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INVERSE OPTIMAL CONTROL FOR LINEARIZABLE
NONLINEAR SYSTEMS WITH INPUT DELAYS

Xiushan Cai, Jie Wu, Xisheng Zhan and Xianhe Zhang

We consider inverse optimal control for linearizable nonlinear systems with input delays
based on predictor control. Under a continuously reversible change of variable, a nonlinear
system is transferred to a linear system. A predictor control law is designed such that the
closed-loop system is asymptotically stable. We show that the basic predictor control is inverse
optimal with respect to a differential game. A mechanical system is provided to illustrate the
effectiveness of the proposed method.
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1. INTRODUCTION

Predictor-based techniques have been developed for stabilization linear/nonlinear sys-
tems with input delays [1, 2, 3, 7, 8, 10, 14, 18], tracking control [26, 27], optimal per-
formance analysis of networked control systems [23, 24, 25], as well as observer design
for a class of nonlinear system in cascade with counter-convecting transport dynamics
[9].

The inverse optimality concept is of practical importance since it allows the design of
optimal control laws, which may minimize/maximize a physical quantity of interest and
which may possess certain robustness margins, without the need to solve a Hamilton–
Jacobi–Isaacs partial differential equation (PDE) [19].

Inverse optimality, as an design objective for delay systems was pursued by Jankovic
[12, 13]. Inverse-optimal re-design of the predictor-based feedback law was presented by
using a low-pass filter in [17]. Input-to-state stability (ISS) and inverse optimality of
linear time-varying-delay predictor feedbacks have been investigated in [5]. The method
in [5] is extended to multi-input linear systems [6]. Inverse optimal control for strict-
feedforward nonlinear systems with input delays also exists [11].

If we can find coordinate changes to transform a class of nonlinear systems into linear
systems, it will be very meaningful. It is revealed that the family of feedforward systems
contains a substantial class that is linearizable by a diffeomorphic coordinate change
in [15, 16]. An algorithm along with explicit transformations that linearizes a class of
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feedforward nonlinear systems is in [21]. Sufficient and necessary conditions are given
for a control-affine mechanical system that can be transformed into a linear system by
a diffeomorphism coordinate change in [20].

In this paper, we extend the result of [17] to inverse optimal control design for a
class of linearizable nonlinear systems with input delays. First, using a continuously
reversible change of variable, a nonlinear system is transferred to a linear system. A
predictor control law is designed such that the closed-loop system is asymptotically
stable. It is shown that the control law is inverse optimal with respect to a meaningful
differential game. Inverse optimal control for a class of linearizable nonlinear systems
with input delays has never been published from the knowledge of authors.

Notation. We use the common definitions of class K, K∞, KL functions from [18].
λmax and λmin are the maximum and minimum eigenvalues, respectively of the corre-
sponding matrices. For a vector X ∈ Rn, |X| denotes its usual Euclidean norm. For a

scalar function u(·, t) ∈ L2 (0, 1), ‖u(t)‖ denotes
(∫ 1

0
u2(x, t) dx

)1/2
. For a scalar func-

tion U ∈ L2 (0, D), ‖U(t)‖ denotes
(∫D

0
U2(θ) dθ

)1/2
.

2. SYSTEM DESCRIPTION AND BACKSTEPPING TRANSFORMATION

Consider the system with input delay

Ż(t) = ϕ(Z(t), U(t−D)) (1)

where Z ∈ Rn is the state, U ∈ R is the input signal delayed by D units of time, and
ϕ : Rn×R→ Rn is continuously differentiable. Suppose that there exists a continuously
reversible coordinate change

X(t) = f(Z(t)) (2)

such that system (1) is converted into a linear system as

Ẋ(t) = AX(t) +B1U(t−D) (3)

with A ∈ Rn×n, B1 ∈ Rn.

Remark 1. Sufficient and necessary conditions are given for a control-affine mechanical
system that can be transformed into a linear system by a coordinate change in Theorem
1 of [20]. More information can be found from [4] for linearization of mechanical control
systems and [22] for linearization of Hamiltonian and gradient systems.

Remark 2. In [21], for a class feedforward systems

ẋ = f(x) + g(x)u (4)

where f = [f1, f2, · · · , fn]T , g = [g1, g2, · · · , gn]T , and fj(x) = xjf j(xj+1, · · · , xn) +

f̂j(xj+1, · · · , xn), gj(x) = xjgj(xj+1, · · · , xn) + ĝj(xj+1, · · · , xn), f̂j(0) = 0, ĝj(0) =

0, fn = 0, f j(0), gn ∈ R/{0} can be transformed into a linear controllable system via a
coordinate change.
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Using the transport PDE to express the delay, system (3) can be rewritten as

Ẋ(t) = AX(t) +B1u(0, t) (5)

ut(x, t) = ux(x, t), x ∈ [0, D] (6)

u(D, t) = U(t) (7)

where u(x, t) = U(x+ t−D).
The infinite-dimensional backstepping transformation is defined as

w(x, t) = u(x, t)− keAxX(t)− k
∫ x

0

eA(x−y)B1u(y, t) dy, (8)

for all x ∈ [0, D]. The gain vector k is selected so that A+B1k is hurwitz.
Under the backstepping transformation, system (5)–(7) is transferred as

Ẋ(t) = (A+B1k)X(t) +B1w(0, t) (9)

wt(x, t) = wx(x, t), x ∈ [0, D] (10)

w(D, t) = U(t)− keADX(t)− k
∫ D

0

eA(D−y)B1u(y, t) dy. (11)

The inverse backstepping transformation of w is defined as follows:

u(x, t) = w(x, t) + ke(A+B1k)xX(t) + k

∫ x

0

e(A+B1k)(x−y)B1w(y, t) dy, (12)

for all x ∈ [0, D]. With (12), system (9)–(11) is transferred to system (5)–(7).

3. ASYMPTOTICAL STABILIZATION FOR LINEARIZABLE NONLINEAR
SYSTEMS

The control law for system (1) is designed as follows:

U(t) =
c

c+ 1
U1(t) = U∗(t) (13)

where

U1(t) = keADf(Z(t)) + k

∫ t

t−D
eA(t−θ)B1U(θ) dθ (14)

and c > 0 is sufficiently large, and the vector k is selected so that A+B1k is hurwitz.

Theorem 3.1. Consider the closed-loop system (1), (13) and (14), there exist c∗ > 0,
and a class of KL function β(s, t) such that for all c > c∗,

Γ(t) ≤ β(Γ(0), t), for all t ≥ 0, (15)

with
Γ(t) = |Z(t)|+ ‖U(t)‖. (16)



730 X. CAI, J. WU, X. ZHAN AND X. ZHANG

The proof of Theorem 3.1 is based on a series of technical lemmas which are given
next.

First, we will prove that system (5)–(7) under the control law (13) and

U1(t) = keADX(t) + k

∫ D

0

eA(D−y)B1u(y, t) dy (17)

where k is given by (14), is exponentially stable.

Lemma 3.2. Consider system (5)–(7), together with the control law (13) and (17), for
any 0 < µ < 1, there exist

λ =
µmin{λmin(Q)

2 , a1b2 }
max{λmax(P ), a1e

bD

2 }
, (18)

R = max{β1,1+β2}
min{λmin(P ),

a1
2 }

max{λmax(P ), a1e
b

2 }max{α1, 1 + α2}, (19)

and

c∗ =

√
ebDamax

{
a1

λmin(Q) ,
1
b

}
√

1− µ
, (20)

such that for all c > c∗, it holds

Ω(t) ≤ RΩ(0)e−λ t, for t ≥ 0, (21)

with

Ω(t) = |X(t)|2 + ‖u(t)‖2. (22)

P r o o f . The proof is similar to that in [5], it is omitted. �

Noting that u(y, t) = U(y+ t−D), it is not difficult to find that (17) can be rewritten
as

U1(t) = keADX(t) + k

∫ t

t−D
eA(t−θ)B1U(θ) dθ. (23)

Lemma 3.3. Consider the closed-loop system (3), (13), (23), for any 0 < µ < 1, there
exist λ > 0, R > 0 and c∗ > 0, which are given by (18), (19), (20), respectively, such
that for all c > c∗, it holds

Ω̃(t) ≤ RΩ̃(0)e−λ t, for all t ≥ 0, (24)

with

Ω̃(t) = |X(t)|2 + ‖U(t)‖2. (25)

P r o o f . The proof is similar to that in [5], it is omitted. �
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Lemma 3.4. Under the condition (2), there exist class K∞ functions α1, α2 such that

|X(t)|+ ‖U(t)‖ ≤ α1(|Z(t)|+ ‖U(t)‖), (26)

|Z(t)|+ ‖U(t)‖ ≤ α2(|X(t)|+ ‖U(t)‖). (27)

P r o o f . With the help of (2), f(·) is continuously reversible, there exist class K∞
functions α1, α2 such that

|f(Z(t))| ≤ α1(|Z(t)|), (28)

and

|f−1(X(t))| ≤ α2(|X(t)|). (29)

So it can be deduced that

|X(t)|+ ‖U(t)‖
= |f(Z(t))|+ ‖U(t)‖ ≤ α1(|Z(t)|) + ‖U(t)‖ ≤ α1(|Z(t)|+ ‖U(t)‖) (30)

and

|Z(t)|+ ‖U(t)‖
= |f−1(X(t))|+ ‖U(t)‖ ≤ α2(|X(t)|) + ‖U(t)‖ ≤ α2(|X(t)|+ ‖U(t)‖) (31)

where α1(s) = α1(s) + s, α2(s) = α2(s) + s. The proof is completed. �

P r o o f of the Theorem 3.1. Under the condition (2), it is easy to see that (23) can be
described as (14). With (24), (26), (27), we get

|Z(t)|+ ‖U(t)‖ ≤ α2(|X(t)|+ ‖U(t)‖)

≤ α2

(√
2(|X(t)|2 + ‖U(t)‖2)

)
≤ α2

(√
2R(|X(0)|2 + ‖U(0)‖2)e−λt

)
≤ α2

(√
2R(|X(0)|+ ‖U(0)‖)2e−λt

)
≤ α2

(√
2R(|X(0)|+ ‖U(0)‖)e

−λt
2

)
≤ α2

(√
2Rα1(|Z(0)|+ ‖U(0)‖)e

−λt
2

)
= β(Γ(0), t), for all t ≥ 0, (32)

where β(s, t) = α2(
√

2Rα1(s)e
−λt
2 ). The proof is completed. �
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4. INVERSE OPTIMAL DESIGN FOR LINEARIZABLE NONLINEAR SYSTEM

Theorem 4.1. Consider the closed-loop system (1), (13), (14), there exists a c∗∗ ≥ c∗

such that for all c > c∗∗, the control law (13), (14) minimizes the cost functional

J = lim
t→∞

(
2βV (t) +

∫ t

0

(
L(τ) +

βa1e
bD

c
U2(τ)

)
dτ

)
, (33)

where L is a functional of (Z(t), U(θ)), for all t−D ≤ θ ≤ t, such that

L(t) ≥ βα3(Γ(t)), (34)

for arbitrary β > 0, b > 0, a1 = 1
4
λmax(PB1B

T
1 P )

λmin(Q) , α3 is a class K∞ function, Γ is given

by (16) and V is

V (t) = f(Z(t))TPf(Z(t)) +
a1
2

∫ D

0

ebxw2(x, t) dx. (35)

P r o o f . Choose

L(t) = −βa1e
bD

c+1 U1(t)2 + 2βXT (t)QX(t)− 4βXT (t)PB1w(0, t)

+a1βw
2(0, t) + a1β

∫D
0
bebxw2(x, t) dx

(36)

where a1 = 1
4
λmax(PB1B

T
1 P )

λmin(Q) , U1, w are given by (23), (8), respectively, and b, β are

arbitrary positive scalars. Using (8) and (12), after some calculations, we get

|X(t)|2 + ‖u(t)‖2

max{β1, 1 + β2}
≤ |X(t)|2 + ‖w(t)‖2 ≤ max{α1, 1 + α2}(|X(t)|2 + ‖u(t)‖2) (37)

where

α1 = 3
(

1 + |k|2|B1|2 e
2|A|D−1
2|A|

)
,

α2 = 3|k|2 e
2|A|D−1
2|A| ,

β1 = 3
(

1 + |k|2|B1|2 e
2|A+B1k|D−1
2|A+B1k|

)
,

β2 = 3|k|2 e
2|A+B1k|D−1
2|A+B1k| .

(38)

With (17), (37), we have

U1(t)2 ≤ a(|X(t)|2 + ‖w(t)‖2) (39)

where a = 2|k|2e2|A|D(1 + |B1|2)max{β1, 1 + β2}. With (36), (39), we get

L(t) ≥ −β aa1e
bD

c+1 (|X(t)|2 + ‖w(t)‖2) + 2βλmin(Q)|X(t)|2

− 4β
a1
|XT (t)PB1|2 + a1bβ

∫D
0
ebxw2(x, t) dx

≥ −β aa1e
bD

c+1 (|X(t)|2 + ‖w(t)‖2) + βλmin(Q)|X(t)|2 + a1bβ
∫D
0
ebxw2(x, t) dx

≥ β
(
−aa1e

bD

c+1 + min{λmin(Q), a1b}
)

(|X(t)|2 + ‖w(t)‖2).

(40)
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Choose c > c∗∗ where c∗∗ is such that

c∗∗ ≥ max

 2aa1e
bD

min{λmin(Q), a1b} ,

√
ebDamax

{
a1

λmin(Q)
, 1b

}
√
1−µ

 , (41)

for some 0 < µ < 1. By (37) and (41), we get from (40) that

L(t) ≥ β
2 min{λmin(Q), a1b}(|X(t)|2 + ‖w(t)‖2)

≥ βmin{λmin(Q), a1b}
2max{β1,1+β2}

(|X(t)|2 + ‖u(t)‖2)

= βmin{λmin(Q), a1b}
2max{β1,1+β2}

(|X(t)|2 + ‖U(t)‖2).

(42)

With (26), one has

|X(t)|+ ‖U(t)‖ ≥ α−11 (|Z(t)|+ ‖U(t)‖). (43)

By (42), (43), we get

L(t) ≥ βmin{λmin(Q), a1b}
2max{β1,1+β2}

(|X(t)|2 + ‖U(t)‖2)

≥ βmin{λmin(Q), a1b}
2max{β1,1+β2}

(|X(t)|+‖U(t)‖)2
2

≥ βmin{λmin(Q), a1b}
2max{β1,1+β2}

(α−1
1 (|Z(t)|+‖U(t)‖)2

2 .

(44)

So (34) is obtained with α3(s) = min{λmin(Q), a1b}
2max{β1,1+β2}

(α−1
1 (s))2

2 .

With the help of (35), (36), (13), and the fact that U∗(t) = c
c+1U1(t), we have

L(t) = −βca1e
bD

(c+1)2 U1(t)2 + βa1e
bD
(
w(D, t)2 − U1(t)

2

(c+1)2

)
− 2βV̇ (t)

= −βca1e
bD

(c+1)2 U1(t)2 + βa1e
bD
(

(U(t)− U1(t))
2 − U1(t)

2

(c+1)2

)
− 2βV̇ (t)

= βa1e
bD

c (U∗(t))
2

+ βa1e
bD
(

(U(t)− U∗(t))2 − 2U(t)U∗(t)
c

)
− 2βV̇ (t).

(45)

It can be deduced that∫ t
0
(L(τ) + βa1e

bD

c U2(τ)) dτ

= −2βV (t) + 2βV (0) +
∫ t
0
βa1e

bD
(
1 + 1

c

)
(U(τ)− U∗(τ))

2
dτ.

(46)

We get

J = 2βV (0) +
∫∞
0
βa1e

bD
(
1 + 1

c

)
(U(τ)− U∗(τ))2 dτ. (47)

So the minimum of (47) is reached with

U(t) = U∗(t) (48)

such that

J = 2βV (0). (49)

The proof is completed. �
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5. EXAMPLE

Consider the following mechanical system given by [20] as follows:

Ż1(t) = Z2(t) (50)

Ż2(t) = U(t−D) (51)

Ż3(t) = Z4(t) (52)

Ż4(t) = Z1(t)(1 + Z1(t)) +
Z1(t)Z4(t)

1 + Z1(t)
(53)

where Z1, Z2, Z3, Z4 ∈ R with Z1 > −1 are the states and U ∈ R is the input sig-
nal delayed by D units of time. Denote X(t) = [X1(t), X2(t), X3(t), X4(t)]T , Z(t) =
[Z1(t), Z2(t), Z3(t), Z4(t)]T , with a change of variable

X(t) = f(Z(t)) =


Z1(t)
Z2(t)

Z3(t)− 1
2 ( Z4(t)

1+Z1(t)
)2

Z4(t)
1+Z1(t)

 (54)

the plant (50)–(53) can be converted into

Ẋ1(t) = X2(t) (55)

Ẋ2(t) = U(t−D) (56)

Ẋ3(t) = X4(t) (57)

Ẋ4(t) = X1(t). (58)

Denote

A =


0 1 0 0
0 0 0 0
0 0 0 1
1 0 0 0

 , B1 =


0
1
0
0

 , (59)

we have

eAt =


1 t 0 0
0 1 0 0
t2

2
t3

6 1 t

t t2

2 0 1

 . (60)

By (54), we have

Z(t) = f−1(X(t)) =


X1(t)
X2(t)

X3(t) + 1
2X3(t)2

X4(t)(1 +X1(t))

 . (61)

Choosing
k = [−9, −5, −2, −7] (62)
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then A+B1k is a hurwitz matrix. Using Theorem 3.1, the control law

U(t) =
c

c+ 1
U1(t) = U∗(t) (63)

where c > 0 is sufficiently large, and

U1(t) = keADf(Z(t)) + k
∫ t
t−D e

A(t−θ)B1U(θ) dθ (64)

asymptotically stabilizes system (50)–(53). Solving the matrix equation
0 1 0 0
−9 −5 −2 −7
0 0 0 1
1 0 0 0


T

P + P


0 1 0 0
−9 −5 −2 −7
0 0 0 1
1 0 0 0

 =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


(65)

we get

P =


3.5833 0.4722 1.6389 3.7500
0.4722 0.1944 0.2500 0.5278
1.6389 0.2500 2.8056 3.1944
3.7500 0.5278 3.1944 6.4167]

 . (66)

By calculating, one has a1 = 0.1505, and

V (t) =


Z1(t)
Z2(t)

Z3(t)− 1
2 ( Z4(t)

1+Z1(t)
)2

Z4(t)
1+Z1(t)


T

×


3.5833 0.4722 1.6389 3.7500
0.4722 0.1944 0.2500 0.5278
1.6389 0.2500 2.8056 3.1944
3.7500 0.5278 3.1944 6.4167]



×


Z1(t)
Z2(t)

Z3(t)− 1
2 ( Z4(t)

1+Z1(t)
)2

Z4(t)
1+Z1(t)

+ 0.1505
2

∫D
0
exw2(x, t) dx,

(67)

L(t) = − 0.1505βeD

c+1 U1(t)2 + 2βZ1(t)2 + 2βZ2(t)2 + 2β

(
Z3(t)− 1

2

(
Z4(t)

1+Z1(t)

)2)2

+2β
(

Z4(t)
1+Z1(t)

)2
− 4β

(
0.4722Z1(t) + 0.1944Z2(t) + 0.25

(
Z3(t)− 1

2 ( Z4(t)
1+Z1(t)

)2
)

+0.5278 Z4(t)
1+Z1(t)

)
w(0, t) + 0.1505βw2(0, t) + 0.1505β

∫D
0
exw2(x, t) dx.

(68)
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By Theorem 4.1, the control law (63), (64) minimizes the cost functional

J = lim
t→∞

(
2βV (t) +

∫ t

0

(
L(τ) +

0.1505βeD

c
U2(τ)

)
dτ

)
(69)

for arbitrary β > 0 and c > 0 is sufficiently large and V (t), L(t) are given by (67), (68),
respectively.

Responses of the states and the control law of the closed-loop system (50)–(53), (63),
(64) are shown for D = 3, c = 100 in Fig.1. One can observe that the closed-loop system
is asymptotically stable and the control law (63), (64) is inverse optimal with respect to
the cost functional (69).
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Fig. 1. Responses of the states Z1(t), Z2(t), Z3(t), Z4(t) and the

control law U(t) of the closed-loop system (50)–(53),(63), (64) for

initial conditions Z1(0) = 0.1, Z2(0) = 0.2, Z3(0) = 1.1, Z4(0) = 0.44

and U(θ) = 0, for θ ∈ [0, 3].
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6. CONCLUSIONS

We consider inverse optimal control design for linearizable nonlinear systems with input
delays based on predictor control. A nonlinear system is transferred to a linear system
with a continuously reversible coordinate change. We show that the basic predictor
control is inverse optimal with respect to a meaningful differential game. A mechanical
system is given to illustrate the validity of the proposed method.
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