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SOLUTIONS OF SEMI-MARKOV CONTROL MODELS
WITH RECURSIVE DISCOUNT RATES
AND APPROXIMATION BY ε−OPTIMAL POLICIES

Juan González-Hernández and Yofre H. Garćıa

This paper studies a class of discrete-time discounted semi-Markov control model on Borel
spaces. We assume possibly unbounded costs and a non-stationary exponential form in the
discount factor which depends of on a rate, called the discount rate. Given an initial discount
rate the evolution in next steps depends on both the previous discount rate and the sojourn
time of the system at the current state. The new results provided here are the existence and
the approximation of optimal policies for this class of discounted Markov control model with
non-stationary rates and the horizon is finite or infinite. Under regularity condition on sojourn
time distributions and measurable selector conditions, we show the validity of the dynamic
programming algorithm for the finite horizon case. By the convergence in finite steps to the
value functions, we guarantee the existence of non-stationary optimal policies for the infinite
horizon case and we approximate them using non-stationary ε−optimal policies. We illustrated
our results a discounted semi-Markov linear-quadratic model, when the evolution of the discount
rate follows an appropriate type of stochastic differential equation.

Keywords: optimal stochastic control, dynamic programming method, semi-Markov pro-
cesses

Classification: 93E20, 49L20

1. INTRODUCTION

The theory of discrete-time discounted semi-Markov control models (SMCMs) has been
widely developed in many directions. The first assumptions to guarantee the existence
of optimal policies in this type control models was initially formulated on finite spaces
by [6], [15], [16], [20], later, on denumerable state spaces and compact control spaces
in [5], [8] (also know as Markov chains), and generalized to Borel spaces by [3],[17].
Applications and other contributions can also be seen in [18], [19],[11], [13], [7], [14],
and the references therein. However, there are very few SMCMs with a non-constant
discount factor. A work with some similar conditions was proposed by Zagst in [23],
where a particular separable Bayesian SMCM is considered on Borel spaces with variable
discount factor that depends of the observation and the control. He proves the existence
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of non-stationary optimal policies under the so-called Blackwell- sufficiency order of
probability measures.

We consider here a discounted SMCM in discrete-time where the discount factor has
an exponential form and depends on a non-stationary rate which is obtained recursively
from an initial discount rate and is dependent of the control. We refer to this model
as discounted Semi-Markov Control Model with recursive discount rates. The discount
rates in each step are obtained by applying a different recursive function, depending
on the previous discount rate and a non-negative random variable which represents the
current sojourn time of the system. More precisely, if the initial state and the initial
discount rate are x0 and r0, respectively, then recursive relation of the discount rate in
this SMCM takes the form

rn+1 := E[Rn(rn, δn+1) | xn, rn, an], n = 0, 1, 2, . . . , (1)

where E is the expectation respect to the random variable δn+1 on (0,∞) that represents
the sojourn time of the system state at step n conditioned by (xn, rn, an). The above
dependence can be used in the modeling of semi-Markov control systems where the
discount rate is oscillating around an ideal value. So this model be more realistic than
the case when the discount factor is considered as constant; for example, to find optimal
actions of big investors or monopolies.

The main contribution focuses in give conditions and prove on both the existence
of non-stationary optimal policies as the possibility of approximation with ε−optimal
policies for this type of discounted case when the horizon is finite or infinite.

The rest of paper has been organized as follows. In Section 2 we introduce the
components of the SMCM, the sets of histories and admissible policies, the regularity
condition to guarantee that the process does not collapse in finite time, and the canonical
construction. In Section 3, the value function and the optimal control problem with finite
horizon are defined. Also, to guarantee the existence of non-stationary optimal policies
for the SMCM, the inf-compactness, continuity respect to controls, and the regularity
condition assumption are supposed. The existence of a non-stationary optimal policy
for finite case is obtained from a version of the Dynamic Programming Theorem. In
Section 4 we discussed the case of SMCM, of the finite horizon value functions to the
discounted optimal value with infinite horizon. We also prove the non-stationary optimal
policy can be approximated by non-stationary ε−optimal policies. In Section 5, we give
an example of a recursive discount rate whenever the discount rate evolution follows
a stochastic differential equation (SDE). Finally, in Section 6, a semi-Markov linear-
quadratic model is presented as an example.

2. CONTROL MODEL

Let X and Y be Borel spaces. A stochastic kernel on X given Y is a function P (· | ·)
such that P (· | y) is a probability measure on X for each y ∈ Y, and P (A | ·) is a
measurable function on Y for each fixed A ∈ B(X). The Borel sigma algebra of subsets
of X, denoted by B(X), is the smallest sigma algebra that contains the open sets of X.
The function f : X → Y is measurable if for any open set B on Y, the inverse image
f−1(B) is a Borel set in X. For any measurable set X, we denote by P(X) the collection
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of all probability measures over on X. P(X) is a Borel space when X is a Borel space
(see for instance [2], or [4, chapter 7]).

The SMCM we deal with is

M =
(
X ′, {Rn | n = 0, 1, 2, . . . }, A, {A(x, r) | (x, r) ∈ X ′}, F,Q,D, d

)
, (2)

where:

• The set X ′ := X × [d1, d2], where X is the Borel state space. The interval [d1, d2],
where 0 < d1 ≤ d2, is the discount rate space. The transitions of system state
in the time occur in the steps n = 0, 1, 2, . . . The holding time of SMCM at any
state, between step n and step n + 1, is a random variable δn which takes values
on (0,∞). In addition, δ0 := 0 and Tn := δ0 + · · ·+ δn represents the accumulated
time up to step n, n = 0, 1, 2, . . .

• {Rn | n = 0, 1, 2, . . . } is a sequence of measurable functions (called the recursive
discount rate functions)

Rn : [d1, d2]× (0,∞)→ [d1, d2], n = 0, 1, 2, . . .

From which generates in each period the discount rate according to (1).

• A is a Borel space and represents the set of controls.

• The family {A(x, r) | (x, r) ∈ X ′} of non-empty measurable subsets of A, where
A(x, r) is the subset of admissible controls for (x, r) ∈ X ′, such that,

K := {(x, r, a) | a ∈ A(x, r), (x, r) ∈ X ′}, (3)

is a measurable subset X ′ ×A.

• The continuous function t → F (t | x, a, x′) is a probability distribution function
for each (x, a, x′) ∈ X ×A×X, and we assume that F (t | ·) is jointly measurable
for each real number t.

• The stochastic kernel Q on X given K is the transition law between states.

• The measurable function D : X × A → R, denotes the immediate cost that the
system incurs when the state is xn and a control an is chosen. The measurable
function d : X ×A→ R stands for the holding cost of the system at sate xn when
the discount rate is rn and the control is an.

Form of F and Q we can define the distribution function of the sojourn time δn+1 of
system conditional to (xn, rn, an) ∈ K (see [22], Section 1.2 ) as

G(t | xn, rn, an) := P (δn+1 ≤ t | xn, rn, an) =

∫
X

F (t | xn, an, x′)Q(dx′ | xn, rn, an) (4)
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for t ∈ R, n = 0, 1, 2, . . . , x′ ∈ X. To simplify the notation we will denote by Qn+1,
n = 0, 1, 2, . . . , the transitions between the pairs state-discount rate in each step that
now can be write as

Qn+1(B × F | xn, rn, an, δn+1) := Q(B | xn, rn, an)IF [Rn(rn, δn+1)], (5)

B ∈ B(X), F ∈ B
(
[d1, d2]

)
, n = 0, 1, 2, . . . , where IF (·) is the indicator function on the

set F.

Assumption 2.1. The set K contains the graph of a measurable function f from X ′

to A, such that, f(x, r) ∈ A(x, r), for all (x, r) ∈ X ′.

For the SMCM (2), the total holding cost function between step n and step n+ 1 is
given by

c(xn, rn, an) = D(xn, an) + d(xn, an)

∞∫
0

t∫
0

e−rnsdsG(dt | xn, rn, an), (6)

for n = 0, 1, 2, . . .

2.1. Interpretation

Suppose the initial state and the initial discount rate of the system are x0 = x and
r0 = r respectively. The initial discount rate r0 ∈ [d1, d2] is given. The initial control
a0 = a ∈ A(x0, r0) is chosen. Therefore, the system generates the immediate cost
D(x0, a0) at time T0, and remains in the state x0 = x during a (non-negative) random
time δ1 := T1 − T0 with distribution G(· | x, r, a). Additionally, the system generates
the initial cost d(x0, a0) of sojourn during the time interval [T0, T1) in the state x0 when
control a0 was selected. Then, the total holding cost function between step n = 0 and
n = 1 is

c(x0, r0, a0) = D(x0, a0) + d(x0, a0)

∞∫
0

t∫
0

e−r0sdsG(dt | x0, r0, a0), (7)

and the system is moved to state x1 = y according to the distribution Q(· | x0, r0, a0)
at time T1 = T0 + δ1. The discount rate of step 1 is

r1 = E[R0(r0, δ1) | x0, r0, a0], (8)

where R0 is the discount rate recursive function. This evolution continues in the same
way throughout the horizon.

2.2. Histories and Policies

The set of admissible histories at step n is denoted by Hn, and is defined in the usual
way

H0 := X ′, Hn :=
(
K× (0,∞)

)n×X ′, n = 1, 2, . . . , (9)
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where K is defined in (3). An n−admissible history hn ∈ Hn is a vector

(x0, r0, a0, δ1, x1, r1, a1, δ2, . . . , xn−1, rn−1, an−1, δn, xn, rn), (10)

with (xi, ri, ai) ∈ K, for i = 0, . . . , n− 1, and (xn, rn) ∈ X ′.

Definition 2.2. (Policies of SMCM) Let M be the SMCM (2).

(a) A policy is a sequence of stochastic kernels π = {πn}n∈N on A given Hn, such that,

πn(A(xn, rn) | hn) = 1, ∀hn ∈ Hn, n = 0, 1 . . .

The set of all policies is denoted by Π.

(b) A policy π is a Markov policy if exists a sequence of stochastic kernels {φn}n∈N on
A given X ′ that satisfies

πn(D | hn) = φn(D | xn, rn),

for all hn ∈ Hn, D ∈ B(A), and n ∈ N. The set of all Markov policies is denoted
M.

(c) A Markov policy π is non-stationary deterministic if exists a sequence of stochastic
kernels {gn}n∈N of measurable functions (or selectors) gn : X ′ → A such that

φn(D | xn, rn) = ID[gn(xn, rn)],

for all (xn, rn) ∈ X ′, D ∈ B(A), and n ∈ N. The set of all deterministic policies is
denoted D.

Clearly D ⊂M ⊂ Π.

2.3. The canonical construction of an SMCM

Let (Ω,F) be the measurable space of all trajectories where Ω := (X ′ × A × (0,∞))∞

and F is the respective σ-algebra of subsets of Ω. The subset H∞ := (K × (0,∞))∞ of
Ω is the set of all admissible trajectories.

Given a policy π = {πn} and the initial pair (x0, r0) ∈ X ′, the Ionescu Tulcea
Theorem ( see [4], Proposition 7.28) guarantees the existence of a probability measure
Pπν on (Ω,F) such that

Pπν (dx0dr0da0dδ1dx1dr1da1dδ2 · · · )
:= ν(dx0, dr0)π0(da0 | x0, r0)G(dδ1 | x0, r0, a0)

·Q1(dx1, dr1 | x0, r0, a0, δ1)π1(da1 | x1, r1) · · · ,

where ν is an arbitrary initial distribution for (x0, r0). Pπν satisfies the following prop-
erties:

For all B ∈ B(X), F ∈ B([d1, d2]), D ∈ B(A), t ∈ R, and hn ∈ Hn, n = 0, 1, . . .

Pπν
(
(x0, r0) ∈ B × F

)
= ν(B × F ), (11)
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Pπν
(
xn+1 ∈ B | hn, an

)
= Q(B | xn, rn, an), (12)

Pπν
(
(xn+1, rn+1) ∈ B × F | hn, an, δn+1

)
= Qn+1(B × F | xn, rn, an, δn+1), (13)

Pπν
(
an ∈ D | hn

)
= πn(D | xn, rn), (14)

Pπν (δn+1 ≤ t | hn, an) = G(t | xn, rn, an). (15)

For each π ∈ Π and ν ∈ P(X ′) the stochastic processes {xn, rn, an, δn+1}, n = 0, 1, . . . ,
defined on

(Ω,F, Pπν )

is called the semi-Markov control processes. Denote by Pπ(x,r) when ν is concentrated

at (x, r) and the conditional expectation operator associated with Pπ(x,r) is denoted by
Eπ(x,r).

Assumption 2.3. (Regularity condition) There exist real numbers ε > 0 and γ > 0
such that

G(γ | x, r, a) ≤ 1− ε, for all (x, r, a) ∈ X ′ ×A. (16)

Definition 2.4. For each (x, r, a) ∈ K, let us define

∆(x, r, a) :=

∞∫
0

e−rtG(dt | x, r, a) (17)

and

τ(x, r, a) :=
1−∆(x, r, a)

r
. (18)

From (17) and (18), the total sojourn cost function (6) can be rewritten as

c(x, r, a) = D(x, a) + τ(x, r, a)d(x, a), (x, r, a) ∈ K. (19)

Remark 2.5. Note that, by (15), is valid for all tn > 0, n = 0, 1, 2, . . .

P (δ1 ≤ t1, δ2 ≤ t2, . . . , δn+1 ≤ tn+1 | hn) =

n∏
i=0

G (ti+1 | xi, ri, ai) . (20)

Proposition 2.6. Suppose that the Assumption 2.3 holds. Then for any n = 1, 2, . . .

(i) ρ := sup
K

∆(x, r, a) < 1.

(ii) Pπ(x,r)

[ ∞∑
n=1

δn =∞
]

= 1, ∀(x, r) ∈ X ′.

P r o o f . Let ε and γ satisfy Assumption 2.3.
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(i) By Riemann-Stieltjes formula (integration by parts)∫ β

α

f(t)dg(t) +

∫ β

α

g(t)df(t) = f(β)g(β)− f(α)g(α), (21)

and using the functions f(t) = e−rt and g(t) = G(t | x, r, a), and the values
β =∞, α = 0, we obtain∫ ∞

0

e−rtG(dt | x, r, a) +

∫ ∞
0

G(t | x, r, a)(de−rt) = 0.

Hence

∆(x, r, a) =

∫ ∞
0

e−rtG(dt | x, r, a)

= r

∫ ∞
0

e−rtG(t | x, r, a)dt

= r

∫ γ

0

e−rtG(t | x, r, a)dt

+ r

∫ ∞
γ

e−rtG(t | x, r, a)dt.

By the regularity condition 2.3, we obtain

r

∫ γ

0

e−rtG(t | x, r, a)dt ≤ r(1− ε)
∫ γ

0

e−rtdt (22)

≤ (1− ε)(1− e−rγ),

and since G(t | x, r, a) ≤ 1,

r

∫ ∞
γ

e−rtG(t | x, r, a)dt ≤
∫ ∞
γ

e−rtdt (23)

≤ e−rγ ,

for all (x, r, a) ∈ K. Then, combining (22) and (23) we have

∆(x, r, a) ≤ (1− ε)(1− e−rγ) + e−rγ

= 1− ε(1− e−rγ)

≤ 1− ε(1− e−d1γ)

for every (x, r, a) ∈ K, and hence

ρ := sup
K

∆(x, r, a) ≤ 1− ε(1− e−d1γ) < 1.

(ii) Let π ∈ Π and (x0, r0, a0, δ1, x1, r1, a1, δ2, . . . ) ∈ H∞. Since that for all n =
0, 1, 2, . . . , the discount rate rn ∈ [d1, d2],

Eπ(x,r)

[ ∞∏
n=0

∆(xn, rn, an)

]
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= Eπ(x,r)

 ∞∏
n=0

∞∫
0

e−rntG(dt | xn, rn, an)


= Eπ(x,r)

[ ∞∏
n=0

Eπ(x,r)[e
−rnδn+1 | xn, rn, an]

]

≥ Eπ(x,r)

[ ∞∏
n=0

Eπ(x,r)[e
−d2δn+1 | xn, rn, an]

]

= Eπ(x,r)

[
Eπ(x,r)

[
exp

{
−
∞∑
n=0

d2δn+1

}
| x0, r0, a0, x1, r1, a1, · · ·

]]
, (24)

where the last equality is consequence of (20). On the other hand, by part (i),
∆(x, r, a) ≤ ρ < 1 for all (x, r, a) ∈ K, then

n∏
k=0

∆(xk, rk, ak) ≤ ρn, ∀n.

Thus,
n∏
k=0

∆(xk, rk, ak) tends to zero as n→∞, and therefore

Eπ(x,r)

[ ∞∏
n=0

∆(xn, rn, an)

]
= 0. (25)

By (24) and (25)

0 ≤ Eπ(x,r)

[
exp

{
−d2

∞∑
n=1

δn

}
| x0, r0, a0, x1, r1, a1, · · ·

]
,

≤ Eπ(x,r)

[ ∞∏
n=0

∆(xn, rn, an)

]
= 0,

and by no-negativity of the exponential function

Pπ(x,r)

[ ∞∑
n=1

δn =∞

]
= 1, ∀(x, r) ∈ X ′, π ∈ Π.

�

3. THE FINITE HORIZON SEMI-MARKOV CONTROL PROBLEM

Let us consider the SMCM in (2) and assume the admissible set of policies Π to be
nonempty. Define the function J : Π×X ′ → R by

J(π, x, r) := Eπ(x,r)

[
N∑
n=0

e−Snc(xn, rn, an)

]
, (x, r) ∈ X ′, (26)
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where S0 := 0, and

Sn :=

n−1∑
i=0

riδi+1, n = 1, 2, . . . . (27)

The measurable function J is called the expected discounted total cost with recursive
discount rate, or simply, the discounted total index.

The expression

J∗(x, r) := inf
Π

J(π, x, r), (x, r) ∈ X ′, (28)

denotes the discounted optimal value of the system when the optimization horizon is N.

The semi-Markov control problem consists to finding the policy π∗ such that

J(π∗, x, r) = J∗(x, r), (x, r) ∈ X ′.

Now we introduce the semicontinuous - semicompactness conditions (see [12] subsection
3.3) on the SMCM that guarantee the existence of measurable selectors and, furthermore,
the existence of optimal policies:

Definition 3.1. A function ν : K→ R is called inf-compact on K, if for each (x, r) ∈ X ′
and z ∈ R, the set

{a ∈ A(x, r) : ν(x, r, a) ≤ z}

is compact.

Assumption 3.2.

1. For each (x, r) ∈ X ′, the total sojourn cost c is such that c(x, r, ·) is lower-semi
continuous function on A(x, r), bounded below and inf-compact on K.

2. For each n = 0, 1, 2, . . . the transition law Qn+1 is strongly continuous, that is,
the function

ūn+1(x, r, a) :=

∫
X′

u(y, r′)Qn+1(dy, dr′ | x, r, a) (29)

is continuous and bounded on K, for every measurable bounded function u on X ′.

Note that by Assumption 3.2 and the continuity of F , the functions ∆(x, r, ·) and
τ(x, r, ·) are continuous for all (x, r) ∈ X ′.

Assumption 3.3. There exists a policy π ∈ Π such that J(π, x, r) <∞ for any x ∈ X
and r. The set of policies that satisfy this condition is denoted by Π0.

3.1. Dynamic programming algorithm

The Semi-Markov control problem with finite horizon N is solved with the next version
of the Dynamic Programming Theorem:
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Theorem 3.4. Let, for (x, r) ∈ X ′,

JN (x, r) := min
a∈A(x,r)

c(x, r, a), (30)

and for n = 0, 1, . . . , N − 1,

Jn(x, r) := min
a∈A(x,r)

[
c(x, r, a) +

∫
X

∞∫
0

e−rtJn+1(y,Rn(r, t))G(dt | x, r, a) (31)

·Q(dy | x, r, a)
]
,

for (x, r) ∈ X ′. Under Assumptions 3.2, the functions Jn are measurable for each
n = 0, 1, 2, . . . , N, and exist measurable selectors fn ∈ D, such that

Jn(x, r) =c(x, r, fn) +

∫
X

∞∫
0

e−rtJn+1(y,Rn(r, t))×G(dt | x, r, fn) (32)

·Q(dy | x, r, fn),

for n = 0, 1, . . . , N − 1. Then, the deterministic non-stationary policy

π∗ = {f0, f1, . . . , fN−1}

is optimal and the optimal value J∗ coincides with J0, that is,

J∗(x, r) = J0(x, r) = J(π∗, x, r), ∀x ∈ X. (33)

P r o o f . The existence of measurable selectors fn for each n = 0, 1, 2, . . . is consequence
of Theorem 7 in [10] part(ii) with appropriate changes. In this proof, Eπ(x,r) is denoted

only by Eπ, when (x0, r0) = (x, r). Let us consider a policy π = {πn} ∈ Π0, and the
functions

MN (π, x, r) := Eπ
[
c(xN , rN , aN ) | xN = x, rN = r

]
(34)

and for n = 0, 1, . . . , N − 1,

Mn(π, x, r) := Eπ

[
N−1∑
i=n

eSn−Sic(xi, ri, ai) (35)

+ eSn−SN c(xN , rN , aN ) | xn = x, rn = r

]
.

Mn represents the expected value from step n up to N. As J(π, x, r) < ∞, then Mn is
finite for n = 0, 1, 2, . . . , N − 1. For n = N, from definition (34), we obtain

MN (π, x, r) = Eπ[c(xN , rN , aN ) | xN = x, rN = r]

≥ JN (x, r).
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We shall prove that for n = 0, . . . , N

Mn(π, x, r) ≥ JN (x, r), ∀(n, r) ∈ X ′.

We proceed by backward induction. Suppose the validity of backward induction hypoth-
esis: that is, for all (x, r) ∈ X ′

Mn+1(π, x, r) ≥ Jn+1(x, r). (36)

Then,

Mn(π, x, r)

= Eπ

[
N−1∑
i=n

eSn−Sic(xi, ri, ai) + eSn−SN c(xN , rN , aN ) | xn = x, rn = r

]

= Eπ

[
c(xn, rn, an) +

N−1∑
i=n+1

eSn−Sic(xi, ri, ai)

+ eSn−SN c(xN , rN , aN ) | xn = x, rn = r

]

= Eπ

[
c(xn, rn, an)

+ E

[
e−rnδn+1

(
N−1∑
i=n+1

eSn+1−Sic(xi, ri, ai) + eSn+1−SN c(xN , rN , aN )

)
∣∣∣xn+1 = x′, rn+1 = Rn(r, δn+1), an+1 = a′

]∣∣∣xn = x, rn = r

]

=

∫
A

[
c(x, r, a)+

∫
X

E[e−rδn+1Mn+1(π, x′, Rn(r, t)) | x, r, a]

·Q(dx′ | x, r, a)

]
πn(da | x, r)

≥
∫
A

[
c(x, r, a) +

∫
X

∞∫
0

e−rtJn+1(x′, Rn(r, t))G(dt | x, r, a)

·Q(dx′ | x, r, a)

]
πn(da | x, r)

≥ min
A(x,r)

[
c(x, r, a) +

∫
X

∞∫
0

e−rtJn+1(x′, Rn(r, t))G(dt | x, r, a)

·Q(dx′ | x, r, a)

]
= Jn(x, r).
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Hence, for all (x, r) ∈ X ′,

Mn(π, x, r) ≥ Jn(x, r), n = N − 1, . . . , 0,

and
J(π, x, r) = M0(π, x, r) ≥ J0(x, r) = J(π∗, x, r).

Then
J∗(x, r) = inf

π∈Π
J(π, x, r) ≥ J(π∗, x, r).

The other inequality is follows by the definition of J∗. This proves the Theorem. �

4. THE INFINITE HORIZON SEMI-MARKOV CONTROL PROBLEM

Consider the SMCM (2). The expected discounted total cost with recursive discount
rate infinite horizon is defined by

V (π, x, r) := Eπ(x,r)

[ ∞∑
n=0

e−Snc(xn, rn, an)

]
, (37)

for the initial pair (x0, r0) = (x, r) and the policy π ∈ Π, where Sn is given in (27) and
c is the total sojourn cost (6).

The optimal value function with infinite horizon is

V ∗(x, r) := inf
Π

V (π, x, r), x ∈ X. (38)

The infinite horizon semi-Markov Control problem is to find a policy π∗ such that

V (π∗, x, r) = V ∗(x, r),

holds for all x ∈ X. In such a case, π∗ is an optimal policy. The existence and measur-
ability of V ∗ are obtained by convergence of semi-Markov control problems with finite
horizon [9]. Thus, the conditions used in the finite horizon case are also assumed here.
We introduce the following additional notation.

Definition 4.1. Let m and n be the non-negative numbers, such that m ≤ n. For the
discount rate r = rm, the expected total cost from step m up to step n is defined by

V nm(π, x, r) = Eπ(x0,r0)

[
n∑

t=m

e−(St−Sm)c(xt, at) | xm = x, rm = r

]
, (39)

for any π ∈ Π and x ∈ X. The value function from step m up to step n is

V n∗m (x, r) := inf
Π

V nm(π, x, r), ∀x ∈ X, r = rm. (40)

The semi-Markov Control problem from step m up to step n is to find a policy π(m,n)∗ ∈
Π such that

V n∗m (π(m,n)∗, x, r) = V n∗m (x, r), ∀x ∈ X, r = rm. (41)

For m = 0, V n0 (π, x, r) := V n(π, x, r). Let m be fixed,

Vm(π, x, r) := lim
n→∞

V nm(π, x, r).
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Assumption 4.2.

1. There exists a policy π ∈ Π such that V (π, x, r) < ∞ for any (x, r) ∈ X ′. The
family of policies that satisfies this condition is denoted by Π1.

Definition 4.3. Let ε > 0. A policy πε ∈ Π1 is ε−optimal if

V (πε, x, r) ≤ inf
π∈Π1

V (π, x, r) + ε, ∀(x, r) ∈ X ′.

Lemma 4.4. Let x ∈ X, r = rm and m = 0, 1, 2, . . . Under Assumptions 3.2 and 4.2,

lim
n→∞

V n∗m (x, r) = V ∗m(x, r). (42)

P r o o f . Let us define, for each k = 0, 1, 2, . . . , the measurable functions on X ′

u0(x, rk) := inf
a∈A(x,rk)

c(x, rk, a), (43)

and for n = 1, 2, . . .

un(x, rk) := inf
a∈A(x,rk)

[
c(x, rk, a) +

∫
X

∞∫
0

e−rktk+1u(n−1)(y,Rk(rk, tk+1)) (44)

·G(dtk+1 | x, rk, a)Q(dy | x, rk, a)
]
.

We shall show that un(x, rk) = V n∗k (x, rk) for all n = 0, 1, 2, . . . , k = 0, 1, 2, . . . , and
x ∈ X. It is proved by induction over n.

For n = 0, note that

u0(x, rk) ≤ V kk (π, x, rk), ∀π ∈ Π, x ∈ X, k = 0, 1, 2, . . .

Taking the infimum over Π,

u0(x, rk) ≤ V k∗k (x, rk), k = 0, 1, 2, . . . (45)

On the other hand, by the measurable selector condition (see Theorem 3.4), there exists
for each k = 0, 1, 2, . . . , a selector f0

k such that

u0(x, rk) = c(x, rk, f
0
k (x, rk)) (46)

= V kk (πk,k, x, rk)

≥ V k∗k (x, rk),

where πk,k represents the policy πk,k = {π0, . . . , πk−1, f
0
k , πk+1, . . . }. Then, by the in-

equalities (45) and (46) we conclude that V k∗k = u0 for every x ∈ X and k = 0, 1, 2, . . .
Let us now assume for each k = 0, 1, 2, . . . , that the induction hypothesis holds for n,
i. e.,

un(x, rk) = V
(n+1)∗
k (x, rk), k = 0, 1, 2, . . .
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Then, for each k = 0, 1, 2, . . . , there exists a measurable selector fnk such that

un(x, rk) = c(x, rk, f
n
k ) +

∫
X

∞∫
0

e−rktk+1u(n−1)(y,Rk(rk, tk+1))

·G(dtk+1 | x, rk, fnk )Q(dy | x, rk, a),

k = 0, 1, 2, . . . and the policy

πk,n = {π0, . . . , πk−1, f
n
k , . . . , f

0
k+n, πk+n+1, . . . }

satisfies
V nk (πk,n, x, rk) = V n∗k (x, rk), k = 0, 1, 2, . . .

For n+ 1, we obtain

un+1(x, rk) ≤ V n+1
k (π, x, rk), ∀π ∈ Π, x ∈ X, k = 0, 1, 2, . . .

and taking the infimum over Π,

un+1(x, rk) ≤ V (n+1)∗
k (x, rk), k = 0, 1, 2, . . . (47)

Again, by the measurable selector condition there exists, for each k = 0, 1, 2, . . . , a
selector fn+1

k such that

un+1(x, rk) = c(x, rk, f
n+1
k ) +

∫
X

∞∫
0

e−rktk+1un−1(y,Rk(rk, tk+1))

·G(dtk+1 | x, rk, fn+1
k )Q(dy | x, rk, a),

= V n+1
k (πk,n+1, x, rk)

≥ V (n+1)∗
k (x, rk),

where πk,n+1 is the policy

πk,n+1 = {π0, . . . , πk−1, f
n+1
k , fnk+1, . . . , f

1
k+n, f

0
k+n+1, πk+2, . . . }.

Hence, V n+1∗
k (x, rk) = un+1(x, rk) for any x ∈ X, k = 0, 1, 2, . . . and n = 0, 1, 2, . . .

By construction of un

0 ≤ un(x, rk) = V n∗k (x, rk) ≤ un+1(x, rk) ≤ V ∗k (x, rk), for k, n = 0, 1, 2, . . .

Then there exists a measurable function Uk overX ′ such that Uk(x, rk) ≤ V ∗k (x, rk), k =

0, 1, 2, . . . and un ↑ Uk. Note by the convergence of un to Uk, u
n = V

(n)∗
k for all k, all

n and V ∗k ↓ 0, k → ∞. Additionally, for all k is valid for the sequence of selectors
f∞,0 = {fk, fk+1, . . . } in the policy πk,∞ := {π0, . . . , πk−1, fk, fk+1, . . . } ∈ Π1 that the
inequality

Uk(x, rk) ≥ Vk(πk,∞, x, rk),
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is valid for all x ∈ X, and by definition of V ∗k

V ∗k (x, rk) = Vk(π0,∞, x, rk).

i. e., V ∗k (x, rk) ≤ Uk(x, rk) for all x ∈ X ′. Therefore, Uk(x, rk) = V ∗k (x, rk), for all
k = 0, 1, 2, . . . and all x ∈ X ′. �

Theorem 4.5. Under Assumption 4.2, there exists a deterministic non-stationary pol-
icy π ∈ Π1, such that,

V (π, x, r) = V ∗(x, r), ∀(x, r) ∈ X ′.

P r o o f . Notice that, by the Lemma 4.4, the functions V ∗n is measurable, n ∈ N.
We shall prove that

V ∗n (x, rn) = inf
a∈A(x,rn)

[
c(x,rn, a) +

∫
X

∞∫
0

e−rntn+1V ∗n+1(y,Rn(rn, tn+1)) (48)

·G(dtn+1 | xn, rn, a)Q(dy | x, rn, a)
]
,

for all n = 0, 1, 2, . . . Let us define

ν(x, rn) := inf
a∈A(x,rn)

[
c(x, rn, a) +

∫
X

∞∫
0

e−rntn+1V ∗n+1(y,Rn(rn, tn+1))

·G(dtn+1 | xn, rn, a)Q(dy | x, rn, a)
]
,

n = 0, 1, 2, . . . Thus, for any policy π ∈ Π

Vn(π, x, rn) ≥ V ∗n (x, rn), Vn(π, x, rn) ≥ ν(x, rn), ∀n,

and therefore

Vn(π, x, rn)

= Eπ(x,r0)

[
c(x, rn, a) +

∫
X

∞∫
0

e−rntn+1Vn+1(y, rn+1)×G(dtn+1 | xn, rn, a)

·Q(dy | x, rn, a)

]

≥ Eπ(x,rn)

[
c(x, rn, a) +

∫
X

∞∫
0

e−rntn+1V ∗n+1(y, rn+1)G(dtn+1 | xn, rn, a)

·Q(dy | x, rn, a)

]
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≥ inf
a∈A(x,rn)

[
c(x, rn, a) +

∫
X

∞∫
0

e−rntn+1V ∗n+1(y,Rn(rn, tn+1))

·G(dtn+1 | xn, rn, a)Q(dy | x, rn, a)
]
,

and taking the infimum over Π,

V ∗n (x, rn) ≥ ν(x, rn). (49)

On the other hand, if π ∈ Π1

V ∗n (x, rn) ≤ Vn(π, x, rn),

then Vn(π, x, rn) ↓ 0, n→∞. Consider now the policy

πn,∞ = {π0, . . . , πn−1, fn, fn+1, . . . },

where (fi, i = n, n+ 1, . . . ) is a measurable selector, which exists by Theorem 7 in [10].
By Lemma 4.4, for any ε > 0, there exists m0 such that, for any m > m0 and each
n = 0, 1, 2, . . .

Vn(πn,∞, x, rn) < V mn (πn,∞, x, rn) + ε

= V m∗n (x, rn) + ε,

and hence Vn(πn,∞, x, rn) ≤ V ∗n (x, rn), m→∞.
On the other hand, by definition of V ∗n , Vn(πn,∞, x, rn) ≥ V ∗n (x, rn), and

Vn(πn,∞, x, rn) = V ∗n (x, rn), ∀n = 0, 1, 2, . . .

Moreover

ν(x, rn) = c(x, rn, fn) +

∫
X

∞∫
0

e−rntn+1V ∗n+1(y,Rn(rn, tn+1))

·G(dtn+1 | xn, rn, fn)Q(dy | x, rn, fn)

= c(x, rn, fn) +

∫
X

∞∫
0

e−rntn+1Vn+1(πn,∞, xn+1, rn+1)

·G(dtn+1 | xn, rn, fn)Q(dy | x, rn, fn)

≥ V ∗n (x, rn),

and by inequality (49), the equality (48) holds. Hence, the deterministic non-stationary
policy

π0,∞ := {f0, f1, f2, . . . }

satisfies, for n = 0 in (48), that

V ∗(x, r) = V ∗0 (x, r0)
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= c(x, r0, f0) +

∫
X

∞∫
0

e−r0t1V ∗1 (x1, r1)×G(dtn+1 | xn, rn, f0)

·Q(dy | x, rn, f0)

= V (πf
0,∞

, x, r0)

Therefore, πf
0,∞

is an optimal policy. �

Theorem 4.6. Suppose Assumption 4.2 holds. If there exists a policy π such that

Vn(π, x, rn) = inf
a∈A(x,rn)

[
c(x,rn, a) +

∫
X

∞∫
0

e−rntn+1Vn+1(π, y,Rn(rn, tn+1)) (50)

·G(dtn+1 | xn, rn, a)Q(dy | x, rn, a)
]
,

for all x ∈ X, n = 0, 1, 2, . . . , and satisfies

lim
n→∞

e−SnEπ(x,r)Vn(π, xn, rn) = 0, (x, r) ∈ X ′, π ∈ Π1, (51)

then, V (π, x, r) = V ∗(x, r) for all (x, r) ∈ X ′.

P r o o f . If (50) holds, then by definition of V ∗, V (π, x, r) ≥ V ∗(x, r) for all (x, r) ∈ X ′.
On the other hand, for any π ∈ Π, and (x, r) ∈ X ′, the Markov Property yields,

Eπ(x,r)[e
−Sn+1Vn+1(π, xn+1, rn+1) | hn, an]

= Eπ(x,r)

[
e−Sn

[
c(xn, rn, an) +

∫
X

∞∫
0

e−rntn+1Vn+1(π, y, rn+1)

·G(dtn+1 | xn, rn, a)Q(dy | x, rn, a)− c(xn, rn, an)
]]

≥ Eπ(x,r)
[
e−Sn

[
Vn(π, xn, rn)− c(xn, rn, an)

]]
,

and so

Eπ(x,r)[e
−Snc(xn, rn, an)]

≥ −Eπ(x,r)
[
e−Sn+1 [Vn+1(π, xn+1, rn+1)− e−SnVn(π, xn, rn) | hn, an)

]
.

Thus, taking expectations Eπ(x,r) and adding over i = 0, 1, . . . , k − 1,

Eπ(x,r)

k−1∑
i=0

e−Sic(xi, ri, ai) ≥ V0(π, x, r)− e−SkEπ(x,r)Vk(π, xk, rk),

holds for every k. Letting k →∞ and using (51), it follows that V (π, x, r) ≥ V (π, x, r)
for all (x, r) ∈ X ′, and V ∗(x, r) ≥ V (π, x, r) for every (x, r) ∈ X ′. In consequence,
V ∗(x, r) = V (π, x, r) for all (x, r) ∈ X ′. �
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Proposition 4.7. Under Assumption 4.2, there exist deterministic non-stationary
ε−optimal policies to the semi-Markov control problem with infinite horizon.

P r o o f . Let π̃ ∈ Π1 be a fixed policy, ε > 0. For any (x, r) ∈ X ′, consider the measur-
able functions

u0(x, r) = inf
a∈A(x,r)

c(x, r, a) (52)

and, n = 1, 2, . . . ,

un(x, r) = inf
a∈A(x,rn)

[
c(x,rn, a) +

∫
X

∞∫
0

e−rntn+1un−1(y, rn+1) (53)

·G(dtn+1 | xn, rn, a)Q(dy | x, rn, a)

]
.

By Condition (4.2), for any n ∈ N, exist the sequence of selectors {f0, . . . , fn} such that
the policy π(n) := {f0, . . . , fn, π̃n+1, π̃n+2, . . . } satisfies

un(x, r) ≤ V n(π(n), x, r) ≤ V (π̃, x, r).

Then, for some n∗ ∈ N,

V (π(n∗), x, r) ≤ V (π, x, r) + ε, ∀π ∈ Π1, ∀(x, r) ∈ X ′.

Taking infimum over π,

V (π(n), x, r) ≤ inf
π∈Π1

V (π, x, r) + ε, ∀(x, r) ∈ X ′.

Therefore, for n > n∗, π(n) are deterministic non-stationary ε−optimal policies. �

Remark 4.8.

1. By Lemma 4.4, the function V n∗ is measurable for each n and then the limn→∞ V n∗

is also measurable.

2. Observe that for π ∈ Π1 and any natural number n

lim
k→∞

[
exp

{
−

k∑
i=n

riδi+1

}
V n+k(π, xn+k, rn+k)

]
= 0. (54)
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5. AN EXAMPLE OF A SMCM WITH DISCOUNT RATE RECURSIVE FUNC-
TIONS

One way of getting recursive discount rate functions {Rn | n = 0, 1, 2, . . . } is using
continuous time stochastic processes {r̂t | n ≤ t ≤ n + 1, }, n = 0, 1, 2, . . . , to represent
the discount rate between consecutive steps of the SMCM. In this case, it is supposed
that the dynamics follows the scalar stochastic differential equation (SDE) given by

dr̂t = κn
(
θn − r̂t

)
dt+ σndWt, t ∈ [n, n+ 1], n = 0, 1, 2, . . . , (55)

where κn ∈ [κmin, κmax], σn ∈ [σmin, σmax], θn ∈ [θmin, θmax] are positive constants,
θn is the mean value or tendency of the SDE, and the initial condition is the previous
discount rate r̂n (if t ∈ [0, 1], the initial condition is the discount rate r0). Similar to some
classical short-rate models (see [21]), the SDE (55) has the mean-reverting property:
the discount rate r̂t tends to fluctuate around of ideal value θn when t ∈ [n, n + 1],
n = 0, 1, 2, . . . To guarantee the existence of a unique solution to the SDE, we suppose
that the functions µn(t, z) := κn[θn − z] and σn(t, z) = σn, n ≥ 0 satisfy the classical
Itô conditions [1, Chapter 6], i. e., exists K > 0, such that

1. For all t ∈ [n, n+ 1], n = 0, 1, 2, . . . , z1, z2 ∈ R,

|µ(t, z1)− µ(t, z2)|+ |σ(t, z1)− σ(t, z2)| ≤ K|z1 − z2|. (56)

2. For all t ∈ [n, n+ 1], n = 0, 1, 2, . . . , and z ∈ R

|µ(t, z)|2 + |σ(t, z)|2 ≤ K2
(
1 + |z|2

)
. (57)

The solution is the mean-reverting stochastic processes

r̂t = rne
−(t−n)κn + θn[1− e−(t−n)κn ] + σne

−(t−n)κn

t∫
n

euκndWu, (58)

where t ∈ [n, n+ 1], Wu, u ∈ [n, t] is the Wiener process, θn is the mean reverting value
of processes and the κn is this the velocity of reversion.

From the solution (58), by taking the expectation and substituting the time-dependent
expression by the sojourn time variable δn+1, we obtain the recursive equation

rn+1 := E[Rn(rn, δn+1) | xn, rn, an]

=

∞∫
0

(
rn exp

(
−tκn

)
+ θn

[
1− exp

(
−tκn

)])
G(dt | xn, rn, an), (59)

whereG(· | xn, rn, an) is the sojourn time distribution of δn+1 conditioned by (xn, rn, an),
for each n = 0, 1, 2, . . . , and r0 is the initial discount rate.
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6. LINEAR-QUADRATIC SEMI-MARKOV MODEL.

Let us consider an SMCM with X = A = R, where the evolution of states is given by

xn+1 = Axn +Ban + ξn, n = 0, 1, 2, . . . ,

A and B are non-negative constants and the random variables ξn are supposed i.i.d.,
independent of x0 such that Eξn = 0 and 0 < Eξ2

n = σ2 < ∞. The sojourn times
δn, n = 1, 2, . . . , are random variables on (0,∞), independent of x, with exponential
distribution function G on K = R × (0,∞) × R, where its parameter is given by the
non-negative continuous function g : K → R. The immediate and sojourn costs (see
(19)) are given by

D(x, a) = q2a,

d(x, a) = α1x+ α2a
2,

c(x, r, a) = D(x, a) + τ(x, r, a)d(x, a)

= D(x, a) +
1

r

(
1− g(x, r, a)

r(1 + g(x, r, a))

)
d(x, a),

where q2, α1, α2 > 0, and (xn, rn, an) ∈ K, n = 0, 1, 2, . . .
The evolution of the discount rates follows the SDE (55) and satisfies the recursive

relation (59). The discounted total cost in this case takes the form (37).
The semi-Markov linear quadratic control problem with finite horizon consists of

finding an optimal policy in N steps such that

J(π, x, r) = Eπ(x,r)

[
N−1∑
n=0

e−Snc(xn, rn, an)

]

is minimized, where S0 = 0 and Sn as (27). The dynamic programming equations are

JN (xN , rN ) = min
a∈A(xN ,rN )

c(xN , rN , a) (60)

and for n = N − 1, N − 2, . . . , 0

Jn(x, rn) = min
a∈A(xn,rn)

[
c(xn, rn, a) + E

[
e−rnδn+1Jn+1(Axn +Ba+ ξn, Rn(rn, δn+1))

(61)

| xn = x, rn, an = a
]]

which become

Jn(x, rn) = min
a∈A(xn,rn)

[
q2a+

α1x
2
n + α2a

2

rn + g(xn, rn, a)
+

∞∫
0

E
[
g(xn, rn, a)e−s(rn+g(xn,rn,a)) (62)

· Jn+1(Axn +Ba+ ξn, (rn − θn)e−sκn + θn)
]
ds

]
.
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By Theorem 3.4, exists a non-stationary optimal policy πN∗ = {fi}Ni=0 and the opti-
mal value is J0(x0, r0).

An example with explicit solution, can be obtained when the recursive discount rate
is

rn+1 = E[Rn(rn, δn+1) | xn, rn, an] := rne
−rnkδn+1, k > 0,

the function g(x, r, a) = rλ
r+(1−r)(λ+1) , and the sojourn time distribution is reduced to

G(t | x, r, a) :=

t∫
0

rnλe
−rnλsds,

λ > 0, for all (x, r, a) ∈ K. In this case, from the dynamic programming equations (60)

and (61) , if n = N, the minimum of J∗N occurs when aN = −rN q2(λ+1)
2α2

and

JN (x, rN ) =
1

rN
INx− rNHN ,

where HN :=
q22(λ+1)

4α2
and IN := α1

λ+1 . For n = N − 1, N − 2, N − 3, . . . , 0 we obtain

Jn(x, rn) = min
a∈A(x,rn)

[
1

rn
· α2

λ+ 1
a2 +

(
q2 +

In+1λB

rn(λ+ 1− k)

)
a+

1

rn
Inx

−rn
(
Hn

λ

λ+ 1 + k

)
+

1

rn
· Tnλ

λ+ 1− k
− Unλ

λ+ 1

]
,

where In := In+1λA
λ+1−k + α1

λ+1 , Hn = HN+Hn+1
λ

λ+1+k , Tn := (In+1λB)2(1+λ)
4α2(λ+1−k)2 +Tn+1

λ
λ+1−k ,

Un := q2In+1λ(λ+1)B
2α2(λ+1−k) + Un+1

λ
λ+1 , and TN = UN := 0. By standard calculus arguments,

the minimum is

an = −q2 + In+1λB
2α2

rn(λ+1)

:= fn(x, rn). (63)

and the optimal value is

J∗n(x, rn) =
1

rn
Inx− rnHn −

1

rn
Tn − Un.

This iterative process generates the non-stationary policy

f∗ = {a0, a1, . . . , aN}

and the value function J∗(x, r) = J0(x, r), for all (x, r) ∈ X ′.
The expected discounted total cost with infinite horizon in this case is

V (π, x, r) = Eπ(x,r)

[ ∞∑
n=0

e−S
′
nc(xn, rn, an)

]
.
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Let ε > 0. To obtain a non-stationary ε−optimal policy, we consider the non-stationary
policy π′ = {f ′0, f ′1, f ′2, . . . } given by measurable selectors

f ′i(x, r) =
q2d2(1 + λ)

2λ2
, i = 0, 1, 2, . . .

and is valid that π′ ∈ Π1 :

V (π′, x, r) = Eπ
′

(x,r)

[ ∞∑
n=0

e−S
′
nc(xn, rn, an)

]

<
(

2
q2
2d

2
2(1 + λ)2

4α2
2

+
α1

α2
x
)
Eπ
′

(x,r)

[ ∞∑
n=0

e−S
′
n

]
<∞.

Let πn∗ = {a0, a1, a2, . . . , an} be a non-stationary optimal policy of the finite horizon
case. Hence, for the policy

π̂ = {a0, a1, . . . , an, f
′
n+1, f

′
n+2, f

′
n+3, . . . },

there exists a natural number n0 such that if n > n0

V (n)(π̂, x, r)− V (n+1)(π̂, x, r) < ε/2n,

i. e., V n(π̂, x, r) approximates to V ∗(x, r) and π̂ is a non-stationary policy which is
ε−optimal.

(Received August 3, 2018)
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discounted semi-Markov control problems. Bol. Soc. Mat. Mexicana 1 (2013), 19, 111–124.

[12] O. Hernández-Lerma and J. Lasserre: Discrete-Time Markov Control Processes. Basic
Optimality Criteria. Springer-Verlag, New York 1996. DOI:10.1007/978-1-4612-0729-0 1

[13] Q. Hu and W. Yue: Markov Decision Processes With Their Applications. Springer-Verlag,
Advances in Mechanics and Mathematics book series 14, (2008). DOI:10.14736/kyb-2017-
1-0059

[14] X. Huang and Y. Huang: Mean-variance optimality for semi-Markov decision processes
under first passage criteria. Kybernetika 53 (2017), 1, 59–81. DOI:10.14736/kyb-2017-1-
0059

[15] R. Howard: Semi-Markovian decision processes. Bull. Int. Statist. Inst. 40 (1963), 2,
625–652.

[16] W. Jewell: Markov-renewal programming I: formulation, finite return models, Markov-
renewal programming II: infinite return models, example. Oper. Res. 11 (1963), 938–971.
DOI:10.1287/opre.11.6.938

[17] F. Luque-Vázquez and O. Hernández-Lerma: Semi-Markov control models with average
costs. Appl. Math. 26 (1999), 315–331. DOI:10.4064/am-26-3-315-331
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