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RANDOM FIELDS AND RANDOM SAMPLING

Sandra Dias and Maria da Graça Temido

We study the limiting distribution of the maximum value of a stationary bivariate real
random field satisfying suitable weak mixing conditions. In the first part, when the double
dimensions of the random samples have a geometric growing pattern, a max-semistable distri-
bution is obtained. In the second part, considering the random field sampled at double random
times, a mixture distribution is established for the limiting distribution of the maximum.
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1. INTRODUCTION

Extreme values of stationary and non stationary random fields have been studied by
many authors in the last two decades. The usual extremal properties and concepts, well
known for real sequences of random variables, were extended showing a great commit-
ment between the classical results and the necessary inspiration to deal with random
fields. The characterization of the limiting distribution of the extremes of a random
field, studied in the scenarios of asymptotic independence, local dependence, exceedance
point process, clustering of high values, asymptotic location, etc, can be seen in Lead-
better and Rootzén [13], Ferreira and Pereira [6, 7], Pereira and Ferreira [16, 17], among
many others. Gaussian random fields have received special attention, which stand out
due to its valuable properties, as we can see for instance in Pereira [15], Tan [20, 21] and
Harshova et al. [11]. Almost sure convergence of maxima of random fields has also been
an interesting topic developed in many works, which can be checked in Tan and Wang
[22] and Pereira and Tan [18] and references therein.

In this paper we study the limit in distribution of the maximum of a stationary
bivariate real random field, sampled at double random times. Starting by considering
a deterministic sample size, the aim of Section 2 is to establish this limit under the
context of max-semistability. The results are simultaneously extensions of the ones of
Temido and Canto e Castro [23] and Choi [4], concerning stationary real sequences and
stationary real random fields, respectively. In Section 3, we extend the results of Freitas
et al. [8], where a random sample size of a stationary real sequence is considered.

In the remaining part of this introduction, we provide the required background sup-
port led by the class of max-semistable laws.
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A distribution function (d.f.) G is max-semistable if there are reals r > 1, a > 0 and
b such that G(x) = Gr(ax+ b). The class of these d.f.’s - MSS class - coincides with the
class of all possible limits in

F kn(anx+ bn)→ G(x), n→ +∞,

where F is a d.f., {an > 0} and {bn} are real sequences and {kn} is an integer sequence

satisfying kn+1 ≥ kn ≥ 1 and kn+1

kn
→ r ≥ 1 (r < ∞), n → +∞. This means that

MSS is the class of all the possible limits in distribution of the maximum, under linear
normalization, of kn independent and identically distributed random variables.

Max-semistable laws were introduced in Extreme Values Theory in the works of
Pancheva [14] and Grinevich [10]. The three families of real max-semistable d.f.’s are
defined by:

Φα,ν(x) = exp{−(x− t)−αν(log(x− t))} 1I]t,+∞[(x),

Ψα,ν(x) = exp{−(t− x)αν(log(t− x))} 1I]−∞,t[(x) + 1I[t,+∞[(x) and

Λν(x) = exp{− exp(−βx)ν(x)},

where α = | log r/ log a|, β = log r/b, t ∈ R and ν are positive, bounded and periodic
suitable functions.

The MSS class perspectives a significant increase in applications of Extreme Value
Theory, since it contains discontinuous d.f.’s as well as a wide set of multimodal d.f.’s.
Statistical inference in max-semistable models (estimation of parameters and an useful
test) was studied mainly in Canto e Castro and Dias [1] and Canto e Castro et al. [2, 3].

Temido and Canto e Castro [23] consider stationary sequences under an asymptotic
independence condition that is an adaptation of Leadbetter’s D(un) condition. They
proved that the class of possible limits in distribution of the maximum of the first kn
random variables, linearly normalized, coincides with the MSS class.

Also in the context of max-semistability for stationary real sequences, Freitas et al.
[8] establishes the limit in distribution of the maximum MTn

, under linear normalization,
where {Tn} is a sequence of positive integer random variables satisfying Tn/kn → T in
probability, for some strictly positive random variable T . An additional mixing condition
was also introduced in order to deal with the weak convergence with mixing property.
Then a−1n (MTn

− bn) converges in distribution to the mixture defined by E(GT ), where
G stands for the limit in distribution of a−1n (Mkn − bn) stated by Temido and Canto e
Castro [23].

2. RANDOM FIELDS AND MAX-SEMISTABILITY

Let us consider a bivariate stationary real random field, {Xn,m}, with (n,m) in N2. Let
{kn} and {k∗m} be two positive integer sequences satisfying

kn+1

kn
→ r ≥ 1, n→ +∞, and

k∗m+1

k∗m
→ r∗ ≥ 1, m→ +∞. (1)

We use the usual notation M(I) := max{Xi,j , (i, j) ∈ I} for I ⊆]0, a]×]0, b] and
Ma,b := M(]0, a]×]0, b]) , for any a, b ∈ R+.
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The following dependence restriction is, at the same time, a generalization of the
condition Dkn(un) provided in Temido and Canto e Castro [23] and an adaptation of
∆(un) introduced in Pereira and Ferreira [17], this one being an extension of ∆(un)
presented in Choi [4].

Definition 2.1. Let {un,m} be a real sequence and {rn}, {r∗m}, {`n} and {`∗m} positive
integer sequences such that

rn → +∞, rn = on(kn), `n = on(rn), n→ +∞, (2)

and

r∗m → +∞, r∗m = om(k∗m), `∗m = om(r∗m), m→ +∞. (3)

The random field {Xn,m} satisfies the condition Dkn,k∗m(un,m) if

i) for each pair of rectangles I1 =]a1, b1]×]c1, d1] and I2 =]a2, b2]×]c1, d1] such that
a2 − b1 > `n and b2 − a2 < rn, we have

|P (M(I1) ≤ un,m,M(I2) ≤ un,m)− P (M(I1) ≤ un,m)P (M(I2) ≤ un,m)| ≤ αn,m

with kn
rn
αn,m → 0, n,m→ +∞;

ii) for each pair of rectangles I∗1 =]a∗1, b
∗
1]×]c∗1, d

∗
1] and I∗2 =]a∗1, b

∗
1]×]c∗2, d

∗
2] such that

c∗2 − d∗1 > `∗m and d∗2 − c∗2 < r∗m, we have

|P (M(I∗1 ) ≤ un,m,M(I∗2 ) ≤ un,m)− P (M(I∗1 ) ≤ un,m)P (M(I∗2 ) ≤ un,m)| ≤ α∗n,m

with
k∗m
r∗m

kn
rn
α∗n,m → 0, n,m→ +∞.

The next lemma establishes the asymptotic independence of linearized maxima over
disjoint rectangles for stationary random fields under the condition Dkn,k∗m

(un,m), as
well as estimates of P (Mkn,k∗m

≤ un,m). More precisely, this lemma is a generalization
of Lemma 4.4.1 of Choi [4] and Lemmas 2 and 3 of Temido and Canto e Castro [23]. As
a consequence we deduce an extremal type theorem for stationary random fields, where
a max-semistable limit law is obtained. In what follows, we present the construction of
those disjoint rectangles.

Let us consider two nondecreasing sequences of positive integers {sn} and {s∗m} de-

fined by rn = bkn/snc and r∗m = bk∗m/s∗mc satisfying sn`n
kn
→ 0, n→ +∞, and

s∗m`
∗
m

k∗m
→ 0,

m→ +∞.
Consider the disjoint rectangles Ej :=](j − 1)rn, jrn]×]0, s∗mr

∗
m], j = 1, ..., sn, and

E∗j :=]0, rn]×](j − 1)r∗m, jr
∗
m], j = 1, ..., s∗m, and observe that ]0, snrn]× ]0, s∗mr

∗
m] :=⋃sn

j=1Ej and E1 =]0, rn]×]0, s∗mr
∗
m] :=

⋃s∗m
j=1E

∗
j . Take also the separated rectangles

Ij :=](j−1)rn, jrn− `n]×]0, s∗mr
∗
m], j = 1, ..., sn, and I∗j :=]0, rn]×](j−1)r∗m, jr

∗
m− `∗m],

j = 1, ..., s∗m.
Indeed, we split the rectangle ]0, snrn]×]0, s∗mr

∗
m] into sn rectangles `n-separated, as

well as E1 =]0, rn]×]0, s∗mr
∗
m] into s∗m rectangles `∗m−separated.
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Lemma 2.2. Let {Xn,m} be a bivariate stationary real random field. Consider two
sequences of positive integers, {kn} and {k∗m}, satisfying (1) and the sequences {sn},
{rn}, {s∗m} and {r∗m} as before. If knk

∗
m(1− F (un,m)) < +∞ and Dkn,k∗m

(un,m) holds,
then

1. ∣∣∣∣∣∣P
M

 sn⋃
j=1

Ij

 ≤ un,m
− sn∏

j=1

P (M(Ij) ≤ un,m)

∣∣∣∣∣∣ ≤ (sn − 1)αn,m (4)

and

∣∣∣∣∣∣P
M

 s∗m⋃
j=1

I∗j

 ≤ un,m
− s∗m∏

j=1

P
(
M(I∗j ) ≤ un,m

)∣∣∣∣∣∣ ≤ (s∗m − 1)α∗n,m. (5)

2.

P (Mkn,k∗m
≤ un,m)− P sns

∗
m(Mrn,r∗m

≤ un,m)→ 0, n,m→ +∞. (6)

3. (a) If r > 1 and r∗ > 1,

P (Mkn,k∗m
≤ un,m)− P rr

∗
(Mkn−1,k∗m−1

≤ un,m)→ 0, n,m→ +∞; (7)

(b) If r = 1 and r∗ = 1, ∀h1, h2 ∈ R+, there are positive integer sequences {pn}
and {p∗m} such that kpn ∼ kn/h1, n → +∞, and k∗p∗m ∼ k∗m/h2, m → +∞,
and

P (Mkn,k∗m
≤ un,m)− Ph1h2(Mkpn ,k

∗
p∗m
≤ un,m)→ 0, n,m→ +∞; (8)

(c) If r = 1 and r∗ > 1, ∀h ∈ R+, there is a positive integer sequence {pn} such
that kpn ∼ kn/h, n→ +∞, and

P (Mkn,k∗m
≤ un,m)− Phr

∗
(Mkpn ,k

∗
m−1
≤ un,m)→ 0, n,m→ +∞; (9)

(d) If r > 1 and r∗ = 1, ∀h ∈ R+, there is a positive integer sequence {p∗m} such
that kp∗m ∼ k

∗
m/h, m→ +∞, and

P (Mkn,k∗m
≤ un,m)− P rh(Mkn−1,k∗p∗m

≤ un,m)→ 0, n,m→ +∞. (10)

P r o o f . We omit the proof of 1. due to its similitude with the proof of Lemma 3.2.2
in Leadbetter et al. [12], in spite of the approach of random fields. In the following we
present the appropriate main arguments to separated rectangles, which are generaliza-
tions of the ones presented in Temido and Canto e Castro [23] for separated intervals.
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2. Let us observe that

|P (Mkn,k∗m
≤ un,m)− P sns

∗
m(Mrn,r∗m

≤ un,m)|

≤ |P (Mkn,k∗m
≤ un,m)− P (Msnrn,s∗mr

∗
m
≤ un,m)| (11)

+|P (Msnrn,s∗mr
∗
m
≤ un,m)− P sn(M(E1) ≤ un,m)| (12)

+|P sn(M(E1) ≤ un,m)− P sns
∗
m(Mrn,r∗m

≤ un,m)|. (13)

Due to the fact that rnsn ≤ kn and r∗ms
∗
m ≤ k∗m, taking R

(1)
n,m :=]snrn, kn]× ]0, s∗mr

∗
m]

and R
(2)
n,m :=]0, kn]×]s∗mr

∗
m, k

∗
m], we prove that (11) is bounded by

P (M(R(1)
n,m) > un,m) + P (M(R(2)

n,m) > un,m)

≤ kn
(

1− snrn
kn

)
s∗mr

∗
m

k∗m
k∗mF (un,m) + k∗m

(
1− s∗mr

∗
m

k∗m

)
knF (un,m)→ 0, n,m→ +∞,

where F (x) := 1− F (x). We also deduce that

0 ≤ P (M(∪snj=1Ij) ≤ un,m)− P (M(∪snj=1Ej) ≤ un,m)

≤ sn`n
kn

s∗mr
∗
m

k∗m
knk

∗
mF (un,m)→ 0, n,m→ +∞, (14)

where M(∪snj=1Ej) = Msnrn,s∗mr
∗
m

.

Moreover, due to (4) and using the stationarity of {Xn,m}, we get

∣∣P (M(∪snj=1Ij) ≤ un,m)− P sn(M(I1) ≤ un,m)
∣∣ ≤ snαn,m → 0, n,m→ +∞. (15)

In addition, due to the well known inequality

∣∣∣∣ k∏
i=1

ai −
k∏
i=1

bi

∣∣∣∣ ≤ k∑
i=1

|ai − bi| for ai, bi ∈

[0, 1], we obtain

P sn(M(I1) ≤ un,m)− P sn(M(E1) ≤ un,m) ≤ sn [P (M(I1) ≤ un,m)− P (M(E1) ≤ un,m)]

≤ snP (M(]rn − `n, rn]×]0, s∗mr
∗
m]) > un,m)

=
sn`n
kn

s∗mr
∗
m

k∗m
knk

∗
mF (un,m)→ 0, (16)

as n,m→ +∞. Then (14), (15) and (16) prove that (12) is asymptotically zero. Simi-
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larly, considering the vertical scheme for E∗1 , ..., E
∗
s∗m

, we obtain

|P sn(M(E1) ≤ un,m)− P sns
∗
m(M(E∗1 ) ≤ un,m)|

≤ sn|P (M(∪s
∗
m
j=1E

∗
j ) ≤ un,m)− P (M(∪s

∗
m
j=1I

∗
j ) ≤ un,m)|

+sn|P (M(∪s
∗
m
j=1I

∗
j ) ≤ un,m)− P s

∗
m(M(I∗1 ) ≤ un,m)|

+sn|P s
∗
m(M(I∗1 ) ≤ un,m)− P s

∗
m(M(E∗1 ) ≤ un,m)|

≤ 2sns
∗
m`
∗
mF (un,m) + sns

∗
mα
∗
n,m → 0, n,m→ +∞.

The proof of 2 is concluded.
In order to prove 3.(a) we proceed with the rectangle ]0, kn−1]×]0, k∗m−1] and consider

the sequences βn = b snr c, qn = bkn−1r
sn
c, β∗m = b s

∗
m

r∗ c and q∗m = bk
∗
m−1r

∗

s∗m
c for which holds:

qn
rn
→ 1,

q∗m
r∗m
→ 1, kn−1

βn
→ +∞,

k∗m−1

β∗
m
→ +∞, βnαn,m → 0, β∗mα

∗
n,m → 0, `nβn

kn−1
→ 0,

`∗mβ
∗
m

k∗m−1
→ 0, when n,m→ +∞.

Since the condition Dkn−1,k∗m−1
(un,m) holds as well, mutatis mutandis, we prove that

P (Mkn−1,k∗m−1
≤ un,m)− P βnβ

∗
m(Mqn,q∗m

≤ un,m)→ 0, n,m→ +∞. (17)

Furthermore

|P (Mkn,k∗m
≤ un,m)− P rr

∗
(Mkn−1,k∗m−1

≤ un,m)|

≤ |P (Mkn,k∗m
≤ un,m)− P sns

∗
m(Mrn,r∗m

≤ un,m)| (18)

+|P sns
∗
m(Mrn,r∗m ≤ un,m)− P sns

∗
m(Mqn,q∗m ≤ un,m)| (19)

+|P sns
∗
m(Mqn,q∗m

≤ un,m)− P βnrβ
∗
mr

∗
(Mqn,q∗m

≤ un,m)| (20)

+|P βnrβ
∗
mr

∗
(Mqn,q∗m

≤ un,m)− P rr
∗
(Mkn−1,k∗m−1

≤ un,m)| (21)

Here the difference (18) is asymptotically zero due to (6). Likewise (21) tends to zero,
when n,m → +∞, because |xr − yr| ≤ r|x − y| for all x, y ∈ [0, 1]. Assuming without

loss of generality that qn ≤ rn and q∗m ≤ r∗m and taking R
(3)
n,m :=]qn, rn]×]0, q∗m] and

R
(4)
n,m :=]0, rn]×]q∗m, r

∗
m], we prove that (19) is bounded by

sns
∗
m{P (M(R(3)

n,m) > un,m) + P (M(R(4)
n,m) > un,m)}

≤ sns∗m{(rn − qn)q∗m + (r∗m − q∗m)rn}F (un,m)→ 0, n,m→ +∞.

In what concerns (20), we use the inequality 0 ≤ ux− uy ≤ ux(log u)(x− y) valid for

0 < x ≤ y < ∞ and u ∈]0, 1[ (Lagrange’s Theorem) and the fact that βnβ
∗
m ≤ sn

r
s∗m
r∗ .
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Then we establish that (20) does not exceed

P βnrβ
∗
mr

∗
(Mqn,q∗m

≤ un,m) logP (Mqn,q∗m
≤ un,m)× (βnrβmr

∗ − sns∗m)

= P βnrβ
∗
mr

∗
(Mqn,q∗m

≤ un,m) logP βnrβ
∗
mr

∗
(Mqn,q∗m

≤ un,m)(1− sns
∗
m

βnrβmr∗
)

→ 0, n,m→ +∞,

because x log(x) is a bounded real function on ]0, 1[.
The proof of (7) is concluded. In order to prove (8), we start by observing that for

all (h1, h2) ∈ R+ ×R+, with bknh1
c, bk

∗
m

h2
c, b snh1

c and b s
∗
m

h2
c instead of kn, k∗m, sn and s∗m,

from (6) we deduce

P (Mb kn
h1
c,b k

∗
m

h2
c ≤ un,m)− P b

sn
h1
cb s

∗
m
h2
c(Mrn,r∗m

≤ un,m)→ 0, n,m→ +∞.

On the other hand, since r = 1, for any h1 > 0, there exists a positive integer sequence
pn = pn(h1) such that kpn−1 < kn/h1 ≤ kpn . Likewise for k∗m. Then, we easily obtain

P (Mkpn ,k
∗
p∗m
≤ un,m)− P

sns∗m
h1h2 (Mrn,r∗m

≤ un,m)→ 0, n,m→ +∞.

This last limit, jointly with (6), gives us (8).
If r = 1 and r∗ > 1, for any h > 0, we obtain similarly

P (Mb kn
h c,b

k∗
m
r∗ c
≤ un,m)− P b

sn
h cb

s∗m
r∗ c(Mrn,r∗m

≤ un,m)→ 0, n,m→ +∞,

and consequently

Phr
∗
(Mkpn ,k

∗
m−1
≤ un,m)− P sns

∗
m(Mrn,r∗m

≤ un,m)→ 0, n,m→ +∞,

as well as (6).
The same happens for r > 1 and r∗ = 1. The proof of the lemma is concluded. �

The next theorem, the main result of this section, establishes that the limit in distri-
bution of the sequence of linearized maxima a−1n,m(Mkn,k∗m

− bn,m) is a max-semistable
random variable. This extremal type theorem is the expected generalization of Theorem
2 of Temido and Canto e Castro [23], when the approach of random fields is considered.

Theorem 2.3. Let {Xn,m} be a stationary bivariate random field. Suppose that there
are positive integer sequences {kn} and {k∗m} satisfying (1) and real sequences
{an,m > 0} and {bn,m} such that knk

∗
m(1−F (an,mx+ bn,m)) < +∞. If {Xn,m} satisfies

Dkn,k∗m
(an,mx+ bn,m) and there exists a non degenerate d.f. G, such that

P (Mkn,k∗m
≤ an,mx+ bn,m) → G(x), n,m→ +∞, (22)

then G is max-semistable.
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P r o o f . Suppose that r > 1 and r∗ > 1. By assumption we have

P (Mkn−1,k∗m−1
≤ un−1,m−1)→ G(x), n,m→ +∞,

and, due to the last result, we get

P (Mkn−1,k∗m−1
≤ un,m)→ G1/rr∗(x), n,m→ +∞.

Applying Khintchine’s Convergence Theorem we prove that there are real constants
A > 0 and B such that G(x) = Grr

∗
(Ax+B). Then G is max-semistable.

If r = 1 and r∗ > 1, from (22) and (9) we get, respectively

P (Mkpn ,k
∗
m−1
≤ upn,m−1)→ G(x), n,m→ +∞,

and, for all h > 0,

P (Mkpn ,k
∗
m−1
≤ un,m)→ G1/hr∗(x), n,m→ +∞.

Once again, Khintchine’s Convergence Theorem gives us Gh
∗
(Ax+B) = G(x), ∀h∗ > 0,

(h∗ = hr∗). In this case G is max-stable. The cases r = r∗ = 1 and r > r∗ = 1 are
similar. �

This section is finalized with the following useful proposition.

Proposition 2.4. Let {Xn,m} be a bivariate stationary random field and {kn}, {k∗m}
positive integer sequences satisfying (1). Suppose that {an,m > 0} and {bn,m} are real
sequences such that knk

∗
m(1− F (an,mx+ bn,m)) < +∞ and

P (Mkn,k∗m
≤ an,mx+ bn,m)→ G(x), n,m→ +∞, (23)

with G non degenerated. If {Xn,m} satisfies the condition Dkn,k∗m
(an,mx + bn,m), for

every x in the support of G, then

P (Mbλknc,bλ∗k∗mc ≤ an,mx+ bn,m)→ Gλλ
∗
(x), n,m→ +∞, (24)

for any positive reals λ and λ∗.

P r o o f . Assume first that r > 1 and r∗ > 1. Lemma 1 in Freitas et al. [8] states that for
λ > 1 there are two positive numbers j := j(λ) = min{i : λkn < kn+i} and n0 := n0(λ)
such that λkn < kn+j , for n > n0. When λ∗ > 1 we obtain similarly λ∗k∗m < k∗m+j∗ ,
for j∗ := j∗(λ∗) = min{i : λk∗m < k∗m+i} and m > m0. Then, by the assumption
that Dkn+j ,k∗m+j∗

(un+j,m+j∗) holds, we deduce the validity of Dkn,k∗m
(un+j,m+j∗) and

Dbλknc,bλ∗k∗mc(un+j,m+j∗). Observe that if λ ≤ 1 and λ∗ ≤ 1 all these conditions are
trivially valid for any j, j∗ ≥ 0. Otherwise if λ ≤ 1 and λ∗ > 1 or λ > 1 and λ∗ ≤ 1
it is enough to merge these arguments to establish the validity of these two conditions.
So, taking into account the limit (22) and the steps used in the proof of Lemma 2.2 (see
also the proof of Proposition 1. in Freitas et al. [8], we obtain

Pλλ
∗
(Mkn,k∗m

≤ un+j,m+j∗)− P (Mbλknc,bλ∗k∗mc ≤ un+j,m+j∗)→ 0, n,m→ +∞. (25)
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Now, in the proof of (7), replace r and r∗ by rj and (r∗)j
∗
, respectively, in the

definition of βn, qn, β∗m and q∗m. Then with a suitable change in (17) – (21) we get

P (Mkn+j ,k∗m+j∗
≤ un+j,m+j∗)− P r

j(r∗)j
∗

(Mkn,k∗m
≤ un+j,m+j∗)→ 0, n,m→ +∞,

which implies

P (Mkn,k∗m
≤ un+j,m+j∗)→ Gr

−j(r∗)−j∗

(x), n,m→ +∞.

However, Gr
−j(r∗)−j∗

(x) = G(Ax + B), where A := A(j, j∗) and B := B(j, j∗) are
obtained from Khintchine’s Convergence Theorem.

Combining this last limit with (25) and using again Khintchine’s Convergence The-
orem we obtain (24).

Assume now r = r∗ = 1. For any λ there is a positive integer sequence pn :=
pn(λ) such that kpn−1 ≤ bλknc ≤ kpn and then bλknc ∼ kpn , n → +∞. The same
happens with bλ∗k∗mc ∼ k∗p∗m , m → +∞. As well as we obtained (8) we achieve
now (24). Moreover, if r = 1 and r∗ > 1 consider pn and j∗ as before and ob-
serve that Dkpn ,k

∗
m+j∗

(upn,m+j∗) implies the validity of Dbλknc,bλ∗k∗mc(upn,m+j∗) and

Dkn,k∗m
(upn,m+j∗).

Starting in (7) we obtain

P (Mkpn ,k
∗
m+j∗

≤ upn,m+j∗)− Pλ(r
∗)j

∗

(Mkn,k∗m
≤ upn,m+j∗)→ 0, n,m→ +∞,

and

P (Mbλknc,bλ∗k∗mc ≤ upn,m+j∗)− Pλλ
∗
(Mkn,k∗m

≤ upn,m+j∗)→ 0, n,m→ +∞.

Once again Khintchine’s Convergence Theorem gives us the existence of A and B such
that

P (Mbλknc,bλ∗k∗mc ≤ upn,m+j∗)→ Gλλ
∗
(Ax+B), n,m→ +∞,

as well as the limit (24). The proof is concluded. �

3. RANDOM SAMPLE SIZE

When a sample with random dimension is considered, in order to establish the limit
in distribution of maxima, sums, maxima of sums and many other statistics, the weak
convergence with mixing property in Rényi’s sense has been an useful result. Namely,
following Rényi [19] a sequence of real random variables {Zn}, specified on a common
probability space (Ω,A, P ), is weakly convergent with mixing property if there exists a
d.f. F such that

P ({Zn ≤ x} ∩B)→ F (x)P (B), n→ +∞, (26)

for any event B ∈ A and any x in the set of continuity points of F , say C(F ). Obviously
the weak convergence with mixing property implies the weak convergence. Rényi [19]
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proved a criterion for this type of convergence according to which (26) holds if and only
if

P (Zn ≤ x, Zk ≤ x)→ F (x)P (Zk ≤ x), n→ +∞, (27)

for any positive integer k and any x in C(F ). The proof of this equivalence can be seen
in Galambos [9] and can be easily extended to higher dimensions.

In order to apply this criterion to the sequence of maxima a−1n,m(Mbλknc,bλ∗k∗mc−bn,m),
for any positive λ and λ∗, we need to introduce the following additional mixing condition

D
(q,q∗)
kn,k∗m

(v, un,m), which extends the condition Dm,kn(v, un) of Freitas et al. [8], being

this one inspired by condition ∆(un) of Ferreira [5].

Definition 3.1. Let {kn} and {k∗m} be positive integer sequences satisfying (1), {un,m}
a real sequence and {rn}, {r∗m}, {`n} and {`∗m} positive integer sequences satisfying (2)

and (3). The bivariate random field {Xn,m} satisfies D
(q,q∗)
kn,k∗m

(v, un,m), for q > 0, q∗ > 0
and v > 0, if for any integers 1 ≤ i1 ≤ q < i2 < kn and 1 ≤ j1 ≤ q∗ < j2 < k∗m,
for which i2 − i1 > `n, j2 − j1 > `∗m, the rectangles Ji1,j1 :=]0, i1]×]0, j1] and J ′i2,j2 :=
]i2, kn]×]j2, k

∗
m] are such that∣∣P (M(Ji1,j1) ≤ v,M(J ′i2,j2) ≤ un,m)− P (M(Ji1,j1) ≤ v)P (M(J ′i2,j2) ≤ un,m)

∣∣ ≤ α′n,m,
with α′n,m → 0, n,m→ +∞.

The counterpart of Rényi’s property is now deduced.

Lemma 3.2. Let {Xn,m} be a bivariate stationary random field and {kn} and {k∗m}
be positive integer sequences satisfying (1). Suppose that un,m = an,mx+ bn,m is a real
sequence such that {knk∗m(1−F (un,m))}n,m is bounded, the convergence (23) holds and
the condition Dkn,k∗m

(un,m) is satisfied, for any x in the support of G. Assume that

D
(λkq,λ

∗k∗q∗ )

bλknc,bλ∗k∗mc
(uq,q∗ , un,m) is satisfied for any fixed and positive reals λ and λ∗ and for

any positive integers q and q∗. Then

P (Mbλknc,bλ∗k∗mc ≤ un,m|Mbλkqc,bλ∗k∗
q∗c ≤ uq,q∗)→ Gλλ

∗
(x), n,m→ +∞,

and
P (Mbλknc,bλ∗k∗mc ≤ un,m|B)→ Gλλ

∗
(x), n,m→ +∞, (28)

for any event B with positive probability.

P r o o f . For each rectangle ]0, bλknc]×]0, bλ∗k∗mc], define the disjoint sub-rectangles
J1 :=]bλkqc+ `n, bλknc]×]0, bλ∗k∗q∗c+ `∗m], J2 :=]0, bλkqc+ `n]×]bλ∗k∗q∗c+ `∗m, bλ∗k∗mc]
and J3 := Jbλkqc+`n,bλ∗k∗

q∗c+`∗m . For simplicity, write J ′ := J ′bλkqc+`n,bλ∗k∗
q∗c+`∗m

.

We first prove that

P (Mbλknc,bλ∗k∗mc ≤ un,m,Mbλkqc,bλ∗k∗
q∗c ≤ uq,q∗)

= P (M(J ′) ≤ un,m,M(Jbλkqc,bλ∗k∗
q∗c) ≤ uq,q∗) + on,m(1).

(29)
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In fact, we have

P (Mbλknc,bλ∗k∗mc ≤ un,m,Mbλkqc,bλ∗k∗
q∗c ≤ uq,q∗)

= P (M(J ′) ≤ un,m,M(J1 ∪ J2) ≤ un,m,M(Jbλkqc,bλ∗k∗
q∗c) ≤ uq,q∗ ,M(J3) ≤ un,m)

= P (M(J ′) ≤ un,m,M(J1 ∪ J2) ≤ un,m,M(Jbλkqc,bλ∗k∗
q∗c) ≤ uq,q∗)

−P (M(J ′) ≤ un,m,M(J1 ∪ J2) ≤ un,m,M(Jbλkqc,bλ∗k∗
q∗c) ≤ uq,q∗ ,M(J3) > un,m),

where the last probability does not exceed

P (M(J3) > un,m,M(Jbλkqc,bλ∗k∗
q∗c

) ≤ uq,q∗)

≤ P

{ bλkqc+`n⋃
i=bλkqc+1

bλ∗k∗q∗c+`
∗
m⋃

j=1

{Xi,j > un,m}

}⋃{ bλkqc⋃
i=1

bλ∗k∗q∗c+`
∗
m⋃

j=bλ∗k∗
q∗c+1

{Xi,j > un,m}

}
≤ (`n(bλ∗k∗q∗c+ `∗m) + `∗mbλkqc)F (un,m)

=

(
`n
kn

bλ∗k∗q∗c+ `∗m
k∗m

+
bλkqc
kn

`∗m
k∗m

)
knk

∗
mF (un,m)→ 0, n,m→ +∞.

On the other hand

P (M(J ′) ≤ un,m,M(J1 ∪ J2) ≤ un,m,M(Jbλkqc,bλ∗k∗
q∗c) ≤ uq,q∗)

= P (M(J ′) ≤ un,m,M(Jbλkqc,bλ∗k∗
q∗c) ≤ uq,q∗)

−P (M(J ′) ≤ un,m,M(J1 ∪ J2) > un,m,M(Jbλkqc,bλ∗k∗
q∗c) ≤ uq,q∗)

where

P (M(J ′) ≤ un,m,M(J1 ∪ J2) > un,m,M(Jbλkqc,bλ∗k∗
q∗c) ≤ uq,q∗)

≤ P (M(J1 ∪ J2) > un,m)

≤ P (M(J1) > un,m) + P (M(J2) > un,m)

≤
(
bλknc − bλkqc − `n

kn

bλ∗k∗q∗c+ `∗m
k∗m

+

+
bλkqc+ `n

kn

bλ∗k∗mc − bλ∗k∗q∗c − `∗m
k∗m

)
knk

∗
mF (un,m)→ 0, n,m→ +∞.

Henceforth, (29) is proved. Now, due to the fact that D
(λkq,λ

∗k∗q∗ )

bλknc,bλ∗k∗mc
(uq,q∗ , un,m) holds,

we also get

P (M(J ′) ≤ un,m,M(Jbλkqc,bλ∗k∗
q∗c) ≤ uq,q∗)

= P (M(J ′) ≤ un,m)P (M(Jbλkqc,bλ∗k∗
q∗c) ≤ uq,q∗) + on,m(1).

(30)
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So it remains to prove that

P (Mbλknc,bλ∗k∗mc ≤ un,m) = P (M(J ′) ≤ un,m) + on,m(1). (31)

Indeed

P (Mbλknc,bλ∗k∗mc ≤ un,m) = P (M(J ′) ≤ un,m,M(J1 ∪ J2 ∪ J3) ≤ un,m)

= P (M(J ′) ≤ un,m))− P (M(J ′) ≤ un,m,M(J1 ∪ J2 ∪ J3) > un,m),

where, using the previous arguments, we deduce

P (M(J ′) ≤ un,m,M(J1 ∪ J2 ∪ J3) > un,m)

≤ P (M(J1 ∪ J2 ∪ J3) > un,m)

≤
(
bλknc
kn

bλ∗k∗q∗c+ `∗m
k∗m

+
bλkqc+ `n

kn

bλ∗k∗mc − bλ∗k∗q∗c − `∗m
k∗m

)
knk

∗
mF (un,m)

→ 0, n,m→ +∞.

Due to (29), (30) and (31) we conclude that

P (Mbλknc,bλ∗k∗mc ≤ un,m,Mbλkqc,bλ∗k∗
q∗c ≤ uq,q∗)

= P (Mbλknc,bλ∗k∗mc ≤ un,m)P (Mbλkqc,bλ∗k∗
q∗c ≤ uq,q∗) + on,m(1).

Taking into account the limit (24) and using Rényi’s property, we are able to deduce
(28). �

In what follows {Tn} and {T ∗m} are sequences of positive integer random variables
satisfying

Tn/kn → T, n→ +∞, T ∗m/k
∗
m → T ∗, m→ +∞ in probability, (32)

for some strictly positive random variables T and T ∗.

The main result of this paper, Theorem 3.4, establishes the limit in distribution of
the linearized maxima a−1n,m(MTn,T∗

m
− bn,m). For its proof we need the following lemma

that presents the asymptotic closeness between a−1n,mMTn,T∗
m

and a−1n,mMbknTc,bk∗mT∗c.

Lemma 3.3. Let {Xn,m} be a bivariate stationary real random field under the con-
ditions of Lemma 3.2. Let {Tn} and {T ∗m} be sequences of positive integer random
variables satisfying (32). Then

P (|(MTn,T∗
m
−MbknTc,bk∗mT∗c)| > εan,m)→ 0, n,m→ +∞,

for all ε > 0.
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P r o o f . Due to the fact that T and T ∗ are strictly positive, for any ε1, ε
∗
1 > 0 there

exist x0 > 0 and x∗0 > 0 such that P (T ≤ x0) ≤ ε1 and P (T ∗ ≤ x∗0) ≤ ε∗1. Thus, for any
a > 0 and b > 0, we have

P

(∣∣∣∣Tnkn − T
∣∣∣∣ > aT

)
≤ P

(∣∣∣∣Tnkn − T
∣∣∣∣ > ax0

)
+ ε1 < ε2

and

P

(∣∣∣∣T ∗mk∗m − T ∗
∣∣∣∣ > bT ∗

)
≤ P

(∣∣∣∣T ∗mk∗m − T ∗
∣∣∣∣ > bx∗0

)
+ ε∗1 < ε∗2.

On the other hand, for any ε3 > 0 we may choose d0, d1, d∗0 and d∗1 such that

P ((T, T ∗) ∈ D) ≥ 1− ε3, (33)

with D := [d0, d1]× [d∗0, d
∗
1]. As a consequence, for any c, c∗ > 0, we have

P (|MTn,T∗
m
−MbknTc,bk∗mT∗c| > εan,m)

≤ P
(
|MTn,T∗

m
−MbknTc,bk∗mT∗c| > εan,m,

∣∣∣∣Tnkn − T
∣∣∣∣ ≤ cT, (34)

∣∣∣∣T ∗mk∗m − T ∗
∣∣∣∣ ≤ c∗T ∗, (T, T ∗) ∈ D)+ ε2 + ε∗2 + ε3.

Consider that the inequalities
∣∣∣Tn

kn
− T

∣∣∣ ≤ cT and
∣∣∣ T∗

n

k∗m
− T ∗

∣∣∣ ≤ c∗T ∗ hold. Then

knT (1− c) ≤ Tn ≤ knT (1 + c) and k∗mT
∗(1− c∗) ≤ T ∗m ≤ k∗mT ∗(1 + c∗). Then, assuming

that |MTn,T∗
m
−MbknTc,bk∗mT∗c| > εan,m, we have the following cases:

i) if Tn > knT and T ∗m > k∗mT
∗ then MTn,T∗

m
> MbknTc,bk∗mT∗c, and therefore there

is at least one (i, j) ∈ ]knT, Tn]×]0, T ∗m]
⋃

]0, knT ]×]k∗mT
∗, T ∗m] such that Xi,j >

MbknTc,bk∗mT∗c + εan,m ;

ii) if Tn > knT and T ∗m ≤ k∗mT ∗, it can occur:

a) MTn,T∗
m
> MbknTc,bk∗mT∗c and then there is at least one (i, j) ∈ ]knT, Tn]×]0, T ∗m]

such that Xi,j > MbknTc,bk∗mT∗c + εan,m ;

b) MbknTc,bk∗mT∗c > MTn,T∗
m

and then there is at least one (i, j) ∈ ]0, knT ]×]T ∗m, k
∗
mT
∗]

such that Xi,j > MTn,T∗
m

+ εan,m ;

iii) if Tn ≤ knT and T ∗m > k∗mT
∗, it can occur:

a) MTn,T∗
m
> MbknTc,bk∗mT∗c and then there is at least one (i, j) ∈ ]0, Tn]×]k∗mT

∗, T ∗m]
such that Xi,j > MbknTc,bk∗mT∗c + εan,m ;

b) MbknTc,bk∗mT∗c > MTn,T∗
m

and then there is at least one (i, j) ∈ ]Tn, knT ]×]0, k∗mT
∗]

such that Xi,j > MTn,T∗
m

+ εan,m ;

iv) if Tn ≤ knT and T ∗m ≤ k∗mT
∗ then MbknTc,bk∗mT∗c > MTn,T∗

m
, and therefore there

is at least one (i, j) ∈ ]Tn, knT ]×]0, k∗mT
∗]∪]0, Tn]×]T ∗m, k

∗
mT
∗] such that Xi,j >

MTn,T∗
m

+ εan,m .
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Take into consideration that, when
∣∣∣Tn

kn
− T

∣∣∣ ≤ cT holds, both Tn and knT are between

knT (1−c) and knT (1+c) and similarly for T ∗m and k∗mT
∗. Then we can enlarge suitably

the underlying rectangles. Furthermore since MbknT (1−c)c,bk∗mT∗(1−c∗)c is less or equal
than all the other maxima, by (34), we obtain

P (|MTn,T∗
m
−MbknTc,bk∗mT∗c| > εan,m)

≤
bknT (1+c)c∑

i=1

bk∗mT
∗(1+c∗)c∑

j=bk∗mT∗(1−c∗)c+1

4P
(
Xi,j ≥MbknT (1−c)c,bk∗mT∗(1−c∗)c + εan,m, (T, T

∗) ∈ D
)

+

bknT (1+c)c∑
i=bknT (1−c)c+1

bk∗mT
∗(1+c∗)c∑
j=1

4P
(
Xi,j ≥MbknT (1−c)c,bk∗mT∗(1−c∗)c + εan,m, (T, T

∗) ∈ D
)

+ε2 + ε∗2 + ε3.

Meanwhile, due to Proposition 2.4, there is ε̃ > 0 and x1 := x1(ε̃) such that

P (Mbknd0(1−c)c,bk∗md∗0(1−c∗)c ≤ an,mx1 + bn,m) ≤ ε̃.

Then,

P (|MTn,T∗
m
−MbknTc,bk∗mT∗c| > εan,m)

≤ 4

bknT (1+c)c∑
i=1

bk∗mT
∗(1+c∗)c∑

j=bk∗mT∗(1−c∗)c+1

P

(
Xi,j − bn,m

an,m
≥
Mbknd0(1−c)c,bk∗md∗0(1−c∗)c − bn,m

an,m
+ ε,

Mbknd0(1−c)c,bk∗md∗0(1−c∗)c − bn,m
an,m

> x1, (T, T
∗) ∈ D

)

+ 4

bknT (1+c)c∑
i=bknT (1−c)c+1

bk∗mT
∗(1+c∗)c∑
j=1

P

(
Xi,j − bn,m

an,m
≥
Mbknd0(1−c)c,bk∗md∗0(1−c∗)c − bn,m

an,m
+ ε,

Mbknd0(1−c)c,bk∗md∗0(1−c∗)c − bn,m
an,m

> x1, (T, T
∗) ∈ D

)
+ ε4

≤ 4

bknT (1+c)c∑
i=1

bk∗mT
∗(1+c∗)c∑

j=bk∗mT∗(1−c∗)c+1

P

(
Xi,j − bn,m

an,m
≥ x1 + ε, (T, T ∗) ∈ D

)

+ 4

bknT (1+c)c∑
i=bknT (1−c)c+1

bk∗mT
∗(1+c∗)c∑
j=1

P

(
Xi,j − bn,m

an,m
≥ x1 + ε, (T, T ∗) ∈ D

)
+ ε4

≤ (8knd1(1 + c)k∗md
∗
1c
∗ + 8knd1ck

∗
md
∗
1(1 + c∗))F (an,m(x1 + ε) + bn,m) + ε4,

where ε4 = ε̃ + ε2 + ε∗2 + ε3. By establishing that c, c∗ → 0 and ε4 → 0, we obtain the
desired result.

�
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Theorem 3.4. Let {Xn,m} be a bivariate stationary random field. Let {kn} and {k∗m}
be positive integer sequences satisfying (1) and suppose that there are real sequences
{an,m > 0} and {bn,m}, with un,m = an,mx+ bn,m, such that

P (Mkn,k∗m
≤ un,m)→ G(x), n,m→ +∞,

with G non degenerate. Let {Tn} and {T ∗m} be sequences of positive integer ran-
dom variables satisfying (32). If {Xn,m} satisfies the conditions Dkn,k∗m

(un,m) and

D
(λkq,λ

∗k∗s )
kn,k∗m

(uq,s, un,m) for any (λ, λ∗) in the support of (T, T ∗), S(T,T∗), then

P (MTn,T∗
m
≤ un,m)→

∫
S(T,T∗)

Gλλ
∗
(x) dF(T,T∗)(λ, λ

∗), n,m→ +∞.

P r o o f . For each z ∈ N and h := (h, h∗) ∈ N2
0 define the disjoint rectangles Ah =

]h2−z, (h + 1)2−z]×]h∗2−z, (h∗ + 1)2−z]. Let dh := h2−z, d∗h := h∗2−z and ε > 0. We
have

P (MTn,T∗
m
≤ un,m) = P (MTn,T∗

m
≤ un,m, |MTn,T∗

m
−MbknTc,bk∗mT∗c| ≤ εan,m)

+P (MTn,T∗
m
≤ un,m, |MTn,T∗

m
−MbknTc,bk∗mT∗c| > εan,m). (35)

Considering Lemma 3.3, we prove that the last term in (35) tends to zero as n,m→ +∞.

We also obtain an upper bound for the second term in (35). In fact

P
(
MTn,T∗

m
≤ un,m, |MTn,T∗

m
−MbknTc,bk∗mT∗c| ≤ εan,m

)
≤ P

(
MbknTc,bk∗mT∗c − εan,m ≤ un,m, |MTn,T∗

m
−MbknTc,bk∗mT∗c| ≤ εan,m

)
=

∑
h:Ah∩S(T,T∗) 6=∅

P
(
MbknTc,bk∗mT∗c − εan,m ≤ un,m,

|MTn,T∗
m
−MbknTc,bk∗mT∗c| ≤ εan,m, (T, T ∗) ∈ Ah

)
≤

∑
h:Ah∩S(T,T∗) 6=∅

P (Mbkndhc,bk∗mdh∗c ≤ un,m + εan,m|(T, T ∗) ∈ Ah)P ((T, T ∗) ∈ Ah)

=
∑

h:Ah∩S(T,T∗) 6=∅

P (Mbkndhc,bk∗mdh∗c ≤ (x+ ε)an,m + bn,m|(T, T ∗) ∈ Ah)×

×P ((T, T ∗) ∈ Ah).
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Using (28) and the dominated convergence theorem we get for continuity points x of G

lim sup
z→+∞

lim
n,m→+∞

∑
h:Ah∩S(T,T∗) 6=∅

P (Mbkndhc,bk∗mdh∗c ≤ (x+ ε)an,m + bn,m|(T, T ∗) ∈ Ah)×

×P ((T, T ∗) ∈ Ah)

= lim sup
z→+∞

∑
h:Ah∩S(T,T∗) 6=∅

Gdhdh∗ (x+ ε)P ((T, T ∗) ∈ Ah)

=

∫
S(T,T∗)

Gλλ
∗
(x+ ε) dF(T,T∗)(λ, λ

∗).

Similarly, we get a lower bound of the second term in (35). In fact

P (MTn,T∗
m
≤ un,m, |MTn,T∗

m
−MbknTc,bk∗mT∗c| ≤ εan,m)

≥ P (MbknTc,bk∗mT∗c + εan,m ≤ un,m, |MTn,T∗
m
−MbknTc,bk∗mT∗c| ≤ εan,m)

= P (MbknTc,bk∗mT∗c + εan,m ≤ un,m)

−P (MbknTc,bk∗mT∗c + εan,m ≤ un,m, |MTn,T∗
m
−MbknTc,bk∗mT∗c| > εan,m)

≥ P (MbknTc,bk∗mT∗c + εan,m ≤ un,m)− P (|MTn,T∗
m
−MbknTc,bk∗mT∗c| > εan,m)

=
∑

h:Ah∩S(T,T∗) 6=∅

P (MbknTc,bk∗mT∗c ≤ un,m − εan,m|(T, T ∗) ∈ Ah)×

×P ((T, T ∗) ∈ Ah)− on(1)

=
∑

h:Ah∩S(T,T∗) 6=∅

P (Mbkndhc,bk∗mdh∗c ≤ (x− ε)an,m + bn,m|(T, T ∗) ∈ Ah)×

×P ((T, T ∗) ∈ Ah)− on(1).

Applying the same arguments as for the upper bound, we get for continuity points x of
G,

lim sup
z→+∞

lim
n,m→+∞

∑
h:Ah∩S(T,T∗) 6=∅

P (Mbkndhc,bk∗mdh∗c ≤ (x− ε)an,m + bn,m|(T, T ∗) ∈ Ah)×

×P ((D,D∗) ∈ Ah)

=

∫
S(T,T∗)

Gλλ
∗
(x− ε) dF(T,T∗)(λ, λ

∗).

Combining the two bounds, for continuity points x of G, we have

lim
ε→0

∫
S(T,T∗)

Gλλ
∗
(x− ε) dF(T,T∗)(λ, λ

∗) ≤ lim
n,m→+∞

P (MTn,T∗
m
≤ un,m)

≤ lim
ε→0

∫
S(T,T∗)

Gλλ
∗
(x− ε) dF(T,T∗)(λ, λ

∗).
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The proof is concluded. �
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