Kybernetika 55 no. 3, 540-560, 2019

PID and filtered PID control design with application to a positional servo drive

Igor Bélai, Mikuláš Huba, Kevin Burn and Chris CoxDOI: 10.14736/kyb-2019-3-0540

Abstract:

This paper discusses a novel approach to tuning 2DOF PID controllers for a positional control system, with a special focus on filters. It is based on the multiple real dominant pole method, applicable to both standard and series PID control. In the latter case it may be generalized by using binomial nth order filters. These offer filtering properties scalable in a much broader range than those allowed by a standard controller. It is shown that in terms of a modified total variance, controllers with higher order binomial filters allow a significant reduction of excessive control effort due to the measurement noise. When not limited by the sampling period choice, a significant performance increase may be achieved by using third order filters, which can be further boosted using higher order filters. Furthermore, all of the derived tuning procedures keep the controller design sufficiently simple so as to be attractive for industrial applications. The proposed approach is applied to the position control of electrical drives, where quantization noise can occur as a result of angular velocity reconstruction using the differentiated outputs of incremental position sensors.

Keywords:

filtering, optimization, PID control, dominant pole placement

Classification:

93C-02

References:

  1. K. J. \AAström and B. Wittenmark: Computer Controlled Systems. Theory and Design. Prentice Hall, Englewood Cliffs, N.J. 1984.   CrossRef
  2. M. Bodson, J. Chiasson and R. T. Novotnak: Nonlinear speed observer for high-performance induction motor control. IEEE Trans. Industr. Electronics 42 (1995), 4, 337-343.   DOI:10.1109/41.402471
  3. R. H. Brown, S. C. Schneider and M. G. Mulligan: Analysis of algorithms for velocity estimation from discrete position versus time data. IEEE Trans. Industr- Electronics 39 (1992), 11-19.   DOI:10.1109/41.121906
  4. E. Chu: Optimization and pole assignment in control system design. Int. J. Appl. Math. Computer Sci. 11 (2001), 5, 1035-1053.   CrossRef
  5. L. R. da Silva, R. C. C. Flesch and J. E. Normey-Rico: Analysis of anti-windup techniques in PID control of processes with measurement noise. In: 3rd IFAC Conference on Advances in Proportional-Integral-Derivative Control, Ghent 2018.   DOI:10.1016/j.ifacol.2018.06.100
  6. B. D'Andrea-Novel, M. Fliess, C. Join, H. Mounier and B. Steux: A mathematical explanation via "intelligent'' PID controllers of the strange ubiquity of PIDs. In: Proc. 18th Mediterranean Conference on Control and Automation, MED'10, 2010, pp. 395-400.   DOI:10.1109/med.2010.5547700
  7. J. Fišer, P. Zítek and T. Vyhlídal: Dominant four-pole placement in filtered PID control loop with delay. 20th IFAC World Congress, IFAC-PapersOnLine 50 (2017), 1, 6501-6506.   DOI:10.1016/j.ifacol.2017.08.1047
  8. M. Fliess and C. Join: Model-free control. Int. J. Control 86 (2013), 12, 2228-2252.   DOI:10.1080/00207179.2013.810345
  9. M. Fliess and C. Join: Stability margins and model-free control: A first look. In: 2014 European Control Conference (ECC), 2014, pp. 454-459.   DOI:10.1109/ecc.2014.6862167
  10. Z. Gao: Active disturbance rejection control: a paradigm shift in feedback control system design. In: American Control Conference, 2006, pp. 2399-2405.   DOI:10.1109/acc.2006.1656579
  11. Z. Gao: On the centrality of disturbance rejection in automatic control. ISA Trans. 53 (2014), 10, 850-857.   DOI:10.1016/j.isatra.2013.09.012
  12. J. Han: From PID to Active Disturbance Rejection Control. IEEE Trans. Industr. Electron. 56 (2009), 3, 900-906.   DOI:10.1109/tie.2008.2011621
  13. M. Huba: Open flexible PD-controller design for different filtering properties. In: 39th Annual Conference of the IEEE Industrial Electronics Society (IECON), IEEE, Vienna 2013.   DOI:10.1109/iecon.2013.6699719
  14. M. Huba: Tuning of a Filtered Pole Assignment Controller for an Integral Plant. In: 15th Int. Carpathian Control Conference - ICCC, Velké Karlovice 2014.   DOI:10.1109/carpathiancc.2014.6843593
  15. M. Huba: Filter choice for an effective measurement noise attenuation in PI and PID controllers. In: ICM 2015, Nagoya, 2015.   DOI:10.1109/icmech.2015.7083946
  16. M. Huba: Pole Assignment PD Controller Tuning for Oscillatory Systems with Dead Time. In: International Conference on Innovative Technologies, IN-TECH 2015, Dubrovnik 2015.   CrossRef
  17. M. Huba and I. Bélai: Limits of a Simplified Controller Design Based on IPDT models. ProcIMechE Part I: J. Systems Control Engrg. 232 (2018), 6, 728-741.   DOI:10.1177/0959651818755957
  18. M. Huba, P.Bisták, Z.Skachová and K. Žáková: P- and PD-controllers for I$_1$ and I$_2$ models with dead time. In: 6th IEEE Mediterranean Conference on Control and Automation 11 (1998), 514-519.   DOI:10.1142/9789814447317\_0085
  19. M. Huba, Z.Skachová P.Bisták and K. Žáková: Predictive antiwindup PI and PID-controllers based on I$_1$ and I$_2$ models with dead time. 6th IEEE Mediterranean Conf. 11 (1998), 532-535.   DOI:10.1142/9789814447317\_0088
  20. J. Lee and Y. Eun: Analysis of noise-induced tracking loss in pi controlled systems with anti-windup. In: 2016 American Control Conference (ACC) 2016, pp. 5461-5466.   DOI:10.1109/acc.2016.7526526
  21. P. Mercader and A. Banos: A PI tuning rule for integrating plus dead time processes with parametric uncertainty. ISA Transactions 67 (2017), 246-255.   DOI:10.1016/j.isatra.2017.01.025
  22. A. D. Micic and M. R. Matausek: Optimization of PID controller with higher-order noise filter. J. Process Control 24 (2014), 5, 694-700.   DOI:10.1016/j.jprocont.2013.10.009
  23. R. C. Oldenbourg and H. Sartorius: Dynamik selbsttätiger Regelungen. Second edition 1951. R. Oldenbourg-Verlag, München 1944. Engl. Ed.: The dynamics of automatic controls, American Society of Mechanical Engineers, 1948.   DOI:10.1002/zamm.19520320221
  24. J. Rissanen: Control system synthesis by analogue computer based on generalized linear feedback concept. In: Proc. Symposium on Analog Computation Applied to the Study of Chemical Processes 1960, pp. 1-13.   CrossRef
  25. V. R. Segovia, T. Hägglund and K. J. {\AA}ström: Measurement noise filtering for {PID} controllers. J. Process Control 24 (2014), 4, 299-313.   DOI:10.1016/j.jprocont.2014.01.017
  26. S. Skogestad: Simple analytic rules for model reduction and {PID} controller tuning. J. Process Control 13 (2003), 291-309.   DOI:10.1016/s0959-1524(02)00062-8
  27. M. Vítečková and A. Víteček: 2DOF PI and PID controllers tuning. In: 9th IFAC Workshop on Time Delay Systems, volume 9, Praha 2010, pp. 343-348.   DOI:10.3182/20100607-3-cz-4010.00061
  28. M. Vítečková and A. Víteček: 2DOF PID controller tuning for integrating plants. In: 2016 17th Int. Carpathian Control Conf. (ICCC) 2016, pp. 793-797.   DOI:10.1109/carpathiancc.2016.7501204
  29. Sheng-Ming Yang and Shuenn-Jenn Ke: Performance evaluation of a velocity observer for accurate velocity estimation of servo motor drives. In: Conference Record of 1998 IEEE Industry Applications Conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242), volume 3 (1998), pp. 1697-1702.   DOI:10.1109/28.821803
  30. P. Zítek, J. Fišer and T. Vyhlídal: Dimensional analysis approach to dominant three-pole placement in delayed PID control loops. J. Process Control 23 (2013), 8, 1063-1074.   DOI:10.1016/j.jprocont.2013.06.001
  31. P. Zítek, J. Fišer and T. Vyhlídal: Dynamic similarity approach to control system design: delayed PID control loop. Int. J. Control 92 (2017), 2, 329-338.   CrossRef