EXACT SIMULTANEOUS LOCATION-SCALE TESTS FOR TWO SHIFTED EXPONENTIAL SAMPLES

Amitava Mukherjee, Zhi Lin Chong and Marco Marozzi

The failure time distribution for various items often follows a shifted (two-parameter) exponential model and not the traditional (one-parameter) exponential model. The shifted exponential is very useful in practice, in particular in the engineering, biomedical sciences and industrial quality control when modeling time to event or survival data. The open problem of simultaneous testing for differences in origin and scale parameters of two shifted exponential distributions is addressed. Two exact tests are proposed using maximum likelihood estimators. They are based on the combination of two statistics following a maximum-type and a distance-type approach. The exact null distributions of the respective test statistics are derived analytically. Small sample type-one error rate and power of the tests are studied numerically. We showed that the test based on the maximum type combination (the Max test) should be preferred being generally more powerful than the test based on the distance type combination (the Distance test). An application to a biomedical experiment is discussed.

Keywords: hypothesis testing, failure time model, simultaneous testing, shifted exponential, type-one error rate, power
Classification: 62F03, 62N05

1. INTRODUCTION

The one-parameter exponential distribution is widely used in practice. For example, in the engineering sciences it is used to model the lifespan of electronic components, transmission, engine and mechanical equipment. Nevertheless, many researchers, including Huang, Mukherjee and Yang [8, Kao [10, Krishnamoorthy and Xia [11, Roy and Mathew [17], and Wu [27, have found that in various practical applications, such as measuring the reliability of a product, monitoring the high-voltage of current in certain metal oxide semiconductor transistor on a flash memory wafer, modelling the consumer lifetime, among others, the two-parameter (shifted) exponential distribution should be preferred to the one-parameter exponential distribution. The probability density function (pdf) of the two-parameter exponential distribution is

$$
\begin{equation*}
f(x ; \theta, \lambda)=\frac{1}{\lambda} \exp ^{-(x-\theta) / \lambda} ; \quad x>\theta>0, \quad \lambda>0 \tag{1}
\end{equation*}
$$

DOI: 10.14736/kyb-2019-6-0943

Note that θ can be interpreted as the minimum life or guaranteed period in which no failure should occur. This distribution is also known as the shifted exponential distribution. The mean of X is $\theta+\lambda$ and the variance is λ. If $\theta=0$, equation (1) reduces to the one-parameter exponential distribution. One may conceptualize a twoparameter exponential distribution for $\theta \in(-\infty, \infty)$, see, for example, Johnson and Kotz 9 . Here, we consider $\theta \geq 0$ as we are mainly interested in the time to event data.

Inference problems about a single two-parameter exponential distribution, or a single parameter for two-parameter exponential distributions have been widely studied. In the later half of 20th century, Varde [23] studied life testing and reliability estimation for the two-parameter exponential distribution using a Bayesian approach. Cohen and Helm 4] studied how to estimate the parameters of the two-parameter exponential distribution using a modified method of moments. Engelhardt and Bain [6] studied the reliability tolerance limits and confidence limits. Ebrahimi [5] addressed the problem of hybrid life testing for the two-parameter exponential distribution.

In early $21^{\text {st }}$ century, Raqab [16] considered a multiple type II censoring scheme and derived approximate maximum likelihood predictors of forthcoming failure times of shifted (two-parameter) exponential distributions. Pal, Masoom, and Woo [15] studied the estimation and testing problem related to the stress-strength model under twoparameter exponential distribution, that is, the probability that the stress having a twoparameter exponential distribution exceeds strength variable, which also follows a twoparameter exponential model. Later, Chaturvedi and Sharma [3] provided a simpler method for unbiased estimation of stress-strength reliability. Roy and Mathew [17] proposed a generalized confidence interval for the reliability function of the two-parameter exponential distribution. Wu, Lee, and Lei 26] studied the lifetime performance index of products using the two-parameter exponential distribution. Krishnamoorthy, Mukherjee, and Guo [12] also deliberated over the interval estimation and hypothesis testing of reliability in stress-strength model with stress and strength having two-parameter exponential distributions. Ahmadi and MirMostafaee [1] examined the prediction intervals for future order statistics and records data where the underlying distribution is twoparameter exponential. Singh and Abebe [20] compared multiple exponential populations with more than one control. Kao [10] showed that the amount of current needed to break an insulator of the P-type high-voltage metal oxide semiconductor (MOS) transistor (HPM) on a non-volatile drive memory wafer follows the two-parameter exponential distribution and this article nicely demonstrates the importance of the two-parameter exponential distribution in the engineering sciences. In the same year, Wu [27] proposed an interval estimation technique for the scale parameter of a two-parameter exponential distribution based on Type-II progressive censoring.

In the current decade, Schenk, Burkschat, Cramer and Kamps [19] studied the Bayesian prediction and estimation of consecutive order statistics for Type-II censored samples taken from one- and two-parameter exponential distributions. Ganguly, Mitra, Samanta and Kundu [7] derived the exact distribution of the hybrid Type-II censoring scheme, where the two-parameter exponential distribution is used to model lifetimes. Based on generalized pivot variable, Baklizi 2 introduced bootstrap and Bayesian intervals estimation of stress-strength reliability for the two-parameter exponential distribution. Li, Song, and Shi [13] proposed a parametric bootstrap method for constructing
simultaneous confidence intervals for all pairwise differences of means from several twoparameter exponential distributions. Sangnawakij and Niwitpong [18 proposed confidence intervals for the single coefficient of variation and the difference of coefficients of variation in the two-parameter exponential distributions. Krishnamoorthy and Xia 11 considered some problems related to estimating the confidence interval of the survival probability for a two-parameter exponential distribution. However, none of the existing works addressed combined testing of the two parameters in a comprehensive way.

In recent years, the two-parameter exponential distribution is widely used in statistical process monitoring and control. Mukherjee, McCracken and Chakraborti 14 proposed Shewhart-type control charts for simultaneous monitoring of the origin (location) and scale parameters of a two-parameter exponential distribution in the known parameter situation. Huang, Mukherjee and Yang [8] extended the proposals of Mukherjee, McCracken and Chakraborti [14] using the concept of cumulative sum (CUSUM) to introduce Phase-II monitoring schemes of parameters of the two-parameter exponential distribution with known standards. Very recently, van Zyl and van der Merwe 22 , pointed out that the extension of the results of Mukherjee, McCracken and Chakraborti [14] to the unknown parameter situation is extremely difficult. The same may be said about the results of Huang, Mukherjee and Yang [8].

In this paper, we address the problem of simultaneous testing for different origin and scale parameters of two two-parameter exponential distributions that has not been solved yet. More precisely, we propose two tests respectively based on a maximum type and distance type combination of two statistics. The remainder of the paper is organized as follows. In Section 2, we prove some preliminary results. In Section 3, we describe the two tests and prove some theoretical results. In Section 4 we study the type-one error rate and power of the tests. The tests are illustrated with an application example in Section 5. Conclusions are drawn in Section 6.

2. PRELIMINARY RESULTS

Let $X_{1}, X_{2}, \ldots, X_{m}$ be a random sample of size m from a two-parameter exponential distribution with origin parameter θ_{0} and scale parameter λ_{0}. Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be another random sample of size n from a two-parameter exponential distribution with the origin parameter θ_{1} and scale parameter λ_{1}. We assume that the samples come from two mutually independent populations. We are interested in simultaneous testing for different origin and scale parameters of two two-parameter exponential distributions that corresponds to test

$$
\begin{equation*}
H_{0}: \theta_{0}=\theta_{1} \cap \lambda_{0}=\lambda_{1}, \text { versus } H_{1}: \theta_{0} \neq \theta_{1} \cup \lambda_{0} \neq \lambda_{1} \tag{2}
\end{equation*}
$$

The maximum likelihood estimators of θ_{0} and θ_{1} are respectively $\hat{\theta}_{0}=X_{(1)}$ and $\hat{\theta}_{1}=Y_{(1)}$, see, for details, Johnson and Kotz [9. $X_{(1)}$ and $Y_{(1)}$ denote the minimum or the firstorder statistic of the first and second samples, respectively. The maximum likelihood estimators of λ_{0} and λ_{1} are respectively

$$
\begin{equation*}
\hat{\lambda}_{0}=\frac{1}{m} \sum_{i=1}^{m}\left(X_{i}-\hat{\theta}_{0}\right)=\bar{X}-X_{(1)} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\lambda}_{1}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\hat{\theta}_{1}\right)=\bar{Y}-Y_{(1)} \tag{4}
\end{equation*}
$$

where \bar{X} and \bar{Y} denote the mean of $\vec{X}=\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ and $\vec{Y}=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$ respectively. $\hat{\theta}_{0}$ and $\hat{\lambda}_{0}$, as well as $\hat{\theta}_{1}$ and $\hat{\lambda}_{1}$ are independent, see Johnson and Kotz [9]. $\hat{\theta}_{0}$ follows a two-parameter exponential distribution with origin parameter θ_{0} and scale parameter $\frac{\lambda_{0}}{m}$. Consequently,

$$
E_{X}=\frac{2 m\left(\hat{\theta}_{0}-\theta_{0}\right)}{\lambda_{0}}
$$

follows a chi-square distribution with two degrees of freedom. Similarly, $\hat{\theta}_{1}$ follows a two-parameter exponential distribution with origin parameter θ_{1} and scale parameter $\frac{\lambda_{1}}{n}$ and

$$
E_{Y}=\frac{2 n\left(\hat{\theta}_{1}-\theta_{1}\right)}{\lambda_{1}}
$$

follows a chi-square distribution with two degrees of freedom. E_{X} and E_{Y} are independent. Moreover, $n E_{X}$ and $m E_{Y}$ follow an exponential distribution with rates $\frac{1}{2 n}$ and $\frac{1}{2 m}$, respectively.

To obtain the distribution of $\hat{\lambda}_{0}$ and $\hat{\lambda}_{1}$, first we consider

$$
\sum_{i=1}^{m}\left(X_{i}-\hat{\theta}_{0}\right)=\sum_{i=1}^{m}\left(X_{i}-X_{(1)}\right)=\sum_{i=2}^{m}(m-i+1)\left(X_{(i)}-X_{(i-1)}\right)
$$

It is easy to see that

$$
F_{X}=\frac{2 m \hat{\lambda}_{0}}{\lambda_{0}}=\frac{2}{\lambda_{0}} \sum_{i=2}^{m}(m-i+1)\left(X_{(i)}-X_{(i-1)}\right)
$$

follows a chi-square distribution with $2 m-2$ degrees of freedom, see, for example, Tanis [21. Similarly,

$$
F_{Y}=\frac{2 n \hat{\lambda}_{1}}{\lambda_{1}}=\frac{2}{\lambda_{1}} \sum_{i=2}^{n}(n-i+1)\left(Y_{(i)}-Y_{(i-1)}\right)
$$

follows a chi-square distribution with $2 n-2$ degrees of freedom. Moreover, $\left(\hat{\theta}_{0}, \hat{\lambda}_{0}\right)$ and $\left(\hat{\theta}_{1}, \hat{\lambda}_{1}\right)$ are mutually independent. Then, it follows that $\left(E_{X}, E_{Y}\right)$ and $\left(F_{X}, F_{Y}\right)$ are also mutually independent.

Consider the statistics W_{1} and W_{2}, defined as

$$
\begin{equation*}
W_{1}=\frac{m E_{Y}-n E_{X}}{F_{Y}+F_{X}}=\frac{\frac{2 m n\left(\hat{\theta}_{1}-\theta_{1}\right)}{\lambda_{1}}-\frac{2 m n\left(\hat{\theta}_{0}-\theta_{0}\right)}{\lambda_{0}}}{\frac{2 n \hat{\lambda}_{1}}{\lambda_{1}}+\frac{2 m \hat{\lambda}_{0}}{\lambda_{0}}} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{2}=\frac{F_{Y} /(2 n-2)}{F_{X} /(2 m-2)}=\frac{n \hat{\lambda}_{1} \lambda_{0}(m-1)}{m \hat{\lambda}_{0} \lambda_{1}(n-1)} \tag{6}
\end{equation*}
$$

It is easy to see that under the null hypothesis, when $\theta_{0}=\theta_{1}$ and $\lambda_{0}=\lambda_{1}$, the statistics W_{1} and W_{2} reduce respectively to

$$
\begin{equation*}
W_{1}=\frac{m E_{Y}-n E_{X}}{F_{Y}+F_{X}}=\frac{m n\left(\hat{\theta}_{1}-\hat{\theta}_{0}\right)}{n \hat{\lambda}_{1}+m \hat{\lambda}_{0}} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{2}=\frac{F_{Y} /(2 n-2)}{F_{X} /(2 m-2)}=\frac{n \hat{\lambda}_{1}(m-1)}{m \hat{\lambda}_{0}(n-1)} . \tag{8}
\end{equation*}
$$

Note that the two-sample t-statistic evolves from the problem of testing the equality of location parameters (means) of two independent normal distributions when scale parameters of the two distributions are equal. Similarly, W_{1} evolves from the problem of testing the equality of location parameters (origins) of two-independent shifted exponential distributions when scale parameters of the two distributions are equal. In this sense, W_{1} is somewhat analogous to the two-sample t statistic for testing the equality of means of two independent normal populations, even though their formulae are different. Likewise, W_{2} resembles the Fisher's F ratio statistic for testing the equality of variances of two independent normal populations.

Theorem 2.1. The pdf of W_{1} is

$$
f_{W_{1}}\left(w_{1}\right)= \begin{cases}\frac{m+n-2}{m+n} \frac{1}{\left(1-\frac{w_{1}}{n}\right)^{m+n-1}}, & w_{1}<0 \\ \frac{m+n-2}{m+n} \frac{1}{\left(1+\frac{w_{1}}{m}\right)^{m+n-1}}, & w_{1} \geq 0\end{cases}
$$

Proof. See Appendix A.1.
Using Theorem 2.1 and by integration, it follows that the cumulative density function (cdf) of W_{1} is

$$
F_{W_{1}}\left(w_{1}\right)=\left\{\begin{array}{l}
\frac{n}{m+n} \frac{1}{\left(1-\frac{w_{1}}{n}\right)^{m+n-2}}, \quad w_{1}<0 \\
\frac{n}{m+n}-\frac{m}{m+n}\left[\frac{1}{\left(1+\frac{w_{1}}{m}\right)^{m+n-2}}-1\right], \quad w_{1} \geq 0 .
\end{array}\right.
$$

Let $u=F\left(W_{1}\right)$. The quantile (or inverse cdf) function of W_{1} is

$$
Q_{W_{1}}(u)= \begin{cases}n\left[1-\left(\frac{n}{u(m+n)}\right)^{\frac{1}{m+n-2}}\right], \quad u<\frac{n}{m+n} \\ m\left[\left(\frac{m}{(1-u)(m+n)}\right)^{\frac{1}{m+n-2}}-1\right], \quad u \geq \frac{n}{m+n}\end{cases}
$$

Theorem 2.2. W_{2} follows an F distribution with $(2 n-2)$ and $(2 m-2)$ degrees of freedom independently of the distribution of W_{1}.

Proof. See Appendix A.2.

3. DESCRIPTION OF THE TESTS

We combine the W_{1} and W_{2} statistics to test simultaneously for different origin and scale parameters of two two-parameter exponential distributions. Two different combination methods are proposed.

3.1. The Max test

The first method is based on the maximum of W_{1} and W_{2}. We refer to it as the Max test. Note that, we consider the two-sided location alternative. If $\theta_{1}>\theta_{0}$ we expect that W_{1} will be larger than the expected value of W_{1} under H_{0}. On the other hand, if $\theta_{1}<\theta_{0}$ we expect that $-W_{1}$ will be larger than the expected value of W_{1} under H_{0}. Further, we expect that if $\lambda_{1}>\lambda_{0}$ then W_{2} will be larger than W_{2} under H_{0}. Finally, we expect that if $\lambda_{1}<\lambda_{0}$ then $\frac{1}{W_{2}}$ will be larger than $\frac{1}{W_{2}}$ under H_{0}.

Let M_{1} and M_{2} denote the cdfs of $\max \left\{W_{1},-W_{1}\right\}$ and $\max \left\{W_{2}, \frac{1}{W_{2}}\right\}$, respectively.
Theorem 3.1. The cdfs of M_{1} and M_{2} are respectively

$$
M_{1}(z)=\frac{n}{m+n}\left[1-\frac{1}{\left(1+\frac{z}{n}\right)^{m+n-2}}\right]-\frac{m}{m+n}\left[\frac{1}{\left(1+\frac{z}{m}\right)^{m+n-2}}-1\right], \quad 0 \leq z<\infty ;
$$

and

$$
M_{2}(z)=F(z)-F\left(\frac{1}{z}\right)
$$

where $F(\cdot)$ is the cdf of an F distribution with $(2 n-2)$ and $(2 m-2)$ degrees of freedom.

Proof. See Appendix A.3.

The Max test is based on

$$
\begin{equation*}
M=\max \left\{M_{1}, M_{2}\right\} . \tag{9}
\end{equation*}
$$

It is easy to see that under H_{0}, M_{1} and M_{2} are two independent Uniform $(0,1)$ variables. Therefore, the null distribution of the Max test statistic M is a $\operatorname{Beta}(2,1)$ and H_{0} is rejected if $M>M_{\alpha}$, where M_{α} is the $100(1-\alpha)$ th percentile of a $\operatorname{Beta}(2,1)$ distribution. The distribution function of M is $P[M \leq x]=x^{2}$, for $0 \leq x \leq 1$. Therefore

$$
\begin{equation*}
M_{\alpha}=\sqrt{1-\alpha} \tag{10}
\end{equation*}
$$

The exact p-value of the Max test is

$$
\begin{equation*}
p_{M}=1-\hat{M}^{2} \tag{11}
\end{equation*}
$$

where \hat{M} is the observed value of the Max test statistic.

3.2. The Distance test

The second method is based on the sum of squares of the M_{1} and M_{2} statistics. We refer to it as the Distance test. The test statistic S of the Distance test is defined as:

$$
\begin{equation*}
S=M_{1}^{2}+M_{2}^{2} \tag{12}
\end{equation*}
$$

S is the square of the Euclidian distance of $\left(M_{1}, M_{2}\right)$ from $(0,0)$. Since M_{1} and M_{2} are independent, S is also the square of the Mahalanobis distance of $\left(M_{1}, M_{2}\right)$ from $(0,0)$. H_{0} is rejected if $S>S_{\alpha}$, where S_{α} is the $100(1-\alpha)$ th percentile of the distribution of S.

Theorem 3.2. The pdf of S under H_{0} is given by

$$
f_{S}(s)= \begin{cases}\frac{\pi}{4}, & 0<s<1 \\ \frac{1}{2}\left(\sin ^{-1} \frac{1}{\sqrt{s}}-\sin ^{-1} \sqrt{\frac{s-1}{s}}\right), & 1 \leq s<2\end{cases}
$$

Proof. See Appendix A.4.
It follows from Theorem 3.2 that the cdf of S under H_{0} is

$$
F_{S}(s)= \begin{cases}\frac{\pi s}{4}, & 0<s<1 \\ \sqrt{s-1}+\frac{s}{2}\left(\sin ^{-1} \frac{1}{\sqrt{s}}-\sin ^{-1} \sqrt{\frac{s-1}{s}}\right), & 1 \leq s<2\end{cases}
$$

The distribution of M can also be verified from Weissman 25].
Consequently, if $\left(1-\frac{\pi}{4}\right) \leq \alpha \leq 1$, we have $S_{\alpha}=\frac{4}{\pi}(1-\alpha)$. When $\alpha<\pi / 4$, the critical point S_{α} is the solution of

$$
\begin{equation*}
\sin \left(1-\alpha-\left(S_{\alpha}-1\right)^{1 / 2}\right)=\frac{1}{S_{\alpha} \sqrt{S_{\alpha}}}\left(1-\left(S_{\alpha}-1\right)^{3 / 2}\right) \tag{13}
\end{equation*}
$$

The second case, that is, $\alpha<\pi / 4$, is more important from practical point of view as the nominal significance level is set to small values such as 0.01 or 0.05 .
The exact p-value of the test is

$$
p_{S}= \begin{cases}1-\frac{\pi \hat{S}}{4}, & 0<\hat{S}<1 \tag{14}\\ 1-\sqrt{\hat{S}-1}-\frac{\hat{S}}{2}\left(\sin ^{-1} \frac{1}{\sqrt{\hat{S}}}-\sin ^{-1} \sqrt{\frac{\hat{S-1}}{\hat{S}}}\right), & 1 \leq \hat{S}<2\end{cases}
$$

where \hat{S} is the observed value of the S test statistic.

4. TYPE-ONE ERROR RATE AND POWER COMPARISON STUDY

In this section, we compare type-one error rate and power of the proposed tests. The cut-off points for the Max test can be obtained from Equation 10 . These are 0.9747 and 0.9950 for $\alpha=0.05$ and $\alpha=0.01$, respectively. The cut-off points for the Distance test are computed from the distribution of S or Equation 13 via a numerical method as 1.4355 and 1.7306 for $\alpha=0.05$ and $\alpha=0.01$, respectively.

Type-one error rates correspond to $\theta_{1}=0$ and $\lambda_{1}=1$ and are underlined.
Tab. 1. Power and type-one error rate of the Max test for $\theta_{0}=0$ and

$$
\lambda_{0}=1
$$

We consider all combinations of $m=5,10,15$ and $n=5,10,15$ as the sample size settings. To obtain a precise estimate of the type-I error rate power, we consider 100000 Monte Carlo simulations, as in Wang and Ng [24]. Under H_{0}, the samples are simulated with $\theta_{0}=\theta_{1}$ and $\lambda_{0}=\lambda_{1}$, and the proportion of simulations where test p-value is less than or equal to α is the estimated type-I error rate. Under H_{1}, two shifted exponentially distributed samples are simulated with $\theta_{0} \neq \theta_{1}$ or $\lambda_{0} \neq \lambda_{1}$ or both. The power is estimated by the proportion of simulations where test p-value is less than or equal to α. The resulting root mean squared error ($R M S E$) when estimating a rejection probability of ξ is

$$
\begin{equation*}
R M S E=\sqrt{\xi(1-\xi) / 100000} \tag{15}
\end{equation*}
$$

Parameters		(m, n)								
θ_{1}	λ_{1}	$(5,5)$	$(5,10)$	$(5,15)$	$(10,5)$	$(10,10)$	$(10,15)$	$(15,5)$	$(15,10)$	$(15,15)$
0	0.25	0.256	0.440	0.511	0.134	0.374	0.496	0.063	0.277	0.411
0.5	0.25	0.664	0.792	0.818	0.876	0.963	0.976	0.927	0.989	0.995
1	0.25	0.810	0.871	0.887	0.923	0.973	0.982	0.949	0.990	0.996
1.5	0.25	0.825	0.876	0.891	0.924	0.973	0.983	0.950	0.990	0.996
2	0.25	0.827	0.878	0.893	0.922	0.972	0.983	0.949	0.990	0.996
3	0.25	0.828	0.878	0.893	0.924	0.972	0.982	0.950	0.990	0.996
0	0.5	0.098	0.164	0.195	0.066	0.161	0.227	0.052	0.136	0.212
0.5	0.5	0.343	0.431	0.454	0.516	0.677	0.722	0.566	0.750	0.808
1	0.5	0.492	0.552	0.570	0.599	0.698	0.737	0.632	0.758	0.809
1.5	0.5	0.519	0.564	0.582	0.604	0.701	0.738	0.638	0.757	0.808
2	0.5	0.524	0.565	0.587	0.608	0.699	0.737	0.642	0.759	0.810
3	0.5	0.528	0.569	0.583	0.607	0.696	0.735	0.641	0.754	0.811
0	0.75	0.059	0.072	0.077	0.050	0.069	0.083	0.047	0.064	0.082
0.5	0.75	0.214	0.238	0.238	0.311	0.394	0.413	0.336	0.431	0.461
1	0.75	0.335	0.356	0.362	0.386	0.421	0.434	0.402	0.446	0.465
1.5	0.75	0.362	0.381	0.382	0.397	0.420	0.434	0.407	0.442	0.466
2	0.75	0.374	0.385	0.385	0.398	0.422	0.436	0.408	0.445	0.464
3	0.75	0.376	0.384	0.388	0.401	0.423	0.434	0.407	0.444	0.465
0	1	$\underline{0.050}$	$\underline{0.051}$	$\underline{0.050}$	0.051	$\underline{0.051}$	$\underline{0.050}$	$\underline{0.049}$	0.051	$\underline{0.051}$
0.5	1	0.182	$\overline{0.189}$	$\overline{0.176}$	$\overline{0.250}$	$\overline{0.306}$	0.311	$\overline{0.264}$	0.325	$\overline{0.334}$
1	1	0.291	0.303	0.302	0.323	0.336	0.341	0.327	0.339	0.339
1.5	1	0.326	0.331	0.330	0.334	0.341	0.342	0.337	0.339	0.340
2	1	0.334	0.339	0.337	0.340	0.342	0.343	0.340	0.339	0.341
3	1	0.340	0.338	0.342	0.340	0.342	0.341	0.341	0.340	0.341
0	2	0.099	0.066	0.051	0.164	0.162	0.134	0.192	0.228	0.211
0.5	2	0.271	0.294	0.269	0.451	0.634	0.699	0.499	0.717	0.798
1	2	0.434	0.518	0.529	0.546	0.695	0.754	0.572	0.735	0.809
1.5	2	0.493	0.581	0.607	0.562	0.698	0.757	0.582	0.735	0.809
2	2	0.511	0.597	0.628	0.568	0.699	0.759	0.583	0.736	0.808
3	2	0.523	0.606	0.641	0.572	0.695	0.756	0.586	0.737	0.809
0	5	0.316	0.163	0.070	0.519	0.422	0.301	0.591	0.540	0.438
0.5	5	0.514	0.416	0.278	0.824	0.930	0.939	0.902	0.990	0.995
1	5	0.736	0.798	0.760	0.921	0.990	0.997	0.936	0.995	0.999
1.5	5	0.848	0.931	0.940	0.927	0.991	0.998	0.939	0.995	0.999
2	5	0.877	0.955	0.970	0.929	0.991	0.998	0.939	0.995	0.999
3	5	0.887	0.962	0.979	0.930	0.990	0.998	0.940	0.995	0.999
0	10	0.468	0.238	0.103	0.667	0.501	0.358	0.735	0.618	0.503
0.5	10	0.595	0.390	0.216	0.851	0.813	0.745	0.930	0.953	0.955
1	10	0.749	0.622	0.454	0.966	0.988	0.990	0.990	1	1
1.5	10	0.876	0.852	0.772	0.989	1	1	0.992	1	1
2	10	0.942	0.962	0.948	0.991	1	1	0.993	1	1
3	10	0.978	0.998	0.999	0.991	1	1	0.993	1	1

Type-one error rates correspond to $\theta_{1}=0$ and $\lambda_{1}=1$ and are underlined.
Tab. 2. Power and type-one error rate of the Distance test for $\theta_{0}=0$ and $\lambda_{0}=1$.

When H_{0} is true, we are estimating $\xi=0.05$ therefore $R M S E=0.00069$. The $R M S E$ is maximum when estimating $\xi=0.5$, i.e.,

$$
\begin{equation*}
\max \{R M S E\}=\sqrt{0.5(1-0.5) / 100000}=0.00158 \tag{16}
\end{equation*}
$$

In this power comparison, α is set to 0.05 . First we consider $\theta_{0}=0$ and $\lambda_{0}=1$. This is an important problem where a standard exponential distribution is compared to a shifted exponential distribution with a possible different rate parameter as well. We present the results for various values of θ_{1} and λ_{1} in Tables 1 and 2 for the Max and Distance test respectively. Note that in Tables 1 and 2 , the probability of rejecting the
null hypothesis for $\theta_{1}=0$ and $\lambda_{1}=1$ corresponds to the type-one error rate. In these tables, we observe that the type-one error rate of the tests is very close to $\alpha=0.05$ and this indicates that the tests control the type-one error rate very well as expected. Tables 1 and 2 show that the Max test is generally more powerful than the Distance test, in particular when n or m are larger than 5 .

Tables 3 and 4 present the results with $\theta_{0}=10$ and $\lambda_{0}=10$ for various values of θ_{1} and λ_{1}. Note that in Tables 3 and 4, the probability of rejecting the null hypothesis for $\theta_{1}=10$ and $\lambda_{1}=10$ corresponds to the type-one error rate. Tables 3 and 4 confirm the results reported in Tables 1 and 2.

Parameters										
θ_{1}	λ_{1}	$(5,5)$	$(5,10)$	$(5,15)$	$(10,5)$	$(10,10)$	$(10,15)$	$(15,5)$	$(15,10)$	$(15,15)$
5	6	0.356	0.661	0.751	0.297	0.958	0.998	0.212	0.975	1
5	8	0.235	0.447	0.495	0.188	0.866	0.977	0.120	0.911	0.995
5	10	0.165	0.299	0.315	0.126	0.739	0.918	0.078	0.820	0.981
5	12	0.129	0.214	0.213	0.095	0.610	0.820	0.060	0.718	0.953
5	14	0.112	0.167	0.166	0.087	0.507	0.703	0.058	0.622	0.911
7	6	0.181	0.331	0.371	0.129	0.589	0.831	0.106	0.615	0.949
7	8	0.115	0.197	0.214	0.069	0.386	0.605	0.052	0.403	0.827
7	10	0.083	0.134	0.136	0.046	0.260	0.423	0.035	0.270	0.678
7	12	0.072	0.105	0.105	0.044	0.194	0.303	0.035	0.202	0.533
7	14	0.073	0.098	0.100	0.054	0.168	0.246	0.046	0.175	0.441
10	6	0.088	0.112	0.120	0.093	0.147	0.176	0.101	0.160	0.206
10	8	0.057	0.063	0.064	0.056	0.066	0.073	0.057	0.065	0.076
10	10	$\underline{0.050}$	$\underline{0.050}$	$\underline{0.051}$	$\underline{0.049}$	$\underline{0.050}$	$\underline{0.050}$	$\underline{0.050}$	$\underline{0.049}$	$\underline{0.051}$
10	12	0.056	0.053	0.054	0.059	0.061	0.060	0.060	0.068	0.067
10	14	0.066	0.067	0.069	0.079	0.089	0.092	0.079	0.103	0.112
13	6	0.108	0.095	0.076	0.152	0.415	0.538	0.150	0.576	0.849
13	8	0.084	0.054	0.035	0.128	0.307	0.369	0.127	0.472	0.758
13	10	0.082	0.047	0.034	0.133	0.258	0.271	0.135	0.422	0.678
13	12	0.092	0.056	0.046	0.147	0.245	0.232	0.155	0.400	0.611
13	14	0.106	0.071	0.064	0.169	0.256	0.228	0.183	0.401	0.572
15	6	0.221	0.285	0.275	0.345	0.873	0.930	0.340	0.966	0.992
15	8	0.183	0.175	0.131	0.309	0.805	0.881	0.316	0.942	0.987
15	10	0.165	0.126	0.079	0.298	0.739	0.817	0.317	0.919	0.982
15	12	0.165	0.110	0.068	0.300	0.678	0.749	0.329	0.888	0.974
15	14	0.169	0.109	0.078	0.310	0.629	0.679	0.345	0.862	0.965

Type-one error rates correspond to $\theta_{1}=10$ and $\lambda_{1}=10$ and are underlined.
Tab. 3. Power and type-one error rate of the Max test for $\theta_{0}=10$ and $\lambda_{0}=10$.

5. PRACTICAL EXAMPLE

To illustrate the proposed two-sample tests, we analyse survival data from Krishnamoorthy and Xia [11. This dataset consists of the number of survival days for patients with incurable lung cancer. As in Krishnamoorthy and Xia [11, we consider two categories of patients' cancer type, i.e. squamous and small cells. There are $m=9$ patients with squamous cell cancer type, and $n=9$ patients with small cell cancer type, see Table 5 . Survival times are sorted in the increasing order. For the first sample, that is, for the patients with squamous cell, the maximum likelihood estimates of the location (origin) θ_{0} and scale λ_{0} parameters are 8 and 43 , respectively. For the second sample, that is,

Parameters						(m, n)				
θ_{1}	λ_{1}	$(5,5)$	$(5,10)$	$(5,15)$	(10,5)	$(10,10)$	$(10,15)$	$(15,5)$	$(15,10)$	$(15,15)$
5	6	0.339	0.435	0.455	0.393	0.558	0.597	0.399	0.606	0.661
5	8	0.226	0.299	0.314	0.246	0.370	0.394	0.239	0.388	0.414
5	10	0.183	0.254	0.266	0.187	0.303	0.322	0.175	0.313	0.335
5	12	0.165	0.248	0.269	0.174	0.322	0.364	0.165	0.333	0.383
5	14	0.156	0.262	0.291	0.180	0.371	0.441	0.173	0.401	0.487
7	6	0.227	0.360	0.396	0.252	0.507	0.576	0.234	0.560	0.651
7	8	0.144	0.219	0.241	0.140	0.302	0.353	0.121	0.325	0.390
7	10	0.110	0.168	0.185	0.099	0.227	0.272	0.083	0.234	0.296
7	12	0.097	0.156	0.174	0.091	0.226	0.285	0.078	0.239	0.328
7	14	0.092	0.154	0.181	0.095	0.252	0.341	0.087	0.281	0.410
10	6	0.075	0.112	0.130	0.058	0.112	0.150	0.049	0.098	0.144
10	8	0.055	0.064	0.069	0.048	0.061	0.071	0.047	0.058	0.068
10	10	$\underline{0.051}$	$\underline{0.050}$	$\underline{0.050}$	$\underline{0.050}$	$\underline{0.049}$	$\underline{0.050}$	0.051	$\underline{0.050}$	$\underline{0.050}$
10	12	0.053	0.047	0.046	0.062	0.057	0.053	0.063	0.064	0.064
10	14	0.061	0.050	0.048	0.081	0.076	0.069	0.088	0.095	0.091
13	6	0.157	0.202	0.204	0.280	0.450	0.504	0.328	0.551	0.628
13	8	0.119	0.122	0.110	0.197	0.280	0.298	0.221	0.339	0.380
13	10	0.108	0.101	0.084	0.169	0.226	0.237	0.185	0.271	0.300
13	12	0.111	0.102	0.083	0.179	0.249	0.261	0.198	0.304	0.343
13	14	0.123	0.113	0.089	0.206	0.304	0.331	0.231	0.381	0.445
15	6	0.277	0.333	0.344	0.410	0.542	0.582	0.451	0.607	0.657
15	8	0.202	0.221	0.215	0.291	0.361	0.377	0.307	0.394	0.414
15	10	0.182	0.189	0.175	0.255	0.306	0.312	0.266	0.325	0.335
15	12	0.185	0.193	0.181	0.261	0.333	0.350	0.276	0.359	0.389
15	14	0.199	0.213	0.200	0.297	0.402	0.433	0.321	0.446	0.496

Type-one error rates correspond to $\theta_{1}=10$ and $\lambda_{1}=10$ and are underlined.
Tab. 4. Power and type-one error rate of the Distance test for

$$
\theta_{0}=10 \text { and } \lambda_{0}=10
$$

for the patients with small cancer cell, the maximum likelihood estimates of the origin θ_{1} and scale λ_{1} parameters are 13 and 9.111, respectively, and α is set to 0.05 .

Squamous Cell									
Sample-1	8	10	11	25	42	72	81	100	110
Small Cell									
Sample-2	13	16	18	20	21	23	27	30	31

Tab. 5. Number of survival days for patients with squamous and small cell lung cancer.

We would like to simultaneously test for different origin and scale parameters of the populations behind sample 1 and 2 . Here $W_{1}=0.8635$ and $W_{2}=0.2119$. The Max test should be preferred according to our simulation study. Then, we use the maximum combining function to combine W_{1} and W_{2}, and obtain $\max \left\{W_{1},-W_{1}\right\}=0.8635$ and $\max \left\{W_{2}, \frac{1}{W_{2}}\right\}=4.7195$. By considering the cdfs of $\max \left\{W_{1},-W_{1}\right\}$ and $\max \left\{W_{2}, \frac{1}{W_{2}}\right\}$ as in Theorem $3, M_{1}$ and M_{2} are respectively computed as 0.7691 and 0.9965 . Therefore, $M=\max \left\{M_{1}, M_{2}\right\}=0.9965$. The cut-off value M_{α} is 0.9747 for $\alpha=0.05$. Since $M>M_{\alpha}$, we reject the null hypothesis that the parent population distributions are equal. The p-value of the Max test is 0.00694 .

We also apply the Distance test and obtain $S=\left\{M_{1}^{2}+M_{2}^{2}\right\}=1.5846$. The cut-off value S_{α} from the cdf of S is 1.4355 . Since $S>S_{\alpha}$ then we reject H_{0}. The p-value of the Distance test is 0.02525 . Note that this p-value is larger than the p-value of the Max test that finds more evidence than the Distance test against the null hypothesis, confirming the results of our simulation study. We conclude that both tests lead to the same conclusion that $\theta_{0} \neq \theta_{1}$ and $\lambda_{0} \neq \lambda_{1}$.

6. CONCLUSION

The open problem of simultaneous testing for different origin and scale parameters of two-parameter (shifted) exponential distributions has been addressed. Two combined tests have been proposed, studied and compared. We showed that the test based on a maximum type combination should be preferred being generally more powerful than the other test based on a distance type combination. Since two-parameter exponential distribution is very useful in the engineering sciences and industrial quality control, a possible direction for future research is to use the Max test to design a Phase-II control chart for shifted exponential processes with unknown parameters.

APPENDIX

A.1. Proof of Theorem 2.1

We obtain the result following the line of Pal, Masoom, and Woo [15. First, consider the joint density of E_{X} and E_{Y}

$$
f_{\left(E_{X}, E_{Y}\right)}\left(e_{X}, e_{Y}\right)=\frac{1}{4} e^{-\frac{1}{2}\left(e_{X}+e_{Y}\right)}, \quad e_{X}>0, e_{Y}>0
$$

Define, $Z_{1}=m E_{Y}-n E_{X}$ and $D_{X}=E_{X}$. Under this transformation,

$$
E_{X}=D_{X}, \quad \text { and } \quad E_{Y}=\frac{Z_{1}+n D_{X}}{m}
$$

Unconditionally, $d_{X}>0, z_{1} \in(-\infty, \infty)$ but conditionally, $d_{X}>0, z_{1}>-n d_{X}$. The Jacobian of the transformation is

$$
\left|J\left(\frac{e_{X}, e_{Y}}{d_{X}, z_{1}}\right)\right|=\left\|\begin{array}{cc}
1 & 0 \\
\frac{n}{m} & \frac{1}{m}
\end{array}\right\|=\frac{1}{m} .
$$

The joint density of Z_{1} and D_{X} is

$$
f_{\left(D_{X}, Z_{1}\right)}\left(d_{X}, z_{1}\right)=\frac{1}{4 m} e^{-\frac{1}{2}\left(\frac{z_{1}+n d_{X}}{m}+d_{X}\right)}, \quad d_{X}>0, z_{1}>-n d_{X}
$$

Therefore, the marginal distribution of Z_{1} is

$$
f_{Z_{1}}\left(z_{1}\right)=\frac{1}{4 m} e^{-\frac{z_{1}}{2 m}} \int_{\max \left\{0,-\frac{z_{1}}{n}\right\}}^{\infty} e^{-\frac{d_{X}}{2}\left(1+\frac{n}{m}\right)} \mathrm{d} d_{X}, \quad z_{1} \in(-\infty, \infty)
$$

$$
\begin{aligned}
& = \begin{cases}\frac{1}{4 m} e^{-\frac{z_{1}}{2 m}}\left[-\frac{2}{\left(1+\frac{n}{m}\right)} e^{-\frac{d_{X}}{2}\left(1+\frac{n}{m}\right)}\right]_{-\frac{z_{1}}{n}}^{\infty}, & z_{1}<0 \\
\frac{1}{4 m} e^{-\frac{z_{1}}{2 m}}\left[-\frac{2}{\left(1+\frac{n}{m}\right)} e^{-\frac{d_{X}}{2}\left(1+\frac{n}{m}\right)}\right]_{0}^{\infty}, & z_{1} \geq 0\end{cases} \\
& = \begin{cases}\frac{1}{4 m} e^{-\frac{z_{1}}{2 m}} \frac{2}{\left(1+\frac{n}{\left.n_{n}\right)}\right.} e^{\frac{z_{1}}{2 n}\left(1+\frac{n}{m}\right)}, & z_{1}<0 ; \\
\frac{1}{2 m\left(1+\frac{n}{m}\right)} e^{-\frac{z_{1}}{2 m}}, & z_{1} \geq 0 ;\end{cases} \\
& = \begin{cases}\frac{1}{2(m+n)} e^{\frac{z_{1}}{2 n}}, & z_{1}<0 ; \\
\frac{1}{2(m+n)} e^{-\frac{z_{1}}{2 m}}, & z_{1} \geq 0\end{cases}
\end{aligned}
$$

Note that the mean of Z_{1} is $2(m-n)$ and that Z_{1} follows a Laplace distribution if $m=n$. Moreover, $F_{Y}+F_{X}$ follows a chi-square distribution with $2 m+2 n-4$ degrees of freedom independently of Z_{1}. We need the distribution of $W_{1}=\frac{Z_{1}}{Z_{S}}$ where $Z_{S}=F_{Y}+F_{X}$.

The joint density of Z_{1} and Z_{S} is

$$
f_{\left(Z_{1}, Z_{S}\right)}\left(z_{1}, z_{S}\right)= \begin{cases}\frac{1}{2^{m+n-1}(m+n) \Gamma(m+n-2)} e^{-\left(-\frac{z_{1}}{2 n}+\frac{z_{S}}{2}\right)}\left(z_{S}\right)^{m+n-3}, & z_{1}<0, z_{S}>0 \\ \frac{1}{2^{m+n-1}(m+n) \Gamma(m+n-2)} e^{-\left(\frac{z_{1}}{2 m}+\frac{z_{S}}{2}\right)}\left(z_{S}\right)^{m+n-3}, & z_{1} \geq 0, z_{S}>0\end{cases}
$$

Define $W_{1}=\frac{Z_{1}}{Z_{S}}$ and $Z_{X}=Z_{S}$. Under this transformation, $Z_{1}=W_{1} Z_{X}$ and $Z_{S}=Z_{X}$ with $Z_{X}>0, W_{1} \in(-\infty, \infty)$. The Jacobian of the transformation is

$$
\left|J\left(\frac{z_{1}, z_{S}}{w_{1}, z_{X}}\right)\right|=\left\|\begin{array}{cc}
z_{X} & w_{1} \\
0 & 1
\end{array}\right\|=z_{X} .
$$

The joint density of W_{1} and Z_{X} is

$$
f_{\left(W_{1}, Z_{X}\right)}\left(w_{1}, z_{X}\right)= \begin{cases}\frac{1}{2^{m+n-1}(m+n) \Gamma(m+n-2)} e^{-\left(-\frac{w_{1} z_{X}}{2 n}+\frac{z_{X}}{2}\right)}\left(z_{X}\right)^{m+n-2}, & w_{1}<0, z_{X}>0 \\ \frac{1}{2^{m+n-1}(m+n) \Gamma(m+n-2)} e^{-\left(\frac{w_{1} z_{X}}{2 m}+\frac{z_{X}}{2}\right)}\left(z_{X}\right)^{m+n-2}, & w_{1} \geq 0, z_{X}>0\end{cases}
$$

Therefore, the marginal distribution of W_{1} is

$$
f_{W_{1}}\left(w_{1}\right)= \begin{cases}\frac{1}{2^{m+n-1}(m+n) \Gamma(m+n-2)} & \int_{0}^{\infty} e^{-\left(\frac{1}{2}-\frac{w_{1}}{2 n}\right) z_{X}}\left(z_{X}\right)^{m+n-2} \mathrm{~d} z_{X}, \\ \frac{1}{2^{m+n-1}(m+n) \Gamma(m+n-2)} \int_{0}^{\infty} e^{-\left(\frac{1}{2}+\frac{w_{1}}{2 m}\right) z_{X}}\left(z_{X}\right)^{m+n-2} \mathrm{~d} z_{X}, & w_{1} \geq 0\end{cases}
$$

The integrals can be easily computed using the following property of the Gamma distribution

$$
\frac{\Gamma(b+1)}{a^{b+1}}=\int_{0}^{\infty} x^{b} e^{-a x} \mathrm{~d} x
$$

Consequently,

$$
\begin{aligned}
f_{W_{1}}\left(w_{1}\right) & = \begin{cases}\frac{1}{2^{m+n-1}(m+n) \Gamma(m+n-2)} \frac{\Gamma(m+n-1)}{\left(\frac{1}{2}-\frac{w_{1}}{2 n}\right)^{m+n-1}}, & w_{1}<0 ; \\
\frac{1}{2^{m+n-1}(m+n) \Gamma(m+n-2)} \frac{\Gamma(m+n-1)}{\left(\frac{1}{2}+\frac{w_{1}}{2 m}\right)^{m+n-1}}, & w_{1} \geq 0\end{cases} \\
& = \begin{cases}\frac{m+n-2}{(m+n)} \frac{1}{\left(1-\frac{w_{1}}{n}\right)^{m+n-1}}, & w_{1}<0 \\
\frac{m+n-2}{(m+n)} \frac{1}{\left(1+\frac{w_{1}}{m}\right)^{m+n-1}}, & w_{1} \geq 0 .\end{cases}
\end{aligned}
$$

A.2. Proof of Theorem 2.2

We need to show that

1. W_{1} and W_{2} are mutually independent;
2. W_{2} follows an F distribution with $(2 n-2)$ and $(2 m-2)$ degrees of freedom.

Consider the transformation

$$
Z_{1}=m E_{Y}-n E_{X}, Z_{2}=F_{X}, \quad \text { and } \quad Z_{3}=F_{Y}
$$

where Z_{1}, Z_{2} and Z_{3} are mutually independent. The joint density of Z_{1}, Z_{2} and Z_{3} is

$$
\begin{aligned}
& f_{\left(Z_{1}, Z_{2}, Z_{3}\right)}\left(z_{1}, z_{2}, z_{3}\right) \\
= & \left\{\begin{array}{lll}
\frac{1}{2^{m+n-1}(m+n) \Gamma(m-1) \Gamma(n-1)} e^{-\left(-\frac{z_{1}}{2 n}+\frac{z_{2}}{2}+\frac{z_{3}}{2}\right)} z_{2}^{m-2} z_{3}^{n-2}, & z_{1}<0, & z_{2}, \\
\frac{1}{2_{3}>0} \\
\frac{1}{2^{m+n-1}(m+n) \Gamma(m-1) \Gamma(n-1)} e^{-\left(\frac{z_{1}}{2 m}+\frac{z_{2}}{2}+\frac{z_{3}}{2}\right)} z_{2}^{m-2} z_{3}^{n-2}, & z_{1} \geq 0, & z_{2}, \\
z_{3}>0 .
\end{array}\right.
\end{aligned}
$$

Further, consider the transformation

$$
\begin{aligned}
W_{1} & =\frac{Z_{1}}{Z_{2}+Z_{3}} \\
W_{2} & =\left(\frac{Z_{3}}{Z_{2}}\right) \frac{m-1}{n-1} \\
W_{3} & =Z_{2}+Z_{3}
\end{aligned}
$$

Under this transformation,

$$
\begin{aligned}
Z_{1} & =W_{1} W_{3} \\
Z_{3} & =W_{3}-Z_{2} \\
& \Rightarrow W_{2}=\left(\frac{W_{3}-Z_{2}}{Z_{2}}\right) \frac{m-1}{n-1} \Rightarrow \frac{W_{3}}{Z_{2}}=1+W_{2} \frac{n-1}{m-1} \Rightarrow Z_{2}=\frac{W_{3}}{1+W_{2} \frac{n-1}{m-1}} .
\end{aligned}
$$

Finally,

$$
Z_{3}=W_{3}-\frac{W_{3}}{1+W_{2} \frac{n-1}{m-1}}=W_{3}\left(\frac{W_{2} \frac{n-1}{m-1}}{1+W_{2} \frac{n-1}{m-1}}\right)
$$

The Jacobian of the transformation is

$$
\begin{aligned}
&\left|J\left(\frac{z_{1}, z_{2}, z_{3}}{w_{1}, w_{2}, w_{3}}\right)\right|=\| \begin{array}{cc}
w_{3} & 0 \\
w_{1} \\
0 & -w_{3} \frac{n-1}{m-1}\left(1+w_{2} \frac{n-1}{m-1}\right)^{-2} \\
0 & w_{3} \frac{n-1}{m-1}\left(1+w_{2} \frac{n-1}{m-1}\right)^{-2}
\end{array}\left(1+w_{2} \frac{n-1}{m-1}\right)^{-1} \\
& 1-\left(1+w_{2} \frac{n-1}{m-1}\right)^{-1}
\end{aligned} \| .
$$

The joint distribution of W_{1}, W_{2} and W_{3} is

$$
\left.\begin{array}{rl}
& f_{\left(W_{1}, W_{2}, W_{3}\right)}\left(w_{1}, w_{2}, w_{3}\right) \\
= & \begin{cases}\left.\frac{(n-1) e^{-\left(-\frac{w_{1}}{2} w_{3}\right.}}{2 n}+\frac{w_{3}}{2}\right)\left(\frac{w_{3}}{\left.1+w_{2} \frac{n-1}{m-1}\right)^{m}\left(w_{3}\left(\frac{w_{2} \frac{n-1}{m-1}}{1+w_{2} \frac{n-1}{m-1}}\right)\right)^{n-2}}\right. \\
(m-1) 2^{m+n-1}(m+n) \Gamma(m-1) \Gamma(n-1) \\
\frac{(n-1) e^{-\left(\frac{\left(w_{1} w_{3}\right.}{2 m}+\frac{w_{3}}{2}\right)}\left(\frac{w_{3}}{\left.1+w_{2} \frac{n-1}{m-1}\right)^{m}\left(w_{3}\left(\frac{w_{2} \frac{n-1}{m-1}}{1+w_{2} \frac{n-1}{m-1}}\right)\right)^{n-2}},\right.}{(m-1) 2^{m+n-1}(m+n) \Gamma(m-1) \Gamma(n-1)}, & w_{1}<0, w_{2}, w_{3}>0\end{cases} \\
= & w_{1} \geq 0, w_{2}, w_{3}>0 ;
\end{array}\right\} \begin{array}{ll}
\frac{(n-1) e^{-\frac{w_{3}}{2}\left(1-\frac{w_{1}}{n}\right)\left(w_{3}\right)^{m+n-2}\left(w_{2} \frac{n-1}{m-1}\right)^{n-2}}}{(m-1) 2^{m+n-1}(m+n) \Gamma(m-1) \Gamma(n-1)\left(1+w_{2} \frac{n-1}{m-1}\right)^{m+n-2}}, & w_{1}<0, w_{2}, w_{3}>0 ; \\
\frac{(n-1) e^{-\frac{w_{3}}{2}\left(1+\frac{\left.w_{1}\right)}{m}\left(w_{3}\right)^{m+n-2}\left(w_{2} \frac{n-1}{m-1}\right)^{n-2}\right.}}{(m-1) 2^{m+n-1}(m+n) \Gamma(m-1) \Gamma(n-1)\left(1+w_{2} \frac{n-1}{m-1}\right)^{m+n-2}}, & w_{1} \geq 0, w_{2}, w_{3}>0 .
\end{array}
$$

Therefore, using the same property of the Gamma distribution as before, we obtain the joint distribution of W_{1} and W_{2}

$$
\begin{aligned}
& f_{\left(W_{1}, W_{2}\right)}\left(w_{1}, w_{2}\right)=\int_{0}^{\infty} f_{\left(W_{1}, W_{2}, W_{3}\right)}\left(w_{1}, w_{2}, w_{3}\right) \mathrm{d} w_{3} \\
= & \begin{cases}\frac{(n-1) \Gamma(m+n-1)\left(w_{2} \frac{n-1}{m-1}\right)^{n-2}}{(m-1)(m+n) \Gamma(m-1) \Gamma(n-1)\left(1+w_{2} \frac{n-1}{m-1}\right)^{m+n-2}\left(1-\frac{w_{1}}{n}\right)^{m+n-1}}, & w_{1}<0, w_{2}>0 \\
\frac{(n-1) \Gamma(m+n-1)\left(w_{2} \frac{1}{-1}\right)^{n-2}}{(m-1)(m+n) \Gamma(m-1) \Gamma(n-1)\left(1+w_{2} \frac{n-1}{m-1}\right)^{m+n-2}\left(1+\frac{w_{1}}{m}\right)^{m+n-1}}, & w_{1} \geq 0, w_{2}>0 .\end{cases}
\end{aligned}
$$

Since $f_{\left(W_{1}, W_{2}\right)}\left(w_{1}, w_{2}\right)$ is the product of $f_{W_{1}}\left(w_{1}\right)$ and the pdf of an F distribution with $(2 n-2)$ and $(2 m-2)$ degrees of freedom, we conclude that W_{1} and W_{2} are independent and that

$$
f_{W_{2}}\left(w_{2}\right)=\frac{\Gamma(m+n-2)}{\Gamma(n-1) \Gamma(m-1)}\left(\frac{n-1}{m-1}\right)^{n-1} w_{2}^{n-2}\left(1+w_{2} \frac{n-1}{m-1}\right)^{-(n+m-2)}, w_{2}>0
$$

A.3. Proof of Theorem 3.1

The distribution of $W_{1}^{*}=\max \left\{W_{1},-W_{1}\right\}$ is

$$
\begin{aligned}
G_{W_{1}^{*}}(w) & =\operatorname{Prob}\left[W_{1}^{*} \leq w\right]=\operatorname{Prob}\left[\max \left\{W_{1},-W_{1}\right\} \leq w\right] \\
& =\operatorname{Prob}\left[W_{1} \geq-w \cap W_{1} \leq 0\right]+\operatorname{Prob}\left[W_{1} \leq w \cap W_{1}>0\right] \\
& =\left[\int_{-w}^{0} \frac{m+n-2}{m+n} \frac{1}{\left(1-\frac{w_{1}}{n}\right)^{m+n-1}} \mathrm{~d} w_{1}\right]+\left[\int_{0}^{w} \frac{m+n-2}{m+n} \frac{1}{\left(1+\frac{w_{1}}{m}\right)^{m+n-1}} \mathrm{~d} w_{1}\right] \\
& =\frac{m+n-2}{m+n}\left[\frac{\left(1-\frac{w_{1}}{n}\right)^{2-m-n}}{(2-m-n)\left(-\frac{1}{n}\right)}\right]_{-w}^{0}+\frac{m+n-2}{m+n}\left[\frac{\left(1+\frac{w_{1}}{m}\right)^{2-m-n}}{(2-m-n)\left(\frac{1}{m}\right)}\right]_{0}^{w} \\
& =\frac{n}{m+n}\left[1-\frac{1}{\left(1+\frac{w}{n}\right)^{m+n-2}}\right]-\frac{m}{m+n}\left[\frac{1}{\left(1+\frac{w}{m}\right)^{m+n-2}}-1\right]
\end{aligned}
$$

where $0 \leq w<\infty$. Similarly, the distribution of $W_{2}^{*}=\max \left\{W_{2}, \frac{1}{W_{2}}\right\}$ is

$$
\begin{aligned}
G_{W_{2}^{*}}(w) & =\operatorname{Prob}\left(W_{2}^{*} \leq w\right)=\operatorname{Prob}\left(\max \left\{W_{2}, \frac{1}{W_{2}}\right\} \leq w\right) \\
& =\operatorname{Prob}\left(W_{2} \geq 1 / w \cap W_{2}<1\right)+\operatorname{Prob}\left(W_{2} \leq w \cap W_{2} \geq 1\right) \\
& =F(1)-F(1 / w)+F(w)-F(1)=F(w)-F(1 / w) .
\end{aligned}
$$

A.4. Proof of Theorem 3.2

Let $S=M_{1}^{2}+M_{2}^{2}$ and $T=M_{1}$. Under this transformation, $M_{1}=T$ and $M_{2}=\sqrt{S-T^{2}}$. The Jacobian of transformation is

$$
\left|J\left(\frac{m_{1}, m_{2}}{s, t}\right)\right|=\left\|\begin{array}{cc}
0 & 1 \\
\frac{1}{2 \sqrt{s-t^{2}}} & -\frac{t}{\sqrt{s-t^{2}}}
\end{array}\right\|=\left|-\frac{1}{2 \sqrt{s-t^{2}}}\right|=\frac{1}{2 \sqrt{s-t^{2}}} .
$$

Note that, being cdfs, M_{1} and M_{2} are two independent uniformly distributed random variables in $(0,1)$, i.e. $M_{1}, M_{2} \sim U(0,1)$. Therefore, $f_{\left(M_{1}, M_{2}\right)}\left(m_{1}, m_{2}\right)=1$ for all $\left(m_{1}, m_{2}\right) \in(0,1) \times(0,1)$, and

$$
f_{(S, T)}(s, t)=f_{\left(M_{1}, M_{2}\right)}\left(m_{1}, m_{2}\right)\left|J\left(\frac{m_{1}, m_{2}}{s, t}\right)\right|=\frac{1}{2 \sqrt{s-t^{2}}}
$$

For $0<s<1$, we have $0<t<\sqrt{s}$, therefore

$$
f_{S}(s)=\int_{0}^{\sqrt{s}} f_{(S, T)}(s, t) \mathrm{d} t=\int_{0}^{\sqrt{s}} \frac{1}{2 \sqrt{s-t^{2}}} \mathrm{~d} t=\left[\frac{1}{2} \sin ^{-1} \frac{t}{\sqrt{s}}\right]_{0}^{\sqrt{s}}=\frac{1}{2} \sin ^{-1} 1=\frac{\pi}{4}
$$

For $1 \leq s<2$, we have $\sqrt{s-1}<t<1$, therefore

$$
\begin{aligned}
f_{S}(s) & =\int_{\sqrt{s-1}}^{1} f_{(S, T)}(s, t) d t=\int_{\sqrt{s-1}}^{1} \frac{1}{2 \sqrt{s-t^{2}}} \mathrm{~d} t=\left[\frac{1}{2} \sin ^{-1} \frac{t}{\sqrt{s}}\right]_{\sqrt{s-1}}^{1} \\
& =\frac{1}{2}\left(\sin ^{-1} \frac{1}{\sqrt{s}}-\sin ^{-1} \sqrt{\frac{s-1}{s}}\right)
\end{aligned}
$$

Hence the result follows.

ACKNOWLEDGEMENT

The authors would like to thank the Editor-in-Chief, Associate Editor and two anonymous reviewers, for their highly encouraging comments and a list of valuable suggestions to improve the style and content of the original version of this paper. This work was partially supported by the Universiti Tunku Abdul Rahman (UTAR) Research Fund (UTARRF), no. IPSR/RMC/UTARRF/2018-C2/C04 and the UTAR, Fundamental Research Grant Scheme (FRGS) Grant, no. FRGS/1/2019/STG06/UTAR/02/2.

REFERENCES

[1] J. Ahmadi and S. M. T. K. MirMostafaee: Prediction intervals for future records and order statistics coming from two parameter exponential distribution. Stat. Probab. Lett. 79 (2009), 977-983. DOI:10.1016/j.spl.2008.12.002
[2] A. Baklizi: Interval estimation of the stress-strength reliability in the two-parameter exponential distribution based on records. J. Stat. Comput. Simul. 84 (2014), 2670-2679. DOI:10.1080/00949655.2013.816307
[3] A. Chaturvedi and V. Sharma: A note on the estimation of $\mathrm{P}(\mathrm{Y}>\mathrm{X})$ in two-parameter exponential distributions. Statistics 44 (2010), 73-75.
[4] A. C. Cohen and F. R. Helm: Estimation in the exponential distribution. Technometrics 15 (1973), 415-418. DOI:10.1080/00401706.1973.10489054
[5] N. Ebrahimi: Estimating the parameters of an exponential. J. Stat. Plan. Inference 14 (1986), 255-261. DOI:10.1016/0378-3758(86)90163-1
[6] M. Engelhardt and L. J. Bain: Tolerance limits and confidence limits on reliability for the two-parameter exponential distribution. Technometrics 20 (1978), 37-39.
[7] A. Ganguly, S. Mitra, D. Samanta, and D. Kundu: Exact inference for the two-parameter exponential distribution under Type-II hybrid censoring. J. Stat. Plan. Inference 142 (2012), 613-625. DOI:10.1016/j.jspi.2011.08.001
[8] S. Huang, A. Mukherjee, and J. Yang: Two CUSUM schemes for simultaneous monitoring of parameters of a shifted exponential time to events. Qual. Reliab. Eng. Int. 34 (2018), 6, 1158-1173.
[9] N. L. Johnson and S. Kotz: Distributions in Statistics, Vol. 1: Continuous Univariate Distributions. Houghton Mifflin, Boston 1970.
[10] S. C. Kao: Normalization of the origin-shifted exponential distribution for control chart construction. J. Appl. Stat. 37 (2010), 1067-1087. DOI:10.1080/02664760802571333
[11] K. Krishnamoorthy and Y. Xia: Confidence intervals for a two-parameter exponential distribution: one- and two-sample problems. Commun. Stat. Theory Methods 47 (2018), 935-952.
[12] K. Krishnamoorthy, S. Mukherjee, and H. Guo: Inference on reliability in two-parameter exponential stress-strength model. Metrika 65 (2007), 261-273. DOI:10.1007/s00184-006-0074-7
[13] J. Li, W. Song, and J. Shi: Parametric bootstrap simultaneous confidence intervals for differences of means from several two-parameter exponential distributions. Stat. Probab. Lett. 106 (2015), 39-45. DOI:10.1016/j.spl.2015.07.002
[14] A. Mukherjee, A. K. McCracken, and S. Chakraborti: Control Charts for simultaneous monitoring of parameters of a shifted exponential distribution. J. Qual. Technol. 47 (2015), 176-192. DOI:10.1016/j.spl.2015.07.002
[15] M. Pal, M. A. Masoom, and J. Woo: Estimation and testing of $P(Y>X)$ in two parameter exponential distributions. Statistics 39 (2005), 415-428.
[16] M. Z. Raqab: Approximate maximum likelihood predictors of future failure times of shifted exponential distributions under multiple type II censoring. Stat. Methods Appl. 13 (2004), 43-54. DOI:10.1007/s10260-004-0084-4
[17] A. Roy and T. Mathew: Reliability function of a two-parameter exponential distribution. J. Stat. Plan .Inference 128 (2005), 509-517. DOI:10.1016/j.jspi.2003.11.012
[18] S. Sangnawakij and S. Niwitpong: Confidence intervals for coefficients of variation in twoparameter exponential distributions. Commun. Stat. Simul. Comp. 46 (2017), 6618-6630. DOI:10.1080/03610918.2016.1208236
[19] N. Schenk, M. Burkschat, E. Cramer, and U. Kamps: Bayesian estimation and prediction with multiply Type-II censored samples of sequential order statistics from one-and two-parameter exponential distributions. J. Stat. Plan. Inference 141 (2011), 1575-1587. DOI:10.1016/j.jspi.2010.11.009
[20] P. Singh and A. Abebe: Comparing several exponential populations with more than one control. Stat. Methods Appl. 18 (2009), 359-374. DOI:10.1007/s10260-008-0092-x
[21] E. A. Tanis: Linear forms in the order statistics from an exponential distribution. Ann. Math. Stat. 35 (1964), 270-276. DOI:10.1214/aoms/1177703749
[22] R. van Zyl and A. J. van der Merwe: Schemes for the two-parameter exponential distribution. Commun. Stat. Theory Methods DOI:10.1080/03610926.2018.1440307.
[23] S. D. Varde: Life testing and reliability estimation for the two parameter exponential distribution. J. Amer. Stat. Assoc. 64 (1969), 621-631. DOI:10.1080/01621459.1969.10501000
[24] Z. Wang and H. K. T. Ng: A comparative study of tests for paired lifetime data. Lifetime Data Anal. 12 (2006), 505-522. DOI:10.1007/s10985-006-9026-9
[25] I. Weissman: Sum of squares of uniform random variables. Stat. Probab. Lett. 129 (2017), 147-154. DOI:10.1016/j.spl.2017.05.018
[26] J.-W. Wu. H.-M. Lee, and C.-L. Lei: Computational testing algorithmic procedure of assessment for lifetime performance index of products with two-parameter exponential distribution. Appl. Math. Comput. 190 (2007), 116-125. DOI:10.1016/j.amc.2007.01.010
[27] S.-F. Wu: Interval estimation for the two-parameter exponential distribution under progressive censoring. Qual. Quant. 44 (2010), 181-189. DOI:10.1007/s11135-008-9187-6

Amitava Mukherjee, Production, Operations and Decision Sciences Area, XLRI-Xavier School of Management, XLRI Jamshedpur. India.
e-mail: amitmukh2@yahoo.co.in
Zhi Lin Chong, School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.
e-mail: chongzl@usm.my
Marco Marozzi, Corresponding Author. Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Venezia. Italy.
e-mail: marco.marozzi@unive.it

