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CLOSE-TO-OPTIMAL ALGORITHM FOR RECTANGULAR
DECOMPOSITION OF 3D SHAPES

Cyril Höschl IV and Jan Flusser

In this paper, we propose a novel algorithm for a decomposition of 3D binary shapes to
rectangular blocks. The aim is to minimize the number of blocks. Theoretically optimal
brute-force algorithm is known to be NP-hard and practically infeasible. We introduce its sub-
optimal polynomial heuristic approximation, which transforms the decomposition problem onto
a graph-theoretical problem. We compare its performance with the state of the art Octree and
Delta methods. We show by extensive experiments that the proposed method outperforms the
existing ones in terms of the number of blocks on statistically significant level. We also discuss
potential applications of the method in image processing.
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1. INTRODUCTION

Binary images, both in 2D and 3D, form a specific class of objects and require dedi-
cated algorithms for their processing and analysis. The major difference from traditional
gray-level and color images is that the pixel/voxel matrix representation of binary images
(which consists only of zeros and ones) is highly redundant. This has led to many spe-
cialized algorithms that employ various loss-less compressive representations for image
storage and object description (see, for instance, the books [25, 28]). Such representa-
tions result not only in an efficient memory usage but also contribute to fast feature
calculation and object recognition.

One of the possible approaches (and probably the most frequently used one) is to
decompose the object into simple parts which we are able to store and process efficiently
(some other approaches, such as object characterization based on its boundary and
various kinds of multilevel representations, exist but are beyond the scope of this paper).
Having a binary object B (by a binary object we understand a set of all pixels of a binary
image whose values equal one), we decompose it into K ≥ 1 partitions B1, B2, . . . , BK

such that Bi ∩Bj = ∅ for any i 6= j and B =
⋃K

k=1Bk.
The 2D decomposition problem has been studied for decades in computational ge-

ometry and some of the methods were later introduced into the image analysis area.
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Although in the continuous domain we may consider various shapes of the partitions
(convex, star-shaped, hexagonal, rectangular, etc., see [20]), the decomposition methods
in the discrete domain should use only rectilinear rectangular blocks because of a native
rectangular structure of the discrete image domain (if other primitives were allowed, we
would have to face sampling errors along the boundary).

A commonly accepted measure of the decomposition quality is the number of the re-
sulting blocks K. This is a reasonable criterion, justified by the fact that the complexity
of subsequent calculations uses to be O(K) and compression ratio (if the decomposi-
tion is used for compression purposes) also increases as the number of blocks decreases.
The time complexity of the decomposition is usually the secondary criterion. Obviously,
sophisticated decomposition methods which end up with small number of blocks usu-
ally require more time than the simple ones. Since the decomposition is in most tasks
performed only once per object and can be done off-line, the time complexity becomes
crucial only if it is so high that the method is not feasible in an acceptable time.1

Several rectangular 2D decomposition algorithms have been proposed namely in con-
nection with compression and image feature calculation [5, 12, 22, 35, 37, 38, 40, 41] but
one may find also other applications in fast spatial filtering, in iterative deconvolution
methods [3], in the coded aperture imaging [21], in integrated circuits design [16, 23],
and in other areas. The decomposition methods in the above cited papers are simple,
intuitive but only suboptimal – they do not guarantee the minimal number of the blocks.
In computational geometry, several authors [10, 24, 29] independently proposed basically
the same algorithm (later discussed and improved in [9, 17]) which was proved to be
optimal since it actually minimizes the number of blocks for an arbitrary input shape.
The algorithm has a polynomial time complexity. This algorithm was adapted for im-
age analysis purposes by Suk et al. [39], who also performed a large-scale experimental
comparison with other methods. Their experiments proved not only the optimality but
also an acceptable time-complexity of the algorithm (the time consumption was of the
same order as in the case of the other methods) [39]. In this sense, the 2D decomposition
problem has been fully resolved.

During the last decade, 3D image/object analysis has attracted a significant attention
due to a dynamic development of 3D imaging devices and technologies. Most of the
devices only measure the distance to the object surface, they cannot see “inside” the
object.2 The object is scanned from various sides such that each surface part is visible on
at least one scan. The individual scans (views) are combined together and the complete
surface of the object is reconstructed. We obtain 3D binary object as a result. All
range finders, including the popular X-box sensor Kinect, work in that way. All popular
public benchmark databases of 3D objects such as Princeton Shape Benchmark (PSB)
and McGill 3D Shape Benchmark [32, 33] contain binary objects. This illustrates there
is a great demand of developing efficient algorithms for working with 3D binary objects.

Few papers on 3D shape decomposition can be found in the literature but almost
none of them has solved the decomposition into rectangular blocks. Ren et al. dealt
with a decomposition into “nearly convex” regions [31], Sivignon and Coeurjolly [34]

1The term “acceptable” of course depends on the particular application.
2In this paper, we do not consider specialized medical devices such as MRI, CT, SPECT and PET,

that actually produce a full 3D voxel cube.



Close-to-optimal algorithm for rectangular decomposition of 3D shapes 757

decomposed the object surface into planar patches and several other authors proposed
decompositions into geometric primitives and other pre-defined components [18, 42],
which requires some kind of “understanding” the object structure.

To our best knowledge, the only paper on 3D shape decomposition into rectangular
blocks is by Dielissen and Kaldewaij [6], who proved that decision problem of the optimal
3D decomposition (i. e. that one which minimizes K) is equivalent to a variant of the
Boolean three satisfiability problem called 3SAT3. This means that the optimal 3D
decomposition problem is NP-complete and cannot be efficiently resolved. Nevertheless,
3D decomposition can be accomplished by various sub-optimal methods. Some simple
algorithms can be easily designed as an extension of 2D methods. Run-length encoding,
the delta-method, and the quadtree decomposition (which turns into octree in 3D) are
typical examples.

In this paper, we present a new sub-optimal algorithm. It was inspired by the optimal
2D decomposition algorithm [10, 39] but unlike the optimal 3D algorithm the proposed
method is of a polynomial complexity. From this point of view, it can be considered
a polynomial approximation3 for an NP-complete algorithm. As demonstrated experi-
mentally and by statistical tests, the proposed method outperforms both delta-method
and octree decomposition significantly.

The method may find applications in 3D shape loss-less compression, in fast calcu-
lation of 3D convolution with a binary kernel, in efficient calculation of various integral
transformations and integral features of 3D shapes and also in manufacturing and 3D
printing of objects.

2. PRESENT STATE OF THE ART

Since 3D decomposition methods are mostly motivated by their 2D ancestors4, we start
our brief review with a description of 2D versions. Then we explain how to extend the
methods into 3D.

2.1. Delta method

The Delta method (DM) was under this name originally proposed by Zakaria [41] in
the connection with computation of object descriptors but it has been known also in
image compression as the run-length encoding (RLE). In the basic version, the “blocks”
are continuous row segments for which only the coordinate of the beginning and the
length are stored. The method was later slightly improved by Dai [5] and generalized
for non-convex shapes by Li [22]. The Delta method is very fast but leads to the number
of blocks which uses to be (much) higher than the minimal decomposition. A simple
but powerful improvement of the delta method was proposed by Spiliotis and Mertzios
[37] and improved later by Flusser [12]. In this “Generalized Delta method” (GDM),
the adjacent rows are compared and if there are some with the same beginning and end,

3 To the best of our knowledge, no approximation that provably bounds the optimal solution up to
a small constant factor is known. In this text, by an approximation we mean a polynomial heuristic
that provides reasonable good solution compared to the NP-hard optimal algorithm.

4We are not aware of any 3D method which does not have a counterpart in 2D



758 C. HÖSCHL AND J. FLUSSER

Fig. 1. A sample object (a), its decomposition by the 3GDM into 13

blocks (b), and the octree decomposition into 90 blocks (c).

they are unified to form a rectangle. The GDM is only slightly slower than the basic
DM while producing (sometimes significantly) less number of blocks.

Creating a 3D version of DM is straightforward. In case of the generalized Delta
method, the 3D version (denoted as 3GDM) is also clear but we have to test which
direction and which order of the segment connecting yields the best result. In 2D we
have only two degrees of freedom – we may choose either the vertical or the horizontal
direction. As soon as the direction has been chosen, there is no choice in the row
connection step. In 3D, we have an option of any of three directions and for each
direction we may first connect horizontally adjacent rows and then vertically adjacent
“plates” or vice versa.5 Hence, the 3GDM which we implemented and used in the tests
in this paper checks all these six options and selects that one yielding the minimum
number of blocks or decides randomly if there is a multiple minimum (see Figure 1 b for
an example of the 3GDM decomposition).

2.2. Quadtree and octree decompositions

In 2D, the Quadtree decomposition (QTD) is a popular hierarchical decomposition
scheme used in several image processing areas including representation and compres-
sion [19], spatial transforms [11] and feature calculation [40]. In its basic version, the
QTD works with square images of a size of a power of two. If this is not the case, the
image is zero-padded to the nearest such size. The image is iteratively divided into four
quadrants. Homogeneity of each quadrant is checked and if the whole quadrant lies
either in the object or in the background it is not further divided. If it contains both

5The terms “horizontal” and “vertical” are here used relatively to the chosen direction.
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object and background pixels, it is divided into quadrants and the process is repeated
until all blocks become homogeneous. The decomposition can be efficiently encoded into
three-symbol string, where 2 means division, 1 means a part of the object and 0 stands
for the background.

The QTD always yields square blocks which may be advantageous for some purpose
but usually leads to a much higher number of blocks than necessary. It would be possible
to implement a backtracking and to unify the adjacent blocks of the same size into a
rectangle but this would increase the complexity. Since the speed is the main advantage
of this method, the backtracking is mostly not employed here. A drawback of this
decomposition algorithm is that the division scheme is not adapted with respect to
the content of the image but it is defined by absolute spatial coordinates. Hence, the
decomposition is not translation-invariant and may lead to absurd results when for
instance a large single square is uselessly decomposed up to individual pixels.

The QTD can be readily extended into 3D. Instead of square elements we employ
cubes and the quadtree scheme is replaced with the octree (OTD). The OTD method
keeps all pros and cons of its 2D ancestor (see Figure 1 c for an example of the OTD
decomposition).

Octree representation has been commonly used in Minecraft-like computer games and
similar voxel-represented scenarios. Popularity of this representation is mainly due to
its simple implementation, fast run, and its ability to render the scene in various levels
of details. However, it is much less efficient than other methods in terms of the block
number.

2.3. Binary space partitioning

The term Binary space partitioning (BSP) denotes a wide class of hierarchical decompo-
sition methods, very popular namely in 3D computer graphics [1, 27]. BSP recursively
divides the bounding box, which contains the object, by hyperplanes. Individual BSP
methods differ from one another by the criteria that select the separating hyperplane.
Both QTD and OTD are special cases of BSP, where the hyperplanes are always put in
the middle of the box to be decomposed. Other BSP algorithms may put the separator
with regard of the object itself, but the separators always cut the entire box into two
parts. This leads to object representation by the BSP tree. The BSP algorithms usually
perform fast but the number of blocks depends on the chosen criterion.

2.4. Optimal decomposition

As we already pointed out, there exist a 2D decomposition method of polynomial com-
plexity (even in several versions) which guarantees the minimum number of blocks for
an arbitrary shape. Here we briefly recall the version proposed in [39].

The method performs hierarchically on two levels. On the first level, we detect all
“concave” vertices (i. e. those having the inner angle 270◦) of the input object and
identify pairs of “cogrid” concave vertices (i. e. those having the same horizontal or
vertical coordinates). Then we divide the object into subpolygons by constructing chords
which always connect two cogrid concave vertices. As proved in [10] and in other papers,
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the optimal choice of the chord set is such that the chords are pair-wise disjoint and
their number is maximum possible.

The problem of optimal selection of the chords is equivalent to the problem of finding
the maximal set of independent vertices in a graph, where each vertex corresponds to a
chord and two vertices are connected by an edge if the two chords have a common point
(either a concave vertex or an intersection). Generally, this problem is NP-complete, but
our graph is a bipartite one, since any two horizontal (vertical) chords cannot intersect
one another. In a bipartite graph, this task can be efficiently resolved. We find a
maximal matching, which is a classical problem in graph theory, whose algorithmic
solution in a polynomial time has been published in various versions. Some of them are
optimized with respect to the number of edges, the others with respect to the number
of the vertices (see [8, 14, 15, 17] for some examples of particular algorithms) but all of
them are polynomial in both.

As soon as the maximal matching has been constructed, the maximal set of inde-
pendent vertices can be found much faster than the maximal matching itself – roughly
speaking, the maximal independent set contains one vertex of each matching pair plus
all isolated vertices plus some other vertices, which are not included in the matching
but still independent. As a result, we obtain a set of vertices that is unique in terms of
the number of vertices being involved but ambiguous in terms of the particular vertices.
However, this ambiguity does not matter – although each set leads to different object
partition, the number of the components is always the same. Hence, at the end of the
first level, the object is decomposed into subpolygons, which do not contain any cogrid
concave vertices (see Figure 2).

The second level is very simple. Each subpolygon arriving from the first level is either
a rectangle or a concave polygon. In the latter case, it must be further divided. From
each its concave vertex, a single chord is constructed such that this chord terminates
either on the boundary of the subpolygon or on the chord that has been constructed
earlier. This is a sequential process in which each concave vertex is visited only once.
The order of the concave vertices may be chosen arbitrary. Similarly, we may choose
randomly between two possible chords offered in each concave vertex. This choice does
not influence the final number of blocks. After that, the subpolygon is divided into
rectangles, because rectangle is the only polygon having no concave vertices.

The optimal decomposition cannot be readily extended into 3D because it becomes
NP-complete, as follows from the analysis presented in the next Section. The method
we propose in this paper replaces the NP-complete steps by an approximation of a
polynomial complexity.

3. 3D SUBOPTIMAL DECOMPOSITION

When trying to extend the above 2D optimal algorithm into 3D, we discover several
substantial differences between the 2D and 3D cases. In 3D, concave edges play the role
of concave vertices (see Figure 3). Concave vertices may exist, too, but they have no
significance for 3D decomposition. The analogue of the chord is the separator, which
is the intersection of a plane and the object (see Figure 4). Note that the separator
not always splits the entire object into two separate components as it is illustrated in
Figure 5. Similarly as in 2D, any concave edge must be contained in a separator to
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(a) (b)

(c) (d)

Fig. 2. The first level of the 2D optimal decomposition method. (a)

The input object. (b) All possible chords connecting two cogrid

concave vertices. The crosses indicate the chord intersections. (c) The

corresponding bipartite graph with a maximum independent set of

three vertices. Other choices are also possible, such as {h1, h2, h3}.
(d) The first level of the object decomposition.
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Fig. 3. A concave edge formed by two voxel faces of a 270◦ angle in

between.

get the decomposition into blocks. Separators containing no concave edges are possible
but useless. Unlike 2D, where a chord can contain two concave vertices at maximum,
a separator can contain an arbitrary high number of concave cogrid edges (the edges
laying in a plane which is perpendicular to an axis are called cogrid edges). From this
we can see that the 3D version of the optimal algorithm (if it exists) cannot work in
two levels but rather in m levels, where m depends on (but not necessarily equals to)
the maximum number of the existing cogrid concave edges. Another difference from 2D
is that a separator may split a perpendicular concave edge into two separate concave
edges. In this way, placing a separator eliminates some concave edges but may at
the same time induce new ones, which is impossible in 2D (see Figure 6). The most
significant difference is, however, the following one. Even if we place the separators in
order given by the number of the concave edges they eliminate, we do not end up with
the minimum number of blocks. Placing a separator which eliminates the maximum
possible number of the concave edges at the particular moment may not be globally
optimal since it may prevent placing some separator(s) which would finally lead to a
better decomposition (see Figure 8 for illustration of such simple situation). Before we
fix the separator, we should check the complete subtree of all other alternatives. This
makes the task NP-complete.6

3.1. The basic version

The basic version of a sub-optimal algorithm is a heuristics which basically follows from
the above thoughts. It works iteratively in a greedy manner. In each iteration, we place
proper separators and cut the object by them. This eliminates all edges connected with
the chosen separators. We repeat this step until all concave edges have disappeared.

The tricky part in each iteration is how to choose the proper separators. We have
already shown that the optimal brute force approach is NP-complete. To overcome
this, we choose the separators according their weight. The weight ws of separator s is
a function which estimates how significant (i. e. how useful) is the particular separator
for the decomposition. Intuitively, it should reflect the number of the concave edges the
separator eliminates and should be easy to evaluate (preferably in a polynomial time).
Two possible particular choices of ws will be discussed later.

6Note that the NP-completeness was formally proven in [6] by transforming the decomposition prob-
lem onto a 3SAT3 problem.
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Fig. 4. A separator is a cross-section of a plane and the object.

Meaningful separators eliminate some concave edges of the object. In

this example, the red edges have been eliminated by a cyan separator.

Fig. 5. Example of a separator which is meaningful (it eliminates red

dotted edges) even if it does not split the object into separated parts.
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Fig. 6. An example of a separator that splits perpendicular concave

edges and intersects other separators. Cyan-highlighted separator s

eliminates edges e3, e4 and intersects one vertical edge that has been

divided into e1 and e2. It also intersects other separators s1 and s2
and is adjacent to separators s3 and s4

In each iteration, the algorithm finds all possible separators and calculates their
weights. Let us denote the highest weight as α and the set of all separators with this
weight as M . Now the method tries to place as many separators from M as possible
but at the same time it must avoid all mutually intersecting separators because they are
redundant (by “intersecting” we understand also adjacent separators, i. e. those which
share an edge), see Figs. 6 and 7. In other words, we are looking for a maximum subset
of M of non-intersecting separators.

This task can be reformulated as a task of finding the maximum independent set
in a tripartite graph, which is a well-known problem in graph theory. We refer to the
maximum independent set in graph G as MaxIS(G) or MaxIS for short.

We construct graph G = (V,E′) whose vertices are the separators from the set M .
Vertices u and v form edge (u, v) ∈ E′ iff the corresponding separators intersect each
other. Graph G is tripartite because parallel separators (along axes x, y and z) are
always disjoint. Example of a graph construction is shown in Figure 7. The maximum
independent set of vertices MaxIS gives us the largest set of disjoint separators of
weight α. We split the object by these separators and proceed to the next iteration.
Note that the set of the separators may not be unique because the graph may contain
more than one MaxIS set of the same cardinality. In such a case we chose the separator
set randomly.

We repeat the iterations until all concave edges have been eliminated. Depending
on the particular choice of ws, α may not monotonically decrease during the iteration
process. At the end, the object has been decomposed into rectangular blocks. The
partitioning may sometimes produce adjacent blocks that share one side and therefore
they can be merged into a single block. As soon as the iterations have been completed,
we find and merge these adjacent blocks. Since the optimal merging of the blocks is an
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Fig. 7. An example of a graph construction: On the left, there are

four separators of the same weight. On the right, we can see the

corresponding tripartite graph. The graph vertices are associated with

the separators and the graph edges reflect their mutual intersections

(or adjacency). In this example, highlighted vertices {1, 2} form the

MaxIS (compare with corresponding disjoint separators 1 and 2).

NP complete problem, we applied a simplified linear heuristics that merges the adjacent
blocks.

3.2. The weight function

As we already explained, the choice of the weight function ws determines the sub-optimal
approximation of the full-search technique. It should describe the significance of the
separator for the decomposition. High weights should be given to separators, the early
placement of which leads to a low number of blocks. At the same time, the evaluation
of the weight of each separator should be fast enough. This is why we limit ourselves to
two weight functions, both of which can be evaluated directly on the current level and
do not require any recursive hierarchical calculations.

The first one simply counts the number of the concave edges which the separator
eliminates when placed

w(1)
s = |{e | e ∈ E ∧ e ⊂ s}|. (1)

In the example in Figure 5, the highlighted separator has the weight w
(1)
s = 4 since

it contains four concave edges.
A more sophisticated choice (but also slightly more time-consuming to evaluate)

which reflects the fact that the separator may also generate some new concave edges is

w(2)
s = |{e | e ⊂ s}| − |{e | e⊥s}|, e ∈ E (2)
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Fig. 8. An illustration that neither w
(1)
s nor w

(2)
s select the optimal

separators. At the first step, both weight functions prefer s1 to s2
because w

(1)
s1 = 6 and w

(2)
s1 = 4 while w

(1)
s2 = w

(1)
s2 = 2. However,

placing s1 leads to 8 blocks (see c)), while using s2 yields the optimal

decomposition into 7 blocks.

which is in fact w
(1)
s minus the number of the concave edges perpendicular to and

intersected by the separator.

In the experimental section we will compare the performance of w
(1)
s and w

(2)
s , among

others.

3.3. Implementation

In the following pseudocode, we describe the algorithm more formally. Placing the
separator in the object is implemented in a way that the separator becomes “final”
and forms a “wall” that cannot be divided any further. We first search for all concave
edges and all separators that contain them. Then we iteratively choose maximum sets
of disjoint separators with the highest weight and move them to the set of walls. The
concave edges, eliminated by these separators, are removed from the list and new edges
(if any) are added. As soon as the iteration process has been completed, the blocks are
formed by original object surface and/or by “final inner walls” created by the separators.
For each block we store the coordinates of its upper left front voxel and three block
dimensions. The last step – block merging – is accomplished by lexicographic sorting
the blocks w.r.t. x, y, z, identifying adjacent blocks of the same side size and updating
the data in the block list. The complexity of the merging is only O(K ′ logK ′) where K ′

is the number of blocks produced by the iterative part of the algorithm. (Note that the
block merging step is due to the sub-optimality of the algorithm. If the decomposition
was optimal, no merging would be possible and this step could be removed from the
algorithm.)
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The most time-consuming part is finding the MaxIS on the line 9 of the algorithm.
For general graphs, this problem is NP-hard. Although the graph we work with is
a tripartite one, which is much simpler than a general graph, finding the maximum
independent set is still NP-hard w.r.t. the number of separators of the same weight.
Theoretically, this number may be proportional to the number of all surface voxels and
it also depends on the shape of the particular object. However, in average, there is a
high correlation (r = 0.82) of the object volume and the average number of separators
among all iteration steps as it is illustrated in Figure 10. It should be noted that the
number of separators in majority of the iteration steps is usually much lower namely for
high α, but may become so high for low α that the algorithm may not be feasible.

This is another substantial difference from the 2D case – finding the maximum inde-
pendent set in a bipartite graph is of a polynomial complexity [39]. In the next Section,
we propose an approximation of a polynomial time complexity, which we use in our
implementation.

We implemented the decomposition for Node.js framework. In addition to standard
node.js package written in Javascript, we created an online visual tool that runs in any
modern browser that supports WebGL (such as the latest versions of Google Chrome).
In this tool, the user can interactively create a custom object or upload an external
object, run different decomposition methods (the proposed algorithm can be even ex-
ecuted step-by-step for better understanding of the process). The visualization helps
in understanding the behavior of the decomposition algorithms. The tool was designed
mainly for educational purposes, it is not meant for routine work. It is available online
at http://goo.gl/hAEuCg, a sample screenshot can be seen in Figure 9.

Algorithm 1 Sub-optimal 3D decomposition

E ← find concave edges
S ← find separators
W ← ∅ . the set of final walls
while |S| > 0 do

ws ←weight(s), ∀s ∈ S . calc. weight for each sep.
α← max

s∈S
(ws) . calc. the max. weight

M ← {s | ws = α ∧ s ∈ S} . separators of max. weight
G = (V,E′)← vs ∈ V ⇔ s ∈M, (vs, vp) ∈ E′ ⇔ s⊥p . create graph
I ←MaxIS(G) . find max. indep. set of vertices
F ← {s | vs ∈ I} . seps. chosen in MaxIS become final
W ←W ∪ F . move final seps. to the set of walls
C ← {c | c⊥s ∧ c ∈ S ∧ s ∈ F} . intersecting separators
N ← new divided separators that replace C
S ← (S ∩ C ∩ F ) ∪N . remove final seps., add divided seps.
divide all e ∈ E that intersect any s ∈ F . split edges that inters. walls

end while
convert voxels bounded by walls w ∈W into rectangular blocks
merge adjacent blocks

http://goo.gl/hAEuCg
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Fig. 9. A sample screen shot of our online decomposition tool.

3.4. Approximating the maximum independent set

The vertices of graph G = (V,E′) can be clustered into three disjoint subsets Px, Py,
Pz according to the axis that the corresponding separators are perpendicular to

G(V,E′) = G(Px ∪ Py ∪ Pz, E
′). (3)

Clearly, each subset is composed of parallel separators which cannot intersect each other
and hence G is a tripartite graph because there are no graph edges inside the individual
subsets.

The complexity of finding the maximum independent set of vertices ofG is exponential
w.r.t. the number of the vertices and edges, which varies in individual iterations. If
the number of the vertices is low, which is a typical situation at the beginning of the
algorithm when the maximum weight α is high, the exponential time may be acceptable.
Finding the MaxIS is equivalent to finding the maximal clique in the complement
graph7, so we adopted the popular Bron-Kerbosch algorithm [2] for the clique problem
to find the MaxIS. This is, however, not feasible for large graphs, typically arriving in

7Complement graph H to the given graph G consists of the same set of vertices and complementary
set of edges, i. e. two distinct vertices of H are adjacent if and only if they are not adjacent in G.
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Fig. 10. Correlation (r = 0.82) between the object volume and the

number of the separators.

case of complex objects with many concave edges at the iteration levels when the weight
approaches one.

Very simple approximation for MaxIS is just to take the largest subset among
Px, Py, Pz instead (let us denote it as IS(1)). The independence is guaranteed but
for most (especially large) graphs this approximation is far from the actual MaxIS.

A better approach is to treat this problem in tripartite graphs as an extension of
the bipartite graph problem. We choose two largest vertex subsets among Px, Py, Pz

and consider a subgraph of G (let us denote it as G2), which is a bipartite graph.
On G2 we find the exact maximum independent set I2 = MaxIS(G2). This is solv-
able in a polynomial time thanks to the König’s theorem [4]. We implemented this
step by means of the maximum network flow algorithm by Edmonds and Karp [8] of a
time-complexity O(V E′2) and also alternatively by the Dinic’s algorithm [7] with the
complexity O(V 2E′). Since the G(V,E′) depends on the shape of each object, we first
construct the graph and then we choose the E.K. alg. if |V ||E′|2 < |V |2|E′|, or the
Dinic’s alg. otherwise. Finally, we unify I2 with those vertices from the remaining third
part of the graph which are not adjacent to any vertex of the selected independent set.
We denote this final independent set as IS(2) (see Figure 11).

The choice of how to calculate/approximate the MaxIS can be in our implementation
done by the user. It is always a trade-off between the time efficiency and the size of
the independent set (which consequently influences the number of blocks). The optimal
solution provides the correct maximum set, but it is NP-hard and thus for complicated
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Fig. 11. Finding maximum independent set in a tripartite graph. (a)

optimal solution MaxIS, (b) an approximative heuristic IS(1) where

only the largest part is taken, (c) better approximative heuristic IS(2)

as an extension of bipartite subgraph MaxIS with the vertex No. 14

appended from the third part of the graph.

objects it can run unacceptably long time. IS(1) is retrieved very quickly, but the set is
much smaller and thus leads to more blocks in the final decomposition. IS(2) provides
a very good compromise, as demonstrated in the next Section by experiments.

4. EXPERIMENTS

The main goal of this Section is to compare the proposed decomposition method with the
state of the art Octree algorithm [26], the BSP algorithm where the separator was chosen
such that it minimizes the number of voxels it passes through, and namely with the
generalized delta method, which is known from 2D to be very powerful. The second goal
is to study the performance of various modifications of the proposed algorithm. We verify
that the polynomial heuristic functions IS(1) and IS(2) provide good approximation of
the optimal NP-hard solution of the MaxIS. Additionally, we compare the two different
weight functions that evaluate the separators’ significance and verify that the enhanced
w(2) performs significantly better than w(1).

4.1. Models from the McGill database

The first round of experiments was run on a database of 416 voxelized models from the
McGill 3D Shape Benchmark8 [33] (we denote this set as “MDB”). All models have
been inscribed into a 128 × 128 × 128 cube. Each object has a different volume, but
together the whole MDB contains more than 13.5 millions of voxels.

We decomposed all shapes by the OTD, BSP, 3GDM, and by the proposed method
with various settings (see Figure 12 for some examples). The test results are summarized
in Table 1. In the fourth and fifth rows, we used MaxIS algorithm with the separator
weights w(1) and w(2), respectively. Comparison of the performance of these two weights

8Some of these objects can be found in the Princeton Shape Benchmark [32], too.
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Fig. 12. Examples of the decomposed models from the McGill

database [33]. The decomposition was performed by the proposed

method.
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Method Graph IS Weight Total No. of blocks Mean time
method function [103] per object [s]

Octree N/A N/A 3413 1.3
BSP N/A N/A 512 4.6
3GDM N/A N/A 458 0.7
Proposed MaxIS w(1) 448 88.6
Proposed MaxIS w(2) 445 107.5
Proposed IS(1) w(2) 450 67.4
Proposed IS(2) w(2) 445 83.3

Tab. 1. The number of the decomposition blocks for the entire MDB

achieved by various methods.

was done by Wilcoxon test. The null hypothesis was that there is no significant differ-
ence between these two sample decompositions. The null hypothesis was rejected with
p-value < 0.001, which led us to the conclusion that w(2) performs significantly better.
On the last two rows of the table we can see the most important results of the experi-
ment - decomposition achieved by heuristics IS(1) and IS(2). In both cases, solely the
better weight w(2) was used. A surprising result is that the polynomial heuristic IS(2)

yields almost the same number of blocks as the optimal NP-hard algorithm MaxIS.
This was confirmed by the Wilcoxon test – the null hypothesis was accepted with the
p-value > 0.1. This result proves the efficiency of IS(2) algorithm. When applying
IS(1) heuristic, the decomposition works faster but in average it yields slightly higher
number of blocks. Since the differences are more or less consistently spread over the
whole database, the Wilcoxon test rejected the null hypothesis with p-value < 0.001. A
comparison with the 3GDM is clearly in favor of the proposed method. For both IS(1)

and IS(2) (and of course also for MaxIS), the Wilcoxon test confirmed that 3GDM
performed significantly worse on this database.

Summarizing, the most important result of the test is the following. Polynomial
heuristics IS(2) with the weight w(2) is statistically equivalent (in terms of the block
number) to NP-hard MaxIS algorithm and is at the same time significantly better than
all other tested methods. This is expressed visually in Figure 13.

4.2. Random cubes

The aim of this experiment was to compare the performance of the 3GDM and the
proposed method on the set of irregular, less compact objects. We used one hundred
32 × 32 × 32 cubes inside which we randomly “carved” holes of an average density
50%. We employed these random cubes because they do not exhibit any dominant
edge direction, unlike most of the real objects. Hence, the comparison is not biased by
object anisotropy. The proposed method was applied in both configurations, i. e. using
MaxIS and IS(2) algorithms. A sample cube along with its decompositions can be seen
in Figure 14. The individual number of blocks are shown “cube by cube” in Figure 15

and the summary results are in Table 2. Similarly as on the MDB objects, we can
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Fig. 13. Comparison of 3GDM and the proposed method in terms of

the block number. Red solid line corresponds to the 3GDM which is

taken as an etalon. The objects have been sorted according to the

differences between 3GDM and IS(2) (denoted as blue “+”). The

differences between 3GDM and MaxIS are denoted as orange “×”.
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(a) (b)

(c) (d)

Fig. 14. A sample random cube (16449 voxels) (a), its 3GDM

decomposition (7174 blocks) (b), MaxIS decomposition (6458 blocks)

(c), and IS(2) decomposition (6521 blocks) (d).

clearly see the insignificant difference between MaxIS and IS(2), and significantly worse
performing 3GDM and BSP (these conclusions were again confirmed by the Wilcoxon
test).

5. APPLICATIONS

Potential applications of the proposed decomposition method can be found in all areas
where decomposition of 3D shapes is required and where the number of the blocks is
the main issue. This is typically if the decomposition is performed off-line, if it is then
used many times in subsequent calculations, and if the number of blocks influences
substantially the time and/or the cost of a subsequent processing. If, on the other hand,
realtime or close-to-realtime decomposition is required as a primary criterion, then the
3GDM method provides the best solution.



Close-to-optimal algorithm for rectangular decomposition of 3D shapes 775

Fig. 15. The number of blocks of the decomposition of 100 random

cubes. Blue line (top) – 3GDM, orange line (middle) – IS(2), gray line

(bottom) – MaxIS.

Method Total No. of blocks [103]

BSP 838
3GDM 717
MaxIS 648
IS(2) 654

Tab. 2. The total number of blocks of the decomposition of 100

random cubes by various methods.



776 C. HÖSCHL AND J. FLUSSER

5.1. Compression

Our method can be used in 3D shape encoding/compression, both loss-less and lossy
ones. In a loss-less compression, we store the position and the size of each block. To
optimize the compression ratio, we order the blocks according to their size such that the
blocks of the same size form a substring. Then we store only the positions of the blocks
while the size is stored only once for each substring. In a lossy compression, we throw
away the smallest blocks, typically from 1 × 1 × 1 to a certain limit. This significantly
improves the compression ratio but many shape details may disappear when the object
has been reconstructed.

5.2. Feature calculation

Many features, which have been proposed for 3D shape description and recognition, are
of the form of an integral transformation

M (f)
p =

∫
Ω

πp(x)f(x)dx . (4)

where p is a 3D multi-index, {πp(x)} is a set of basis functions of the image space
(transformation kernels), f(x) is characteristic function of the shape, and Ω is a bounded
subset of R3. Fourier coefficients, wavelet coefficients, and image moments are few
popular examples [13]. If we decompose the object into K disjoint blocks Bk, Eq. (4)
can be rewritten as

M (f)
p =

K∑
k=1

∫
Bk

πp(x)dx . (5)

If the basis functions πp(x) can be integrated on a rectangular region by means of
primitive functions and Newton-Leibnitz theorem in O(1) time (which is the case of all

polynomial and harmonic bases), then the evaluation of M
(f)
p from Eq. (5) is of O(K)

complexity while the direct calculation from Eq. (4) is proportional to the total number
of the object voxels.

The object features are typically computed for a large set of the basis functions and
used repeatedly, so the time benefit of the decomposition may be really huge even if the
decomposition itself might be relatively slow.

5.3. Fast convolution

When we calculate a convolution of 3D image (graylevel or color) f with a binary kernel
h, we can benefit from the decomposition as well. If we decompose the support of h into
disjoint blocks, then we have

f ∗ h = f ∗
K∑

k=1

hk =

K∑
k=1

f ∗ hk, (6)

where hk is a characteristic function of block Bk.
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The evaluation of convolution of arbitrary f with rectangular Bk in a single voxel
can be accomplished in O(1) time regardless of the block size. We precompute partial
sums of f in all three dimensions, so we create an auxiliary array g such that

g(L,M,N) =

L∑
`=1

M∑
m=1

N∑
n=1

f(`,m, n).

This array is precomputed only once for the given f and may be used for any h. The
convolution f ∗ hk in a certain voxel is then evaluated just from the values of g which
correspond to the corners of properly shifted block Bk. This approach is significantly
faster than calculating convolution from the definition, which is proportional to the ker-
nel size, and also than using FFT; especially when multiple convolutions with the same
kernel are to be calculated. Such a situation arises for instance in deblurring/sharpening
of CT images (and other data of a similar nature) when the blurring kernel is known
since it characterizes the imaging device. Iterative deconvolution methods, such as pop-
ular Richardson-Lucy algorithm, iteratively estimate the input image, evaluate many
times convolutions with the same kernel, and check in each iteration the similarity to
the blurred acquired image.

The kernel decomposition is particularly efficient if the kernel matrix has a full or
close-to-full rank because in that case we cannot effectively use any fast convolution
algorithm based on kernel factorization.

5.4. Manufacturing

Manufacturing of 3D structures is often done by assembling them from simple compo-
nents. If these components are rectangular blocks, then our algorithm can be advanta-
geously applied because the production cost and time are proportional to the number of
blocks, while durability of the product uses to be inversely proportional to it. The time
of decomposition, which is performed on a computer model of the product, is negligible
comparing to the total production time.

6. CONCLUDING DISCUSSION

In this paper, we presented an original method of block-wise decomposition in 3D. The
method is a double approximation of the optimal algorithm, which is NP-complete and
practically infeasible. We proposed the criterion for the separator selection in the first
heuristic approximation. In the second approximation, the maximum independent set
in a tripartite graph, the finding of which is again NP-complete (and to our knowledge
is also hard to approximate), is replaced by a polynomial sub-optimal solution. We
proved by large-scale experiments that the proposed method is statistically better than
the 3GDM, which is the best one among the existing methods in terms of the number
of blocks. This determines that potential applications of the proposed method can be
found namely in the tasks where it is more desirable to keep the number of blocks as
low as possible rather than to minimize the decomposition runtime.

It is interesting that even though the proposed algorithm is generally sub-optimal, it
is optimal on specific shapes. A trivial example of such class are objects, which do not
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have any cogrid concave edges. Another class where our method performs optimally, is
formed by objects all concave edges of which are parallel.9 This is not true for the main
competitor, 3GDM, which is still suboptimal on these objects.

Although in the paper we have been dealing with binary shapes only, all methods can
be theoretically used for graylevel and color 3D images as well. A graylevel image can be
expressed as a sum of several binary 3D images multiplied by a proper constant, which
can be obtained either as intensity slices or bit slices (these techniques were proposed
for 2D images in [30, 36] and can be adapted to 3D case readily). We can decompose
each slice independently by means of our algorithm. However, these binary “images”
use to be highly fragmented (especially low bit planes resemble a “random chessboard”)
and their decomposition typically yields high number of blocks. Hence, this kind of
decomposition is of a little practical importance for graylevel/color 3D images.

For the sake of completeness, we should mention that the format of binary images
used in some databases is not based on a voxel representation. A common representa-
tion of a shape is by triangular patches (facets) of the surface. In that case, only the
vertices of the triangles are stored. Such a representation may be often used directly for
compression, feature calculation, and other tasks. This is, however, not true in general.
Calculating convolution and integral transformations in triangular representation may
be very tricky or even impossible. If we want to find a rectangular decomposition, we
have to convert the triangular representation to the voxel one first. Although several
conversion algorithms exist (see, for instance, [13] for one of the simplest methods), this
approach is not very efficient and the triangular representation is mostly used without
any conversion to voxels.
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