Kybernetika 55 no. 5, 879-895, 2019

Quotient structures in lattice effect algebras

Amir Hossein Sharafi and Rajb Ali BorzooeiDOI: 10.14736/kyb-2019-5-0879


In this paper, we define some types of filters in lattice effect algebras, investigate some relations between them and introduce some new examples of lattice effect algebras. Then by using the strong filter, we find a CI-lattice congruence on lattice effect algebras, such that the induced quotient structure of it is a lattice effect algebra, too. Finally, under some suitable conditions, we get a quotient MV-effect algebra and a quotient orthomodular lattice, by this congruence relation.


MV-effect algebra, orthomodular lattice, Lattice effect algebra, CI-lattice, Sasaki arrow, (strong, fantastic, implicative, positive implicative) filter, Riesz ideal, D-ideal


06B10, 81R05


  1. A. Avallone and P. Vitolo: Congruences and ideals of effect algebras. Kluwer Academic Publishers 20 (2003), 1, 67-77.   DOI:10.1023/a:1024458125510
  2. M. K. Bennett and D. J. Foulis: Phi-symmetric effect algebras. Found. Physics 25 (1995), 12, 1699-1722.   DOI:10.1007/bf02057883
  3. R. A. Borzooei, A. Dvurečenskij and A. H. Sharafi: Material implications in lattice effect algebras. Inform. Sci. 433-434 (2018), 233-240.   DOI:10.1016/j.ins.2017.12.049
  4. R. A. Borzooei, S. Khosravi Shoar and R. Ameri: Some types of filters in MTL-algebras. Fuzzy Sets Systems 187 (2012), 1, 92-102.   DOI:10.1016/j.fss.2011.09.001
  5. I. Chajda, R. Halaš and J. Kühr: Many-valued quantum algebras. Algebra Univers. 60 (2009), 1, 63-90.   DOI:10.1007/s00012-008-2086-9
  6. A. Dvurečenskij and S. Pulmannová: New Trends in Quantum Structures. Springer Netherlands, 2000.   DOI:10.1007/978-94-017-2422-7
  7. H. Farahani and O. Zahiri: Algebraic view of MTL-filters. Ann. Univ. Craiova 40 (2013), 1, 34-44.   CrossRef
  8. D. J. Foulis: MV and Hyting effect algebras. Found. Physics 30 (2000), 10, 1687-1706.   DOI:10.1023/a:1026454318245
  9. D. J. Foulis and M. K. Bennett: Effect algebras and unsharp quantum logics. Found. Physics 24 (1994), 10, 1331-1352.   DOI:10.1007/bf02283036
  10. D. J. Foulis and S. Pulmannová: Logical connectives on lattice effect algebras. Studia Logica 100 (2012), 6, 1291-1315.   DOI:10.1007/s11225-012-9454-3
  11. M. Haveshki, A. Borumand Saeid and E. Eslami: Some types of filters in BL-algebras. Soft Computing 10 (2006), 8, 657-664.   DOI:10.1007/s00500-005-0534-4
  12. G. Jenča, I. Marinová and Z. Riečanová: Central elements, blocks and sharp elements of lattice effect algebras. In: Proc. Third Seminar Fuzzy Sets and Quantum Structures 2002, pp. 28-33.   CrossRef
  13. G. Jenča and S. Pulmannová: Ideals and quotients in lattice ordered effect algebras. Soft Computing 5 (2001), 5, 376-380.   DOI:10.1007/s005000100139
  14. R. Cignoli, I. M. L. D'Ottaviano and D. Mundici: Algebraic Foundations of Many-Valued Reasoning. Springer Science and Business Media, 2000.   DOI:10.1007/978-94-015-9480-6
  15. S. Pulmannová and E. Vinceková: Congruences and ideals in lattice effect algebras as basic algebras. Kybernetika 45 (2009), 6, 1030-1039.   CrossRef
  16. S. Rafiee Rad, A. H. Sharafi and S. Smets: A Complete axiomatisation for the logic of lattice effect algebras. Int. J. Theoret. Physics (2019).   DOI:10.1007/s10773-019-04074-y
  17. Z. Riečanová: Generalization of blocks for D-lattices and lattice-ordered effect algebras. Int. J. Theoret. Physics 39 (2000), 2, 231-237.   DOI:10.1023/a:1003619806024