Kybernetika 55 no. 2, 422-434, 2019

Random noise and perturbation of copulas

Radko Mesiar, Ayyub Sheikhi and Magda KomorníkováDOI: 10.14736/kyb-2019-2-0422


For a random vector $(X,Y)$ characterized by a copula $C_{X,Y}$ we study its perturbation $C_{X+Z,Y}$ characterizing the random vector $(X+Z,Y)$ affected by a noise $Z$ independent of both $X$ and $Y$. Several examples are added, including a new comprehensive parametric copula family $\left(\mathcal{C}_k \right) _{k \in [-\infty, \infty]}$.


copula, noise, perturbation of copula, random vector


60E05, 62H20


  1. U. Cherubini, F. Gobbi and S. Mulinacci: Convolution Copula Econometrics. Springer-Briefs in Statistics 2016.   DOI:10.1007/978-3-319-48015-2
  2. F. Durante and C. Sempi: Principles of Copula Theory. CRC Chapman and Hall, Boca Raton 2016.   DOI:10.1201/b18674
  3. I. Gijbels and K. Herrmann: On the distribution of sums of random variables with copula-induced dependence. Insurance Math. Econom. 59 (2014), C, 27-44.   DOI:10.1016/j.insmatheco.2014.08.002
  4. H. Joe: Multivariate Models and Dependence Concepts. Chapman and Hall 1997.   DOI:10.1201/b13150
  5. R. B. Nelsen: An introduction to copulas. Second edition. Springer Series in Statistics, Springer-Verlag, New York 2006.   DOI:10.1007/0-387-28678-0
  6. A. Sklar: Fonctions de répartition a n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris \mi{8} (1959), 229-231.   CrossRef
  7. R. Wang: Sum of arbitrarily dependent random variables. Electron. J. Probab. 19 (2014), 84, 1-18.   DOI:10.1214/ejp.v19-3373
  8. R. C. Williamson and R. C. Downs: Probabilistic arithmetic I: numerical methods for calculating convolutions and dependency bounds. Int. J. Approx. Reason. 4 (2014), 89-158.   DOI:10.1016/0888-613x(90)90022-t