Kybernetika 55 no. 4, 668-674, 2019

Smooth implications on a finite chain

Yong SuDOI: 10.14736/kyb-2019-4-0668


Mas et al. adapted the notion of smoothness, introduced by Godo and Sierra, and discussed two kinds of smooth implications (a discrete counterpart of continuous fuzzy implications) on a finite chain. This work is devoted to exploring the formal relations between smoothness and other six properties of implications on a finite chain. As a byproduct, several classes of smooth implications on a finite chain are characterized.


finite chain, smoothness, implications


03B52, 03E72


  1. M. Baczyński and B. Jayaram: Fuzzy Implications. In: Studies in Fuzziness and Soft Computing, Vol. 231, Springer, Berlin 2008.   CrossRef
  2. J. Fodor: Smooth associative operations on finite ordinal scales. IEEE Trans. Fuzzy Systems 8 (2000), 6, 791-795.   DOI:10.1109/91.890343
  3. M. Mas, M. Monserrat and J. Torrens: S-implications and R-implications on a finite chain. Kybernetika 40 (2004), 1, 3-20.   CrossRef
  4. M. Mas, M. Monserrat and J. Torrens: On two types of discrete implications. Int. J. Approx. Reason. 40 (2005), 262-279.   DOI:10.1016/j.ijar.2005.05.001
  5. G. Mayor and J. Torrens: On a class of operators for expert systems. Int. J. Intell. Systems 8 (1993), 771-778.   DOI:10.1002/int.4550080703
  6. Y. Shi, B. Van Gasse, D. Ruan and E. E. Kerre: On dependencies and independencies of fuzzy implication axioms. Fuzzy Sets and Systems 161 (2010), 1388-1405.   DOI:10.1016/j.fss.2009.12.003
  7. R. R. Yager: Non-numeric multi-criteria multi-person decision making. Group Decisions Negotiation 2 (1993), 81-93.   DOI:10.1007/bf01384404