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DISTURBANCE OBSERVER BASED INTEGRAL
TERMINAL SLIDING MODE CONTROL FOR
PERMANENT MAGNET SYNCHRONOUS MOTOR
SYSTEM

Junxiao Wang, Fengxiang Wang, Xianbo Wang and Li Yu

This paper presents speed regulation issue of Permanent Magnet Synchronous Motor (PMSM)
using a composite integral terminal sliding mode control scheme via a disturbance compensa-
tion technique. The PMSM q-axis and d-axis subsystems are firstly transformed into two linear
subsystems by using feedback linearization technique, then, integral terminal sliding mode con-
troller and finite-time controller are designed respectively. The proof of finite time stability
are given for the PMSM closed-loop system. Compared with the corresponding asymptotical
stability control method, the proposed controller can make the system output track the desired
speed reference signal in finite time and obtain a better dynamic response and anti-disturbance
performance. Meanwhile, considering the large chattering phenomenon caused by high switch-
ing gains, a composite integral terminal sliding mode control method based on disturbance
observer is proposed to reduce chattering phenomenon. Through disturbance estimation based
feed-forward compensation, the composite integral terminal sliding mode controller may take
a smaller value for the switching gain without sacrificing disturbance rejection performance.
Experimental results are provided to show the superiority of proposed control method.

Keywords: PMSM, integral terminal sliding mode control, finite-time control, feedback
linearization, disturbance observer
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1. INTRODUCTION

Permanent magnet synchronous motor (PMSM) system has been widely employed in
industry applications due to its high performance such as compact structure, high air-
gap flux density, high power density, high torque to inertia ratio, and high efficiency
[26]. However, PMSM control system is essentially a nonlinear system with unknown
load torque disturbances, friction and unmodel dynamics [31]. It is not easy to achieve
a satisfactory high performance when using traditional control methods. Hence, many
advanced control methods could become a consideration to improve performance of
PMSM system [33].
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To enhance the speed regulation performance, many advanced control methods have
been developed for the PMSM system, such as input-output linearization control [34],
adaptive control [19], robust control [11], back-stepping control [28, 35], fractional order
control [24], disturbance estimation based control [10, 32, 33], neural network control
[29], fuzzy control [14], etc. These advanced control methods are used for improving
system performance from different aspects.

Recently, more and more researchers take interest on finite-time control issues, not
only because of the faster convergence rate around the equilibrium, but also for the
fact that such systems seem to perform better disturbance rejection abilities [9, 2]. The
finite-time control systems is of great significance because finite-time convergence have
some nice features such as better dynamic response and disturbance rejection proper-
ties [20]. In addition, considering the traditional sliding mode methods which employ
linear sliding surfaces can only ensure the system state in infinite time [13, 17, 22], for
accelerating the rate of convergence, the terminal sliding mode method which adopts
nonlinear sliding surfaces is proposed. The nonsingular terminal sliding mode method
can ensure convergence of the system state in finite time. The nonsingular terminal
sliding mode methods are given by [7] which are regarded to be efficient methods to
improve the system disturbance rejection properties [23], but the switching gain also
cause large chattering phenomenon.

For dealing with the disturbance problems for PMSM control system, disturbances
reject methods have been proposed. An extended state observer (ESO) is employed
to estimate the lump disturbances of PMSM system in [20, 22], it regards the lumped
disturbances, which consist of a friction force, torque ripple, unmodelled dynamics and
load variation. In [20], a finite-time controller plus feed-forward compensation based
on ESO can improve the disturbance rejection property. The proper switching gain of
sliding mode controller only need to be taken bigger than the bound of disturbance
compensation error for reducing chattering after feed forward compensation for these
disturbances in [22, 23]. A fuzzy sliding mode control method is proposed for the speed
control problem of PMSM system, where a simple load torque observer method is used
to estimate the disturbance for tuning the switching gain [16]. The paper [18] introduces
a radial basis function network (RBFN) disturbance observer design method which also
can estimate the lumped PMSM disturbances and improve the system robustness.

In this paper, we propose a q-axis second order speed control law and a d-axis current
controller for improving the tracking performance and disturbance rejection capabilities
for PMSM servo system. Different from the above algorithms, firstly, the approach
in this paper are finite-time control and integral terminal sliding mode control which is
produced by combining integral sliding mode method and finite-time control theory [36].
What is more, for the speed-regulation problem, traditional speed loop control design
is usually a first-order model for approximately describing the relationship between the
reference q-axis current and the speed loop output, so the reference q-axis current i∗q is
regarded the same as the q-axis current iq. Considering the speed loop control period and
the current loop control period are becoming smaller or even vanishing. In this case,
neglecting the current dynamics will degrade the closed loop performance of PMSM
system. We adopt a second-order model of speed loop which is built for describing
the relationship between the reference q-axis current and the speed output of PMSM
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system [23]. Moreover, considering the nature chattering problem of sliding mode control
method, to estimate the lump disturbance for reducing chattering of PMSM system, a
feed-forward compensation term based on disturbance observation (DOB) for the lumped
disturbances of system is added to integral terminal sliding mode (ITSM) feedback term.
The disturbances are estimated by using disturbance observer (DOB) which can obtain
better closed-loop performance [5, 8]. This feed-forward compensation design helps
to select a smaller switching gain for integral terminal sliding mode controller which
can reduce chattering. Comparative studies are also carried out by simulations and
experiments.

The remainder of this paper is organized as follows. In Section II, the mathematical
model of PMSM and some theorems of finite-time control are described. In Section III,
the q-axis and d-axis controller design and stability analysis based on integral terminal
sliding mode control and finite time control are presented in details, the experimental
results are given. In Section IV, a chattering attenuation method using DOB technique
is also described, experiment results are also discussed in this part. Finally, a conclusion
ends this paper.

2. MATHEMATICAL MODEL OF PMSM AND PRELIMINARIES

2.1. Mathematical model of PMSM

The surface-mounted PMSM is considered in this paper, suppose that magnetic circuit
is unsaturated, hysteresis and eddy current loss are ignored and the magnetic field in the
air gap has a sinusoidal distribution along the circumference. In the d− q coordinates,
the ideal mathematical model of the surface mounted PMSM is expressed as follows [26]:

ω̇ =
ktiq
J
− Bω

J
− Tl
J

(1)

i̇q = −Rsiq
Lq

+ npωid −
npψω

Lq
+
uq
Lq

(2)

i̇d = −Rsid
Ld

+ npωiq +
ud
Ld

(3)

where Rs the stator resistance, ud, uq the input voltages, id, iq the d-axis and q-axis
stator currents, Ld, Lq the d-axis and q-axis stator inductances, with Ld = Lq = Ls, np
the number of pole pairs of the PMSM, ω the rotor angular velocity of the motor, ψ the
flux linkage, Tl the load torque, B the viscous friction coefficient, J the rotor inertia,
kt =

1.5npψf

J the torque constant, and ψf the flux linkage. From Eqs. (2) – (3), we know
that currents of id and iq are coupled. From Eqs. (1) – (3), we also could know that the
relative degree of ω and uq for q-axis subsystem is second order, the relative degree of
id and ud for d-axis subsystem is first order.

The output of PMSM servo system is the speed ω. For the control design of speed
loop, the motor speed dynamic equation (1) could be rewritten as

ω̇ = bi∗q + d0(t) (4)

where b = kt
J , d0(t) =

kt(i
∗
q−iq)
J −Bω

J −
Tl

J is regarded as the system disturbances including
friction, load disturbances and tracking error of iq current loop. This approximation may



DOB based ITSM control for PMSM system 589

degrade the closed loop performance of PMSM. In [23], a second-order model between
reference q-axis current and speed output is proposed, the form is

ω̈ = − ki
kp
ω̇ − B

J
ω̇ − Bki

Jkp
ω − Ṫl

J
− Tlki
Jkp

− b

kp
u̇q + b

(
i̇∗q +

ki
kp
i∗q

)
(5)

where kp and ki are parameter values of PI controller for inner current loop, then Eq. 5
could be simplified as

ω̈ = u+ d(t) (6)

where u = b(i̇∗q + ki
kp
i∗q), d(t) = − ki

kp
ω̇− B

J ω̇−
Bki
Jkp

ω− Ṫl

J −
Tlki
Jkp
− b

kp
u̇q can be considered

as the lumped disturbance, u is the control signal.

2.2. Preliminaries

Lemma 2.1 (Bhat and Bernstein [1]): Consider a nonlinear system described by

ẋ = f(x), f(0) = 0, x ∈ Rn (7)

Suppose that there exists a continuous function V (x): U → R such that:

1. V (x) is positive definite.

2. There exists real numbers c > 0 and α ∈ (0, 1) and an open neighborhood U0 ⊂ U
of the origin such that V̇ ≤ −cV α(x), x ∈ U0. Then, the origin is a finite-time
stable equilibrium of system.

Lemma 2.2 (Bhat and Bernstein [2]): Consider a first order system.

ẋ = u (8)

x and u are the state and control law. If the control law is selected as

u = −ksigα(x) (9)

k > 0, 0 < α < 1, sigα(x) = sign(x)|x|α. Then the system is globally finite-time stable.

Lemma 2.3 (Bhat and Bernstein [3]): Consider the integral chain system

ẋ1 = x2, ẋ2 = u. (10)

The origin is a globally finite-time stable equilibrium for the integral system under the
feedback law

u = −k1sigα1(x1)− k2sigα2(x2) (11)

where k1, k2 > 0, and α1, α2 satisfy α2 = 2α1

1+α1
with 0 < α1 < 1.
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3. CONTROLLER DESIGN

For improving the servo performance of PMSM system, integral terminal sliding mode
controller and finite-time controller are designed respectively for the q-axis subsystem
and the d-axis subsystem. The general control structure of the PMSM servo system is
shown as Figure 1, the overall system consists of a PMSM, space vector pulse width
modulation (SVPWM), a voltage-source inverter (VSI), a field-orientation mechanism
and three controllers. Here speed controller which is based on feedback-linearization
technique is used to stabilize errors of q-axis speed, finite-time controller is adopted in
the d-axis current loops which can stabilize d-axis current errors. As it can be seen
from Figure 1, the rotor angle and velocity information can be obtained from the mea-
surements. The currents id and iq can be calculated from ia, ib and ic (which could be
obtained from measurements) by Clarke and Park transformations.

Fig. 1. Block diagram of PMSM servo system based on vector

control.

3.1. Design of q-axis speed controller based on integral terminal sliding
mode control method

The objective of this section is to design a q-axis integral terminal sliding mode con-
troller as Figure 2 based on feedback-linearization, make the output of system track the
reference speed signal in finite-time.

The reference speed value ω∗ can be differentiable for the second order. Define the
error of speed eω = ω∗ − ω, using the PMSM mathematical model of Eqs. (1) – (3), it
yields

ėω = ω̇∗ − ω̇

= ω̇∗ − 3npψf iq
2J

+
Bω

J
+
Tl
J

(12)

ëω = ω̈∗ − u− d(t) (13)

Where d(t) = − ki
kp
ω̇ − B

J ω̇ −
Bki
Jkp

ω − Ṫl

J −
Tlki
Jkp
− b

kp
u̇q. Define x1 = eω, x2 = ėω, thus,
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Fig. 2. Block diagram of PMSM servo system based on ITSM

control.

the system could be simplified as:

ẋ1 = x2 (14)

ẋ2 = −u− d(t) + ω̈∗ (15)

Eqs. (14) – (15) is a second order system.
Design an integral terminal sliding mode (ITSM) surface as,

s = x2(t)− x2(t0) +

∫ t

t0

(k1sig
α1(x1(t)) + k2sig

α2(x2(t))) dt (16)

where k1, k2 > 0 ,and α1, α2 satisfy α2 = 2α1

1+α1
with 0 < α1 < 1. Note that it is s(t0) = 0

at t = t0, so sliding mode stage starts from the initial time instance.
The control law is

u = k1sig
α1(x1(t)) + k2sig

α2(x2(t)) + ηsgn(s) + ω̈∗ (17)

from Eq. (6), it could obtain

b
(
i̇∗q +

ki
kp
i∗q

)
= k1sig

α1(x1(t)) + k2sig
α2(x2(t)) + ηsgn(s) + ω̈∗ (18)

where η > l, k1, k2 > 0, and α1, α2 satisfy α2 = 2α1

1+α1
with 0 < α1 < 1.

3.2. Design of d-axis current controller based on finite time control method

The objective of this section is to design a d-axis current controller based on finite-
time control and feedback-linearization technology, the reference i∗d = 0, the output of
controller is ud. On the basis of PMSM mathematical model, define the error of d-axis
current ed = i∗d − id. The equation of error state is

ėd = −i̇d =
Rsid
L
− npωiq −

ud
L

(19)
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Define

u1 = −i̇d =
Rsid
L
− npωiq −

ud
L

(20)

then, the first order system is

ėd = u1 (21)

the control law is

u1 = −ksigα(ed) (22)

where k > 0, 0 < α < 1.
The d-axis control voltage of ud is deduced from Eqs. (20), (22), substituting the ed

with −id, yields

ud = L

(
Rsid
L
− npωiq − ksigα(id)

)
(23)

where k > 0, 0 < α < 1.

3.3. Closed-loop stability

The closed-loop system stability analysis here consists of the analysis for q-axis subsys-
tem which adopts integral terminal sliding mode (ITSM) controller and d-axis subsystem
which adopts finite-time controller (FTC).

Assumption 3.1: For the PMSM servo system, suppose the lump disturbance d(t)
is bounded and satisfieslimt→∞ ḋ(t) = 0, suppose there exists a constant l > 0, and it
satisfies |d(t)| ≤ l.

Theorem 3.1: Suppose the PMSM servo system satisfies Assumption 3.1, the i∗q and
i∗d control laws are designed as above Eq. (18) and Eq. (23) , if the switching gain
satisfies η > l, then the closed-loop speed servo system of Eqs. (1) – (3), (18) and (23)
is globally finite-time stable.

P r o o f . For the standard second integrator chain system of Eqs. (14) – (15), choosing
the following Lyapunov function

V =
1

2
sT s. (24)

By taking the time derivative of V by using above Eq. (17), we obtain

V̇ = sṡ = s(ẋ2 + k1sig
α1(x1) + k2sig

α2(x2)) (25)

substituting Eq. (17) into Eq. (15), yields

ẋ2 = −u1 − d(t) = −k1sigα1(x1)− k2sigα2(x2)

− ηsgn(s)− d(t) (26)
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substituting Eq. (26) into Eq. (25), yields

V̇ = s(−ηsgn(s)− d(t)) ≤| s | (−η + l)

= 2
1
2 (−η + l)

(
1

2
sT s

) 1
2

= −2
1
2 (η − l)V 1

2 . (27)

The Eq. (27) satisfies Lemma 2.1, so the system state is stabilized to sliding mode
surface in finite-time tq1 when η > l ≥ |d(t)|.

From the above analysis, the system states could reach the sliding surface s = 0 from
any initial condition in finite-time tq1, then ṡ = 0, yields

ṡ = ẋ2 + k1sig
α1(x1) + k2sig

α2(x2) = 0 (28)

According to Lemma 2.3, we know that the system state can converge to the origin
along the sliding surface in finite-time tq2 . This completes the proof of q-axis closed-
loop subsystem stability.

Substituting the d-axis subsystem with the ud control law Eq. (23), then the closed-
loop subsystem of d-axis current is

i̇d = −ksigα(id) (29)

According to Lemma 2.2, the above d-axis current closed-loop subsystem is globally
finite-time stable, id converges to the origin in a finite-time td. This completes the
proof. �

Remark 3.1: When α = 1, α1 = 1 and α2 = 1, Eq. (18) and Eq.(23) reduce to the
following asymptotically stable controller (ASC) form.

b(i̇∗q +
ki
kp
i∗q) = k1sig(x1(t)) + k2sig(x2(t)) + ηsgn(s) + ω̈∗ (30)

ud = L

(
Rsid
L
− npωiq − kid

)
(31)

where η > l ≥ |d(t)|, k, k1, k2 > 0.

3.4. Experimental results

The parameters of the PMSM are given as Table 1, these parameter value are given
by manufacturer and experimental test. This comparison for these two control schemes
of ITSM control method and ASC method are implemented using DSP2808 based test
bench as Figure 3.

The experiment parameter is selected as following Table 2. Figure 4(a) and Figure 4(c)
show that the speed response and current response based on ITSM control method and
FTC give a shorter settling time compared with ASC method. When in the presence of
disturbance from Figure 5(a), Figure 5(c), and Figure 5(e), the ITSM control method
and finite control method have less speed fluctuation (speed drop of ASC method has 67
rpm, but the ITSM has about 45 rpm.) and a shorter settling time compared with the
ASC control method. i∗q and ud also recover faster than that of ASC from Figure 4(b),
Figure 4(d), Figure 5(b), Figure 5(d), and Figure 5(f).
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Descriptions Parameters Nominal Values
Rated Power P 750W
Rated Voltage U 200 V
Number of Poles np 4
Armature Resistance Rs 1.74, Ω
Stator Inductances Ld = Lq 0.004H,
Viscous Damping B 7.403×10−5N ·m · s/rad
Momentum of Inertia J 1.78 ×10−4kg ·m2

Rated Speed n 3000 RPM
Rotor Flux Linkage ϕ 0.1167 Wb
rated torque TN 2.0 N ·m

Tab. 1. Parameter values of PMSM.

Fig. 3. Test bench.

Parameters ITSM control ASC
α1

1
2 1

k1 10 10
α2

2
3 1

k2 10 10
η 350 350
kp 100 100
ki 100 100
k 10 10

Tab. 2. Controller parameter values.
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Fig. 4. The response curves when the reference speed value is 1500

rpm. (a) speed. (b) i∗q . (c) id. (d) ud.

4. CHATTERING ATTENUATION BASED ON A DISTURBANCE OBSERVER

From the Theorem 3.1, the integral terminal sliding mode control is naturally a kind of
switching control, it adopts discontinuous switching gain term to suppress total distur-
bances, that is so say, the switching gain must be selected larger than the upper bound
of the total disturbances. For practical application, due to conservative selective of the
switching gain value η, we usually select too large, which may worse the system chatter-
ing phenomenon. Thus, if the disturbances can be well estimated and using feed-forward
compensation, the switching gain η could be selected to be only larger than the upper
bound of disturbance compensation error, then the system chattering phenomenon can
be reduced.

4.1. Design of DOB-based composite controller

As we known, PMSM speed regulation systems always confront with different distur-
bances, including internal model uncertainties and external disturbances. Conventional
feedback-based control methods usually can only reject these disturbances by feedback
regulation indirectly in a relatively slow way. This results will degrade the PMSM system
performance when meeting severe lump disturbances. One efficient way is to introduce a
feed-forward compensation part into the conventional feedback controller for improving
system performance, then a composite control scheme is designed. In most of real ap-
plications, it is usually impossible to measure the disturbances directly, so disturbance
observation (DOB) techniques one of such efficient techniques which need to be devel-
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Fig. 5. The response curves when the reference speed value is 1500

rpm. (a) speed of ASC. (b) i∗q of ASC. (c) speed of ITSM control. (d)

i∗q of ITSM control. (e) id. (f) ud.

oped. The diagram of disturbance observer (DOB) based ITSM control system is shown
as Figure 6.

Fig. 6. Block diagram of DOB based ITSM control for PMSM

system.

Definition 4.1: The disturbance estimation error ed(t) between the total disturbances

d(t) and the estimation is denoted as ed(t) = d(t)− d̂(t).
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Theorem 4.1: If the disturbance d(t) satisfies Assumption 3.1, then the estimation

error ed(t) will asymptotically approach to zero, the disturbance estimation d̂(t) will
finally converge to the lumped disturbances d(t). Considering system Eqs. (14) – (15),
a disturbance observer is given as follows:

d̂(t) = λ(x2 − z)
ż = −u− d̂(t) + ω̈∗ (32)

P r o o f . It can be obtained from Figure 6 that

ed(t) = d(t)− d̂(t). (33)

Taking the derivation of Eq. (33), substitutes Eq. (32) in the Eq. (33), yields

ėd(t) = ḋ(t)− ˙̂
d(t) = ḋ(t)− λ(ẋ2 − ż) (34)

= ḋ(t)− λ((−u− d(t) + ω̈∗)− (−u− d̂(t) + ω̈∗)) (35)

= ḋ(t)− λ(d(t)− d̂(t)) = ḋ(t)− λed(t). (36)

According to the Lemma 5.5 in [12] (pp. 219), the system Eq. (43) is globally input-
to-output (ISS). Combining limt→∞ ḋ(t) = 0 in Assumption 3.1, it is derived from the
definition of ISS in [12] (pp. 217–218) that the state of system Eq. (43) converges to
zero as t→∞ , that is

lim
t→∞

ed(t) = 0 (37)

so the theorem 4.1 is thus proved.
The closed-loop system stability analysis here consists of the analysis for q-axis sub-

system which adopts DOB based integral terminal sliding mode (ITSM) controller as.

u = k1sig
α1(x1(t)) + k2sig

α2(x2(t)) + ηsgn(s) + ω̈∗ − d̂(t)

b(i̇∗q +
ki
kp
i∗q) = k1sig

α1(x1(t)) + k2sig
α2(x2(t)) + ηsgn(s) + ω̈∗ − d̂(t) (38)

where η > le, k1, k2 > 0, and α1, α2 satisfy α2 = 2α1

1+α1
with 0 < α1 < 1. �

Assumption 4.1: For the PMSM servo system, suppose there exists a constant le > 0,
and it satisfies |d(t)− d̂(t)| ≤ le.

Theorem 4.2: Suppose the PMSM servo system satisfies Assumption 4.1, the i∗q con-
trol laws are designed as above Eqs. (24), if the switching gain satisfies η > le, then the
closed-loop speed servo system of Eqs. (1) – (3) and (24) is globally finite-time stable.

P r o o f . For the second integrator system of Eqs. (20 – 21), choosing the following
Lyapunov function

V =
1

2
sT s (39)
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By taking the time derivative of V by using above Eq. (22), we obtain

V̇ = sṡ = s(ẋ2 + k1sig
α1(x1) + k2sig

α2(x2)) (40)

then,

ẋ2 = u+ d(t) = −k1sigα1(x1)− k2sigα2(x2)

− ηsgn(s) + d̂(t)− d(t) (41)

substituting Eq. (41) into Eq. (40), it yields

V̇ = s(−ηsgn(s)− d̂(t) + d(t)) ≤| s | (−η + le)

= 2
1
2 (−η + le)

(
1

2
sT s

) 1
2

= −2
1
2 (η − le)V

1
2 (42)

we know Eq. (42) satisfies Lemma 2.1, so the system state is stabilized to sliding mode

surface in finite-time tq1 when η > le ≥ |d(t)− d̂(t)|.
From the above analysis, the system states will reach the sliding surface s = 0 from

any initial condition in finite-time tq1, then ṡ = 0, yields

ṡ = ẋ2 + k1sig
α1(x1) + k2sig

α2(x2) = 0 (43)

According to Lemma 2.2, we know that the system state can converge to the origin
along the sliding surface in finite-time tq2 . This completes the proof of q-axis closed-
loop subsystem stability. The proof of d-axis closed-loop subsystem stability is the same
as the last part. So this completes the proof. �

Remark 3.1: The observer convergence is tuned by the value λ, it could be choosed
as large as possible, then the observer convergence is fast. The observer convergence
rate could be faster than controller, but overlarge value may lead in much noise. Due to
the disturbance estimation based feed-forward compensation, the switching gain η only
need to be larger than observer error bound ”le”, thus the chattering phenomenon is
reduced.

4.2. Experimental results

This PMSM system under these two control schemes, ITSM control method and ITSM+DOB
method, it use the same test bench. The experiment parameter is selected as following
Table 3.

The experiment results of speed response are shown in Figure 7(a) and Figure 7(b),
experiment result in Figure 7(a) show that the method of ITSM+DOB control and
finite control method give a shorter settling time with smaller overshoot as compared
with ITSM control method. Figure 8(a), and Figure 8(c) show that the ITSM+DOB
control method has less fluctuation and a shorter recovering time compared with the
ITSM control method, the speed drop of ITSM+DOB method is 45 rpm, ITSM control
method has 29 rpm with speed drop. From Figure 7(b), Figure 8(b), and Figure 8(d),
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Parameters ITSM+DOB control ITSM control
α1

1
2

1
2

k1 10 10
α2

2
3

2
3

k2 10 10
η 350 150
kp 100 100
ki 100 100
k 0.05 0.05
1
λ = 1

τ 200 −

Tab. 3. Controller parameter values.

Fig. 7. The response curves when the reference speed value is 1500

rpm. (a) speed. (b) i∗q .

the response of i∗q recovers faster than the current response of ITSM both at the initial
time and when the load torque disturbance is given suddenly. Notice that the chattering
phenomenon is obvious reduced based on the disturbance compensation, the disturbance
rejection is also enhanced.

5. CONCLUSION

In this paper, the design and implementation of q-axis speed controller and d-axis cur-
rent controller using integral terminal sliding mode control and finite-time control based
on feedback-linearization technique have been given. The rigorous analysis for the closed
loop system has shown that the system state could be stabilized and track the reference
signal in finite time. Compared with the asymptotically stable controller, the proposed
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Fig. 8. The response curves when in the presence of disturbance. (a)

speed of ITSM control. (b) i∗q of ITSM control. (c) speed of

ITSM+DOB. (d) i∗q of ITSM+DOB.

control scheme not only ensure the stability of closed loop system, but also make the
convergence rate and the disturbance reject performance much better. For reducing
chattering phenomenon, the disturbance compensation technique has been introduced.
Finally, the effectiveness of proposed method has been verified by experimental results.
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