Kybernetika 55 no. 3, 455-471, 2019

Robust hierarchical sliding mode control with state-dependent switching gain for stabilization of rotary inverted pendulum

Muhammad Idrees, Shah Muhammad and Saif UllahDOI: 10.14736/kyb-2019-3-0455

Abstract:

The rotary inverted pendulum (RIP) system is one of the fundamental, nonlinear, unstable and interesting benchmark systems in the field of control theory. In this paper, two nonlinear control strategies, namely hierarchical sliding mode control (HSMC) and decoupled sliding mode control (DSMC), are discussed to address the stabilization problem of the RIP system. We introduced HSMC with state-dependent switching gain for stabilization of the RIP system. Numerical simulations are performed to analyze the performance of the hierarchical sliding mode controllers with the decoupled sliding mode controller and the controller obtained from the pole placement technique. We proposed HSMC with state-dependent switching gain as it shows better performance as compared to HSMC with constant switching gain, DSMC, and the state feedback controller based on pole placement technique. The stability analysis of proposed HSMC is also discussed by using Lyapunov stability theory.

Keywords:

sliding mode control, dynamical systems, rotary inverted pendulum

Classification:

93A30, 93C10, 93D05, 93D09, 93D20

References:

  1. M. E. Antonio-Toledo, E. N. Sanchez, A. Y. Alanis, J. Florez and M. A. Perez-Cisneros: Real-time integral backstepping with sliding mode control for a quadrotor UAV. IFAC-Papers Online 51 (2018), 549-554.   DOI:10.1016/j.ifacol.2018.07.337
  2. Y. A. Butt: Robust stabilization of a class of nonholonomic systems using logical switching and integral sliding mode control. Alexandria Engrg. J. 57 (2018), 1591-1596.   DOI:10.1016/j.aej.2017.05.017
  3. G. J. Baker and J. A. Blackburn: The Pendulum: A Case Study in Physics. Oxford University Press, New York 2002.   CrossRef
  4. Y. F. Chen and A. C. Huang: Adaptive control of rotary inverted pendulum system with time-varying uncertainties. Nonlinear Dynamics 76 (2014), 95-102.   DOI:10.1007/s11071-013-1112-4
  5. J. J. Choi and J. S. Kim: Robust control for rotational inverted pendulums using output feedback sliding mode controller and disturbance observer. KSME Int. J. 17 (2003), 1466-1474.   DOI:10.1007/bf02982326
  6. R. Coban and B. Ata: Decoupled sliding mode control of an inverted pendulum on a cart: An experimental study. In: IEEE International Conference on Advanced Intelligent Mechatronics, Germany 2017.   DOI:10.1109/aim.2017.8014148
  7. K. Furuta, M. Yamakita and S. Kobayashi: Swing-up control of inverted pendulum using pseudo-state feedback. J. Systems Control Engrg. 206 (1992), 263-269.   DOI:10.1243/pime\_proc\_1992\_206\_341\_02
  8. W. Gao and J. C. Hung: Variable structure control of nonlinear systems: A new approach. IEEE Trans. Industr. Electronics 40 (1993), 45-55.   DOI:10.1109/41.184820
  9. F. Grasser, A. D{$^\prime$}Arrigo, S. Colombi and A. C. Rufer: Joe: a mobile, inverted pendulum. IEEE Trans. Industr. Electron. 49 (2002), 107-114.   DOI:10.1109/41.982254
  10. I. Hassanzadeh and S. Mobayen: Controller design for rotary inverted pendulum system using evolutionary algorithms. Math. Problems Engrg. 2011 (2011), 1-17.   DOI:10.1155/2011/572424
  11. J. Irfan, J. Rehan, J. Zhao, J. Rizwan and S. Abdus: Mathematical model analysis and control algorithms design based on state feedback method of rotary inverted pendulum. Int. J. Research Engrg. Technol. 1 (2013), 41-50.   CrossRef
  12. Z. Jia, J. Yu, Y. Mei, Y. Chen, Y. Shen and X. Ai: Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances. Aerospace Science Technol. 68 (2017), 299-307.   DOI:10.1016/j.ast.2017.05.022
  13. S. Jadlovska and J. Sarnovsky: Modelling of classical and rotary inverted pendulum systems: A generalized approach. J. Electr. Engrg. 64 (2013), 12-19.   DOI:10.2478/jee-2013-0002
  14. A. Jose, C. Augustine, S. M. Malola and K. Chacko: Performance study of PID controller and LQR technique for inverted pendulum. World J. Engrg. Technol. 3 (2015), 76-81.   DOI:10.4236/wjet.2015.32008
  15. A. Kchaou, A. Naamane, Y. Koubaa and N. M$\prime$sirdi: Second order sliding mode-based MPPT control for photovoltaic applications. Solar Energy 155 (2017), 758-769.   DOI:10.1016/j.solener.2017.07.007
  16. O. Kaynak, K. Erbatur and M. Ertugrul: The fusion of computationally intelligent methodologies and sliding mode control-A survey. IEEE Trans. Industr. Electron. 48 (2001), 4-17.   DOI:10.1109/41.904539
  17. S. Kurode, A. Chalanga and B. Bandyopadhyay: Swing-up and stabilization of rotary inverted pendulum using sliding modes. In: Preprints of the 18th IFAC World Congress, Milano 2011.   DOI:10.3182/20110828-6-it-1002.02933
  18. M. A. Khanesar, M. Teshnehlab and M. A. Shoorehdeli: Fuzzy sliding mode control of rotary inverted pendulum. In: Proc. 5th IEEE International Conference on Computational Cybernetics, Tunisia 2007.   DOI:10.1109/icccyb.2007.4402019
  19. M. A. Khanesar, M. Teshnehlab and M. A. Shoorehdeli: Sliding mode control of rotary inverted pendulum. In: Proc. 15th Mediterannean Conference on Control and Automation, Greece 2007.   DOI:10.1109/med.2007.4433653
  20. X. Liu, A. N. Vargas, X. Yu and L. Xu: Stabilizing two-dimensional stochastic systems through sliding mode control. J. Franklin Inst. 354 (2017), 5813-5824.   DOI:10.1016/j.jfranklin.2017.07.015
  21. B. Lu, Y. Fang and N. Sun: Sliding mode control for underactuated overhead cranes suffering from both matched and unmatched disturbances. Mechatronics 47 (2017), 116-125.   DOI:10.1016/j.mechatronics.2017.09.006
  22. X. Lin, J. Nie, Y. Jiao, K. Liang and H. Li: Adaptive fuzzy output feedback stabilization control for the underactuated surface vessel. Appl. Ocean Res. 74 (2018), 40-48.   DOI:10.1016/j.apor.2018.01.015
  23. J. C. Lo and Y. H. Kuo: Decoupled fuzzy sliding-mode control. IEEE Trans. Fuzzy Systems 6 (1998), 426-435.   DOI:10.1109/91.705510
  24. N. Muskinja and B. Tovornik: Swinging up and stabilization of a real inverted pendulum. IEEE Trans. Industr. Electron. 53 (2006), 631-639.   DOI:10.1109/tie.2006.870667
  25. H. Mei and Z. He: Study on stability control for single link rotary inverted pendulum. In: Proc. International Conference on Mechanic Automation and Control Engineering, Wuhan 2010.   DOI:10.1109/mace.2010.5536653
  26. Y. J. Mon and C. M. Lin: Hierarchical fuzzy sliding-mode control. In: Proc. IEEE International Conference on Fuzzy Systems, Greece 2002.   DOI:10.1109/fuzz.2002.1005070
  27. Q. H. Ngo, N. P. Nguyen, C. N. Nguyen, T. H. Tran and Q. P. Ha: Fuzzy sliding mode control of an offshore container crane. Ocean Engrg. 140 (2017), 125-134.   DOI:10.1016/j.oceaneng.2017.05.019
  28. R. Nagarale and B. Patre: Decoupled neural fuzzy sliding mode control of nonlinear systems. In: IEEE International Conference on Fuzzy Systems, Hyderabad 2013.   DOI:10.1109/fuzz-ieee.2013.6622321
  29. S. E. Oltean: Swing-up and stabilization of the rotational inverted pendulum using PD and fuzzy-PD controllers. Procedia Technol. 12 (2014), 57-64.   DOI:10.1016/j.protcy.2013.12.456
  30. N. Phuong, H. Loc and T. Tuan: Control of two wheeled inverted pendulum using sliding mode technique. Int. J. Engrg. Res. Appl. 3 (2013), 1276-1282.   CrossRef
  31. W. Perruquetti and J. P. Barbot: Sliding Mode Control in Engineering. CRC Press, 2002.   DOI:10.1201/9780203910856
  32. D. Qian and J. Yi: Hierarchical Sliding Mode Control for Under-actuated Cranes. Springer-Verlag, Berlin 2015.   DOI:10.1007/978-3-662-48417-3
  33. M. S. Qureshi, P. Swarnkar and S. Gupta: A supervisory on-line tuned fuzzy logic based sliding mode control for robotics: An application to surgical robots. Robotics Autonom. Systems 109 (2018), 68-85.   DOI:10.1016/j.robot.2018.08.008
  34. D. Qian, J. Yi and D. Zhao: Hierarchical sliding mode control for a class of simo under-actuated systems. Control Cybernet. 37 (2008), 159-175.   CrossRef
  35. D. Qian, J. Yi, D. Zhao and Y. Hao: Hierarchical sliding mode control for series double inverted pendulums system. In: Proc. International Conference on Intelligent Robots and Systems, Beijing 2006.   DOI:10.1109/iros.2006.282521
  36. Z. Song, K. Sun and S. Ling: Stabilization and synchronization for a mechanical system via adaptive sliding mode control. ISA Trans. 68 (2017), 353-366.   DOI:10.1016/j.isatra.2017.02.013
  37. J. E. Solanes, L. Gracia, P. Munoz-Benavent, J. V. Miro, V. Girbes and J. Tornero: Human-robot cooperation for robust surface treatment using non-conventional sliding mode control. ISA Trans. 80 (2018), 528-541.   DOI:10.1016/j.isatra.2018.05.013
  38. J. J. E. Slotine: Sliding controller design for nonlinear systems. Int. J. Control 40 (1984), 421-434.   DOI:10.1080/00207178408933284
  39. V. Sirisha and A. S. Junghare: A comparative study of controllers for stabilizing a rotary inverted pendulum. Int. J. Chaos, Control, Modell. Simul. 3 (2014), 1-13.   DOI:10.5121/ijccms.2014.3201
  40. J. J. E. Slotine and W. Li: Applied Nonlinear Control. Prentice Hall International Inc., 1991.   CrossRef
  41. A. Tapia, M. Bernal and L. Fridman: Nonlinear sliding mode control design: An LMI approach. Systems Control Lett. 104 (2017), 38-44.   DOI:10.1016/j.sysconle.2017.03.011
  42. L. A. Tuan, S. G. Lee, L. C. Nho and H. M. Cuong: Robust controls for ship-mounted container cranes with viscoelastic foundation and flexible hoisting cable. Proc. Inst. Mechan. Engineers, Part I: J. Systems Control Engrg. 229 (2015), 662-674.   DOI:10.1177/0959651815573903
  43. L. A. Tuan, H. M. Cuong, S. G. Lee, L. C. Nho and K. Moon: Nonlinear feedback control of container crane mounted on elastic foundation with the flexibility of suspended cable. J. Vibration Control 22 (2016), 3067-3078.   DOI:10.1177/1077546314558499
  44. V. I. Utkin and S. K. Korovin: Application of sliding mode to static optimization. Automatic Remote Control 4 (1972), 570-579.   CrossRef
  45. V. I. Utkin and K. D. Yagn: Methods for construction of discontinuity planes in multidimensional variable structure systems. Automat. Remote Control 39 (1978), 72-77.   CrossRef
  46. V. I. Utkin and K. D. Yagn: Variable structure systems with sliding modes. IEEE Trans. Automat. Control 22 (1997), 212-222.   DOI:10.1109/tac.1977.1101446
  47. V. I. Utkin, J. Guldner and J. Shi: Sliding Mode Control in Electro-Mechanical Systems. CRC Press, 2009.   DOI:10.1201/9781420065619
  48. Y. J. Wu and G. F. Li: Adaptive disturbance compensation finite control set optimal control for PMSM systems based on sliding mode extended state observer. Mechan. Systems Signal Process. 98 (2018), 402-414.   DOI:10.1016/j.ymssp.2017.05.007
  49. A. Wu, X. Zhang and Z. Zhang: A control system based on the Lagrange modeling method for a single link rotary inverted pendulum. Engrg. Sci. 7 (2005), 11-15.   CrossRef
  50. J. Wen, Y. Shi and X. Lu: Stabilizing a rotary inverted pendulum based on logarithmic Lyapunov function. J. Control Science Engrg. 2017 (2017), 1-11.   DOI:10.1155/2017/4091302
  51. I. Yigit: Model free sliding mode stabilizing control of a real rotary inverted pendulum. J. Vibration Control 23 (2017), 1645-1662.   DOI:10.1177/1077546315598031
  52. M. Yue, C. An, Y. Du and J. Sun: Indirect adaptive fuzzy control for a nonholonomic/underactuated wheeled inverted pendulum vehicle based on a data-driven trajectory planner. Fuzzy Sets Systems 290 (2016), 158-177.   DOI:10.1016/j.fss.2015.08.013
  53. J. Zhang, Q. Zhang and Y. Wang: A new design of sliding mode control for Markovian jump systems based on stochastic sliding surface. Inform. Sci. 391 (2017), 9-27.   DOI:10.1016/j.ins.2017.02.005
  54. Y. Zhao, P. Huang and F. Zhang: Dynamic modeling and super-twisting sliding mode control for tethered space robot. Acta Astronautica 143 (2018), 310-321.   DOI:10.1016/j.actaastro.2017.11.025