independent and identically distributed (i.i.d.) random
variables. Let νp be a geometric random variable with parameter p ∈ (0, 1), having
probability mass function is given by

P(νp = k) = p(1− p)k−1, k ≥ 1, p ∈ (0, 1).

Assume that for each p ∈ (0, 1), the geometric random variable νp is independent of
all Xj , j ≥ 1. Then Sνp :=

∑νp
j=1Xj is said to be a Geometric Random Sum (see for

instance [17] and [16]). Many situations should be modelled as a geometric random sum.
Applications include risk processes, ruin probability, queueing theory and reliability
models. The following list of references contains useful survey: Asmusen (2003, 2010),
Bon (2002), Brown (1990), Feller (1966), Gnedenko and Korolev (1996), Kalashnikov
(1997), Klebabov (1984, 2003), Kruglov and Korolev (1990), Sandhya and Pillai (2003),
Kotz et al. (2001), Daly (2016), etc. (see [1, 2, 4, 5, 6, 7, 9, 12, 16, 17, 18, 23, 26, 22]
and the references given there).
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It is worth pointing out that Klebanov et al. (1984) (see [17] for more details) have
shown that a geometric random sum is unique solution of problem posed by Zolotarev as
follows: describing all random variables Y that for any p ∈ (0, 1), there exists a random
variable Xp such that

Y
D
= Xp + εpY,

where random variables Y,Xp and εp are independent, and Bernoulli random variable
εp has probability mass function

P(εp = 0) = p and P(εp = 1) = 1− p.

Furthermore, the concepts of Geometrically Infinitely Divisible (GID) and Geomet-
rically Strictly Stable (GSS) distributions have been also introduced by Klebanov et al.
(1984). From that, problems concerning to geometric random sums have attracted much
attention of mathematicians such as Korolev and Kruglov (1990), Gnedenko and Korolev
(1996), Kalashnikov (1997), Kotz et al. (2001), Sandhya and Pillai (1999, 2003), Daly
(2016), Hung (2013, 2018), Korolev and Zeifman (2016, 2017), Korolev and Dorofeeva
(2017), etc. (see [7, 12, 14, 15, 16, 19, 20, 21, 22, 23, 25, 26], and references therein).

However, in various situations the weak limit distributions of normalized geometric
random sums should be different. Beside that, the convergence rates in weak limit
theorems for geometric random sums have not been to estimated fully. These things are
motivations of studying in this paper.

The main aim of this article is to establish some weak limit theorems for several
normalized geometric random sums of i.i.d. random variables, using the Gnedenko’s
Transfer Theorem (see [10] and [12]). The rates of convergence in weak limit theorems
for geometric random sums will be also estimated via Zolotarev probability metric (see
[3, 29, 30, 31], and [24]). The received results are related to the class of heavy-tailed
distributions which has been well-known such as exponential, Laplace and Linnik dis-
tributions (see [18]).

In order to apply the well-known Gnedenko’s Transfer Theorem and without loss of
generality, throughout this paper, we consider the geometric random variable νpn with
parameter pn = θ/n, where n ≥ 1 and for any θ ∈ (0, 1). It is worth saying that, the
Zolotarev probability metric used in our paper is an ideal metric (see for instance [31]
and [24]), so it is easy to estimate the approximations concerning with random sums
of i.i.d. random variables. Moreover, this metric could be compared with well-known
metrics like Kolmogorov metric, total variation metric, Lévy-Prokhorov metric and the
probability metric based on Trotter operator, etc. (see [3, 13, 29, 30, 31], and [14]).

The rest of this paper is structured as follows. The fundamental concepts, Gnedenko’s
Transfer Theorem and Zolotarev probability metric with its properties will be recalled
in Section 2. The Section 3 will present the main results of our paper. Some concluding
remarks will be showed in the end of this paper. From now on, we will denote by N =
{1, 2, . . .} the set of natural numbers, by R = (−∞,+∞) the set of real numbers. The

symbols
D
=,

D−→ and
P−→ denoted the equality in distribution, convergence in distribution

and convergence in probability, respectively.
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2. PRELIMINARIES

Throughout the forthcoming, unless otherwise specified, we will denote by νpn the ge-
ometric distributed random variable, shortly νpn ∼ Geo(pn), with parameters pn =
θ/n, θ ∈ (0, 1), n ≥ 1, and its probability mass function is given by

P(νpn = k) = pn(1− pn)k−1, k = 1, 2, . . . .

It is easily seen that, for νpn ∼ Geo(pn), the probability generating function, character-
istic function and expectation of geometric random variable νpn , respectively are defined
by

ψνpn (t) := E(tνpn ) =
pnt

1− (1− pn)t
, for | t |< (1− pn)−1,

ϕνpn (t) := E(eiνpn t) =
pneit

1− (1− pn)eit
, for t ∈ R,

and

E(νpn) =
1

pn
.

In the notation of [22], a random variable L is said to be Laplace distributed random
variable with parameters µ and σ > 0, denoted by L ∼ Laplace(µ, σ), if its characteristic
function given as

ϕL(t) =
eµit

1 + σ2

2 t
2
, for t ∈ R.

It is obvious that, for L ∼ Laplace(0, σ),

E(L) = 0, E(L2) = σ2 and E(|L|3) =
3σ3

√
2
.

We follow the notation of [22], a random variable Λ is said to be a symmetric Linnik
distributed random variable with parameters α ∈ (0, 2] and σ > 0, denoted by Λ ∼
Linnik(α, σ), if its characteristic function is given by

ϕΛ(t) =
1

1 + σα|t|α
, t ∈ R.

It is clear that, when α = 2, the Linnik distribution reduces to Laplace distribution,
so the Linnik distribution should be also known as α−Laplace. Moreover, Linnik dis-
tribution is special case of geometric strictly stable (GSS) distributions, introduced by
Klebanov et al. (see [17, 18] and [22] for more details).

We shall recall a version of Gnedenko’s Transfer Theorem originated by Gnedenko
and Fahim (1969) in [10] and [12]. It will be used to prove our main results in next
section.

Theorem 2.1. (Gnedenko’s Transfer Theorem) Let {Xj , j ≥ 1} be a sequence of
i.i.d. random variables and {Nn, n ≥ 1} be a sequence of positive integer-valued random
variables, independent of Xj for j ≥ 1. Assume that there exist sequences {an} and
{bn}, such that bn > 0 and bn →∞ as n→∞, one has
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1. b−1
n

∑n
j=1(Xj − an)

D−→ F as n→∞;

2.
Nn
n

D−→ A as n→∞,

where F and A are random variables with characteristic function ϕF (t) and distribution
function A(x), respectively.
Then, as n→∞,

b−1
n

Nn∑
j=1

(Xj − an)
D−→ Y,

where Y is a random variable whose characteristic function is defined by

ϕY(t) =

∫ +∞

0

[ϕF (t)]zdA(z).

We shall denote by C(R) the set of all real-valued, bounded, uniformly continuous
functions defined on R with the norm ‖f‖ = supx∈R |f(x)|. Furthermore, for r ∈ N,
β ∈ (0, 1] and s = r + β, let us set

Cr(R) =
{
f ∈ C(R) : f (κ) ∈ C(R), 1 ≤ κ ≤ r

}
,

and

Ds =
{
f ∈ Cr(R) :

∣∣f (r)(x)− f (r)(y)
∣∣ ≤ ∣∣x− y∣∣β},

where f (κ) is the derivative function of order κ of f.
We denote by X the set of random variables defined on a probability space (Ω,A,P).

The definition and properties of Zolotarev probability metric will be recalled as follows.

Definition 2.2. (Zolotarev [29] Let X,Y ∈ X. The Zolotarev probability metric on X
between two random variables X and Y, denoted by ds(X,Y ), is defined by

ds(X,Y ) = sup
f∈Ds

∣∣∣E[f(X)− f(Y )
]∣∣∣.

Remark 2.3. (Bobkov [3], Manou-Abi [24], Zolotarev [29] and Zolotarev [31])

1. The Zolotarev probability metric ds(X,Y ) on X is an ideal metric of order s, i. e.,
for any c 6= 0, and for X,Y, Z ∈ X, we have

ds(X + Z, Y + Z) ≤ ds(X,Y );

and

ds(cX, cY ) = |c|sds(X,Y ),

where Z is independent of X and Y.

2. Let ds(Xn, X0) −→ 0 as n→∞. Then Xn
D−→ X0 as n→∞. (see [29], p. 424).
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3. Let {Xj , j ≥ 1} and {Yj , j ≥ 1} be two sequences of i.i.d. random variables. Then,

ds

( n∑
j=1

Xj ,

n∑
j=1

Yj

)
≤ n× ds

(
X1, Y1

)
.

4. When r = 1, β = 1 and s = r + β = 2, we get

d2(X,Y ) = sup
f∈D2

∣∣∣E[f(X)− f(Y )
]∣∣∣,

where
D2 =

{
f ∈ C1(R) :

∣∣f ′(x)− f ′(y)
∣∣ ≤ ∣∣x− y∣∣}.

5. When r = 2, β = 1 and s = r + β = 3, we get

d3(X,Y ) = sup
f∈D3

∣∣∣E[f(X)− f(Y )
]∣∣∣,

where
D3 =

{
f ∈ C2(R) :

∣∣f ′′(x)− f ′′(y)
∣∣ ≤ ∣∣x− y∣∣}.

3. MAIN RESULTS

Before stating the main results we recall that the sum Sνpn =
∑νpn
j=1Xj is a geometric

random sum, where {Xj , j ≥ 1} is a sequence of i.i.d. random variables, νpn ∼ Geo(pn)
with pn = θ/n for any fixed θ ∈ (0, 1) and n ≥ 1. Assume that νpn is independent of
all Xj for j ≥ 1. The following theorem will be considered as the version of Gnedenko’s
Transfer Theorem (see [10] and [11]) for geometric sums.

Theorem 3.1. Let {Xj , j ≥ 1} be a sequence of i.i.d. random variables. Let νpn ∼
Geo(pn) and it is independent of all Xj for j ≥ 1. Assume that {an}, {bn} be two
sequences of real numbers such that bn > 0, bn →∞ as n→∞ and

b−1
n

n∑
j=1

(Xj − an)
D−→ F , as n→∞,

where F is a random variable with characteristic function ϕF (t). Then,

b−1
n

νpn∑
j=1

(Xj − an)
D−→W, as n→∞,

where W is a random variable whose characteristic function defined by

ϕW(t) =
θ

θ − lnϕF (t)
, t ∈ R,

here ϕF (t) is characteristic function of an infinitely divisible (ID) random variable.
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P r o o f . By method of characteristic functions, it is easy to be concluded (or to refer
from [11]) that

νpn
n

D−→ Eθ, as n→∞,

where Eθ ∼ Exp(θ) is an exponential distributed random variable with parameter θ ∈
(0, 1) and the distribution function of Eθ is given in following form

FEθ (x) = 1− e−θx, x ∈ (0,∞).

On account of the Theorem 2.1, we have

b−1
n

νpn∑
j=1

(
Xj − an

) D−→W, as n→∞,

where W is a random variable whose characteristic function defined by

ϕW(t) =

+∞∫
0

[
ϕF (t)

]z
θe−θzdz = θ

+∞∫
0

e−
[
θ−lnϕF (t)

]
zdz

=
θ

θ − lnϕF (t)
, for t ∈ R.

The proof is complete. �

Remark 3.2. According to Klebanov et al. (1984), the W is belonging to the class of
geometric infinitely divisible (GID) random variables (see [17] and [23] for more details).

In the sequel, as direct results from Theorem 3.1, some corollaries on asymptotic
behaviors of several normalized geometric random sums are provided. Moreover, these
results can be obtained from papers ([8, 10, 11, 16] and [22]). Therefore, the following
corollaries are given without proofs.

Corollary 3.3. Let {Xj , j ≥ 1} be a sequence of i.i.d. random variables with E(X1) = 0
and D(X1) = 1. Let νpn ∼ Geo(pn), independent of all Xj for j ≥ 1. Then,

p1/2
n

νpn∑
j=1

Xj
D−→ L ∼ Laplace(0, 1), as n→∞.

Corollary 3.4. (A Rényi-type limit theorem) Let {Xj , j ≥ 1} be a sequence of
non-negative and i.i.d. random variables with E(X1) = 1. Let νpn ∼ Geo(pn) and
independent of all Xj for j ≥ 1. Then,

pn

νpn∑
j=1

Xj
D−→ E1 as n→∞,

where E1 ∼ Exp(1) is an exponential distributed random variable with parameter 1.
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Corollary 3.5. Let {Xj , j ≥ 1} be a sequence of i.i.d. symmetric random variables.
Let νpn ∼ Geo(pn) and be independent of all Xj for j ≥ 1. Then

n−1/α

νpn∑
j=1

Xj
D−→ Λ ∼ Linnik(α, σ), as n→∞,

where α ∈ (0, 2] and σ > 0.

P r o o f . For every ε > 0, we have

P(|Xj | ≥ ε.n1/α) = 1− P(|Xj | < ε.n1/α)

= 1− P(−ε.n1/α < Xj < ε.n1/α)→ 0, as n→∞.

According to Petrov’s result (Theorem 3.7 in [27], p. 104), the limit distributions of sum
n−1/α

∑n
j=1Xj belongs to the set of stable distributions. On the other hand, since

Xj are symmetric random variables for j ≥ 1, the sum n−1/α
∑n
j=1Xj converges to

symmetric stable distributed random variable with characteristic function

ϕS(t) = exp{−sα|t|α},with s > 0 and α ∈ (0, 2].

Then, on account of Theorem 3.1, the geometric sums n−1/α
∑νpn
j=1Xj converges in dis-

tribution to symmetric Linnik distributed random variable Λ with characteristic function
given by

θ

θ − lnϕS(t)
=

θ

θ + sα|t|α
=

1

1 + σα|t|α
= ϕΛ(t),

where σα = sαθ−1, θ ∈ (0, 1).
The proof is immediate. �

We shall provide the results related to compound random sums in the sequel. Let
{ηj , j ≥ 1} be a sequence of i.i.d. non-negative integer-valued random variables with
E(ηj) = δ ∈ (0,∞), for all j ≥ 1. Assume that ηj and Xj are independent for all j ≥ 1.
Let us define the extended random sums as follows

SWn
= b−1

n

Wn∑
j=1

(
Xj − an

)
,

and it is called the compound random sums, where Wn = η1 + η2 + . . . + ηn. Then, we
have the following theorem.

Theorem 3.6. Assume that

b−1
n

n∑
j=1

(Xj − an)
D−→ F , as n→∞,
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where F is a limiting random variable having characteristic function ϕF (t). Then,

b−1
n

Wn∑
j=1

(Xj − an)
D−→ U , as n→∞,

where the characteristic function of U defined by ϕU (t) = [ϕF (t)]δ.

P r o o f . According to the Weak Law of Large Numbers for sequence {ηj , j ≥ 1} of i.i.d.
random variables with finite mean δ ∈ (0,∞), we can assert that

Wn

n

P−→ δ, as n→∞.

It can be inferred that
Wn

n

D−→ Dδ, as n→∞,

where Dδ is a random variable degenerated at point δ ∈ (0,∞) with distribution function
defined as follows

Dδ(x) =

{
1, if x ≥ δ;
0, if x < δ.

The partition should be chosen such that

0 = z0 < z1 < z2 < . . . < zk = δ < zk+1 < . . .

Then, we can deduce that

Dδ(zi)−Dδ(zi−1) =

{
1, if i = k;
0, if i 6= k,

for i = 1, 2, . . .

According to Theorem 2.1 and using the definition of Stieltjes integral (see [28], p. 120),
as n → ∞, the characteristic function of limit distribution of compound random sums
b−1
n

∑Wn

j=1(Xj − an) is defined by∫ ∞
0

[ϕF (t)]zdD(z) =

∞∑
i=1

[ϕF (t)]zi [Dδ(zi)−Dδ(zi−1)] = [ϕF (t)]δ.

The proof is straight-forward. �

Corollary 3.7. Let {Xj , j ≥ 1} be a sequence of i.i.d. random variables with E(X1) = 0
and D(X1) = 1. Let {ηj , j ≥ 1} be a sequence of i.i.d. non-negative integer-valued
random variables with E(η1) = δ ∈ (0,∞) and Wn = η1 + η2 + . . . + ηn. Assume that
the random variables from two sequences {ηj , j ≥ 1} and {Xj , j ≥ 1} are independent.
Then,

n−1/2
Wn∑
j=1

Xj
D−→ N , as n→∞,

where N is a normal distributed random variable with characteristic function

ϕN (t) = exp
{
− δ

2
t2
}
.
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Remark 3.8. Assume that ν1, ν2, . . . be a sequence of independent and identically
geometric distributed random variables with parameter p ∈ (0, 1). Then, for each n ∈ N,
the sum

ν1 + ν2 + . . .+ νn

has a negative-binomial distribution with parameters n ∈ N and p ∈ (0, 1). Clearly, the
characteristic function of

∑n
i=1 νi, defined by

ϕ n∑
i=1

νi
(t) = E

[
eit(ν1+ν2+...+νn)

]
=
{
E
[
eitν1

]}n
=

{
peit

1− (1− p)eit

}n
,

is the characteristic function of negative-binomial distribution with parameters n and
p. Hence, the negative-binomial sums should be defined as an extension of geometric
random sums. Moreover, according to Theorem 3.6, the limiting distributions of the
negative-binomial sums of i.i.d. random variables would be established (see for instance
[15]).

Using the Zolotarev probability metric, we will discuss on convergence rates in weak
limit theorems for normalized geometric random sums which have been presented in
corollaries 3.3, 3.4 and 3.5. Firstly, we wish to provide the general theorem as follows.

Theorem 3.9. Let {Xj , j ≥ 1} be a sequence of i.i.d. random variables with E(|X1|s) <
+∞ and {Yj , j ≥ 1} be a sequence of i.i.d. random variables with E(|Y1|s) < +∞. Let
νpn ∼ Geo(pn) be a geometric random variable with parameter pn ∈ (0, 1), assumed
independent of Xj and Yj for all j ≥ 1. Moreover, suppose that for r ∈ N, the condition

E(Xi
1) = E(Y i1 ), (1)

holds for i = 1, 2, . . . , r. Then,

ds

(
c(pn)

νpn∑
j=1

Xj , c(pn)

νpn∑
j=1

Yj

)
≤ [c(pn)]s

pn
.
1

r!

[
E(|X1|s) + E(|Y1|s)

]
where β ∈ (0, 1], s = r+ β, c(pn) > 0, c(pn)→ 0 as n→∞, and limn→∞

[c(pn)]s

pn
= 0.

P r o o f . According to Remark 2.3, we have

ds

(
c(pn)

νpn∑
j=1

Xj , c(pn)

νpn∑
j=1

Yj

)
= [c(pn)]sds

( νpn∑
j=1

Xj ,

νpn∑
j=1

Yj

)

= [c(pn)]s
∞∑
k=1

P(νpn = k)ds

( k∑
j=1

Xj ,

k∑
j=1

Yj

)
≤ [c(pn)]s

∞∑
k=1

{
P(νpn = k)k.ds(X1, Y1)

}
= [c(pn)]sE(νpn).ds(X1, Y1) =

[c(pn)]s

pn
.ds(X1, Y1).
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By Taylor series expansion for function f ∈ Ds and for all x, y ∈ R, it follows that

f(x) = f(0) +

r∑
i=1

f (i)(0)

i!
xi +

xr

r!

[
f (r)(η1x)− f (r)(0)

]
;

f(y) = f(0) +

r∑
i=1

f (i)(0)

i!
yi +

yr

r!

[
f (r)(η2y)− f (r)(0)

]
,

where 0 < η1 < 1 and 0 < η2 < 1. Hence, for any f ∈ Ds, it may be concluded that

f(x)− f(y) =

r∑
i=1

f (i)(0)

i!
(xi − yi) +

xr

r!

[
f (r)(η1x)− f (r)(0)

]
− yr

r!

[
f (r)(η2y)− f (r)(0)

]
≤

r∑
i=1

f (i)(0)

i!
(xi − yi) +

|x|r

r!

∣∣f (r)(η1x)− f (r)(0)
∣∣+
|y|r

r!

∣∣f (r)(η2y)− f (r)(0)
∣∣

≤
r∑
i=1

f (i)(0)

i!
(xi − yi) +

1

r!

(
|x|r+βηβ1 + |y|r+βηβ2

)
≤

r∑
i=1

f (i)(0)

i!
(xi − yi) +

1

r!
(|x|s + |y|s).

On account of Zolotarev probability metric, using the condition (1), one has

ds(X1, Y1) ≤ 1

r!

[
E(|X1|s) + E(|Y1|s)

]
.

Therefore,

ds

(
c(pn)

νpn∑
j=1

Xj , c(pn)

νpn∑
j=1

Yj

)
≤ [c(pn)]s

pn
.
1

r!

[
E(|X1|s) + E(|Y1|s)

]
.

The proof is straightforward. �

Theorem 3.10. Let {Xj , j ≥ 1} be a sequence of i.i.d. random variables with
E(X1) = 0, E(X2

1 ) = 1 and E(|X1|3) = ρ < +∞. Let νpn ∼ Geo(pn) be a geomet-
ric random variables with parameter pn ∈ (0, 1), assumed independent of all Xj for
j ≥ 1. Then,

d3

(
p1/2
n

νpn∑
j=1

Xj ,L
)
≤ n−1/2θ1/2

(
ρ

2
+

3

2
√

2

)
,

where L ∼ Laplace(0, 1).

P r o o f . Since L ∼ Laplace(0, 1), we have

E(L) = 0, E(L2) = 1 and E(|L|3) =
3√
2
.
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Moreover, according to ([22], Proposition 2.2.7, p. 27) we obtain the following presenta-
tion

L D
= p1/2

n

νpn∑
j=1

Lj , (2)

where L1, L2, . . . are independent copies of L and they are independent of νpn for
pn ∈ (0, 1). Therefore, by Theorem 3.9 and Remark 2.3, one has

d3

(
p1/2
n

νpn∑
j=1

Xj ,L
)

= d3

(
p1/2
n

νpn∑
j=1

Xj , p
1/2
n

νpn∑
j=1

Lj
)

≤ p
3/2
n

pn
.
1

2!

[
E(|X1|3) + E(|L1|3)

]
≤ p1/2

n

(ρ
2

+
3

2
√

2

)
.

Finally, with pn = θ/n, we obtain

d3

(
p1/2
n

νpn∑
j=1

Xj ,L
)
≤ n−1/2θ1/2

(
ρ

2
+

3

2
√

2

)
.

This finishes the proof. �

Theorem 3.11. Let {Xj , j ≥ 1} be a sequence of non-negative i.i.d. random variables
with E(X1) = 1 and E(X2

1 ) = % < +∞. Suppose that νpn ∼ Geo(pn) and νpn is
independent of all Xj for j ≥ 1. Then,

d2

(
pn

νpn∑
j=1

Xj , E1
)
≤ n−1θ(%+ 2),

where E1 ∼ Exp(1).

P r o o f . Since E1 ∼ Exp(1), one has

E(E1) = 1, E(E1)2 = 2,

and by an argument analogous to ([14], Lemma 3.1) we get

E1
D
= pn

νpn∑
j=1

E1(j), (3)

where E1(1), E1(2), . . . are i.i.d. random variables, copied from E1. According to Theorem
3.9 and with respect to Remark 2.3, we have

d2

(
pn

νpn∑
j=1

Xj , E1
)

= d2

(
pn

νpn∑
j=1

Xj , pn

νpn∑
j=1

E1(j)

)
≤ pn

[
E(X2

1 ) + E(E2
1 )
]
≤ n−1θ(%+ 2).

The proof is immediate. �
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The following theorem deals with the rate of convergence in Corollary 3.5. It is
worth pointing out that the received limit distribution in this corollary will be Linnik
distributions which have not finite moments in general case (see [22], p. 212 for more
details). Hence, here we can be able to estimate the rate convergence with α ∈ (1, 2). It is
to be noticed that, when α = 2, the Linnik distributions reduce to Laplace distribution,
that has been established in Theorem 3.10.

Theorem 3.12. Let {Xj , j ≥ 1} be a sequence of symmetric i.i.d. random variables
with E(X1) = 0 and E|X1| = τ < +∞. Let νpn ∼ Geo(pn) be a geometric random
variable with parameter pn ∈ (0, 1), assumed independent of all Xj for j ≥ 1. Then, for
f ∈ C1(R),

d2

(
p1/α
n

νpn∑
j=1

Xj ,Λ

)
≤ 2n

α−2
α θ

2−α
α sup

f∈D2

‖f ′‖
(
τ +

2σ

α sin π
α

)
,

where ‖f ′‖ = supt∈R |f ′(t)|,Λ ∼ Linnik(α, σ), α ∈ (1, 2), σ > 0 and pn = θ/n with
θ ∈ (0, 1).

P r o o f . On account of Proposition 4.3.2 ([22], p. 201), we have

Λ
D
= p1/α

n

νpn∑
j=1

Λj , (4)

where Λ1, Λ2, . . . are independent copies of Λ. According to Remark 2.3, one has

d2

(
p1/α
n

νpn∑
j=1

Xj ,Λ

)
= d2

(
p1/α
n

νpn∑
j=1

Xj , p
1/α
n

νpn∑
j=1

Λj

)
= p2/α

n d2

( νpn∑
j=1

Xj ,

νpn∑
j=1

Λj

)

= p2/α
n

∞∑
k=1

P(νpn = k)d2

( k∑
j=1

Xj ,

k∑
j=1

Λj

) ≤ p2/α
n

∞∑
k=1

{
P(νpn = k)k.d2(X1,Λ1)

}
= p

2−α
α

n d2(X1,Λ) = n
α−2
α θ

2−α
α d2(X1,Λ).

Furthermore, since Λ ∼ Linnik(α, σ) with α ∈ (1, 2) and σ > 0. According to Kotz et al.
([22], p. 212), we obtain

E(Λ) = 0 and E|Λ| = 2σ

α sin π
α

< +∞.

For any f ∈ C1(R), by the Mean Value Theorem (see [28] for more details), for z is
between x and y, we have

f(x)− f(y) = (x− y)f ′(z) = (x− y)f ′(0) + (x− y)
[
f ′(z)− f ′(0)

]
.

Since f ∈ C1(R) and for any z ∈ R, one has∣∣f ′(z)− f ′(0)
∣∣ ≤ ∣∣f ′(z)∣∣+

∣∣f ′(0)
∣∣ ≤ sup

z∈R

∣∣f ′(z)∣∣+ sup
t∈R

∣∣f ′(t)∣∣ = 2‖f ′‖.
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Then, we infer that, for f ∈ C1(R),

f(x)− f(y) ≤ (x− y)f ′(0) + |x− y|
∣∣f ′(z)− f ′(0)

∣∣
≤ (x− y)f ′(0) + 2‖f ′‖|x− y| ≤ (x− y)f ′(0) + 2‖f ′‖(|x|+ |y|).

Using hypothesis that E(X1) = 0 and E|X1| = τ < +∞, then

E
[
f(X1)− f(Λ)

]
≤ E

[
(X1 − Λ)f ′(0) + 2‖f ′‖(|X1|+ |Λ|)

]
= 2‖f ′‖

(
τ +

2σ

α sin π
α

)
.

Therefore,

d2(X1,Λ) = sup
f∈D2

∣∣∣E[f(X1)− f(Λ)
]∣∣∣ ≤ 2 sup

f∈D2

‖f ′‖
(
τ +

2σ

α sin π
α

)
.

This concludes the proof. �

CONCLUDING REMARKS

We conclude this paper with the following comments.

1. Theorems 3.1 and 3.6 are consequences of Gnedenko’s Transfer Theorem.

2. Based on Gnedenko’s Transfer Theorem, the weak limit theorems for negative-
binomial random sums would be studied (see Remark 3.8).

3. Using Zolotarev probability metric and by an argument analogous to this paper,
the convergence rates of distributions of negative-binomial random sums would be
also estimated.

4. The Laplace distribution, exponential distribution and symmetric Linnik distribu-
tion are special cases of geometrically strictly stable distributions, introduced in
Klebanov et al. (1984) (see [17]). Therefore, the presentations (2), (3) and (4) in
Theorems 3.10, 3.11 and 3.12, respectively may be obtained from Klebanov et al.
(1984).

(Received December 14, 2018)
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