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A SWINGING UP CONTROLLER FOR THE FURUTA
PENDULUM BASED ON THE TOTAL ENERGY CONTROL
SYSTEM APPROACH

H. RoDRIGUEZ-CORTES

This paper considers the problem of swinging up the Furuta pendulum and proposes a new
smooth nonlinear swing up controller based on the concept of energy. This new controller re-
sults from the Total Energy Control System (TECS) approach in conjunction with a linearizing
feedback controller. The new controller commands to the desired reference the total energy
rate of the Furuta pendulum; thus, the Furuta pendulum oscillates and reaches a neighborhood
of its unstable configuration while the rotation of its base remains bounded. Once the Furuta
pendulum configuration is in the neighborhood of its unstable equilibrium point, a linear con-
troller stabilizes the unstable configuration of the Furuta pendulum. Real-time experiments are
included to support the theoretical developments.
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1. INTRODUCTION

The mechanical structure of the Furuta pendulum is composed of two arms. The first
arm, actuated by an electric motor, rotates parallel to the horizontal plane. The second
arm, the pendulum, hangs at the tip of the first arm and rotates without actuation
around the axis of the first arm. The Furuta pendulum dynamics represent an uncom-
plicated version of complex dynamics arising in challenging applications such as flexible
robotic systems, aerial vehicles, and aerospace systems; thus the Furuta pendulum is a
popular benchmark to test different control techniques.

From the control theory point of view, the Furuta pendulum is a mechanical system
with characteristics that appeal researchers, among them, under actuation, open-loop
instability of the upright equilibrium position and states with non-linear configuration
spaces. The angular positions of the Furuta pendulum have configuration spaces that
are not homeomorphic to the Euclidean space; thus no continuous vector field on these
configuration spaces have a global asymptotic equilibrium point [I5]. Failing to interpret
the stability properties of a controller designed using local coordinates in the global
configuration space could lead to the unwinding phenomenon [6]. Due to its complex
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topology, the approach to obtain a global solution for the Furuta pendulum is through
hybrid controllers. The controller that locally stabilizes the straight equilibrium point is
joined, using a switching strategy, to a second controller. The second controller swings
up the pendulum from the downward balance point to a neighborhood of the upright
equilibrium point.

The linear approximation of the Furuta pendulum dynamics at its unstable config-
uration is controllable [8]. As a result, the control problem of stabilizing this unstable
equilibrium can be locally solved employing linear control techniques. Nonlinear con-
trollers are proposed to enhance the region of attraction of linear control designs. The
Furuta pendulum dynamics can be transformed to a nontriangular quadratic normal
form [23]. Thus, the unstable equilibrium point of the Furuta pendulum can be semi-
globally asymptotically stabilized using a Fixed Point Controller [22]. Following the
controlled Lagrangians method in [7], a feedback stabilization controller for the Fu-
ruta pendulum is synthesized with a computable region of attraction. Recently, several
control algorithms to stabilize the unstable equilibrium point without considering the
swinging up procedure have been proposed. For example, the works in [5] using the
integral sliding mode technique, in [I] applying input-output linearization, and in [24]
employing proportional-retarded control. The literature, sometimes, employs the term
inverted pendulum to refer to the Furuta pendulum as well as to the inverted pendulum
on a cart. However, as shown in [23] both dynamical systems have different structural
properties. Almost global controllers, for the inverted pendulum on a cart, are pre-
sented, for example in [2] using energy shaping methods and smooth switching between
positive and negative feedback, and in [2I] using a change of coordinates and using
backstepping. The work in [I8] introduces an output feedback controller to stabilize
the unstable configuration of the pendulum on a cart based on an extended high gain
observer and multi-time-scale controller structure. Reference [25] solves the stabilization
problem for the inverted pendulum on a cart using Linear quadratic regulator (LQR)
and proportional-integral-derivative (PID) methods.

The concept of energy is at the core of most of the swing up controllers. Reference
[4] presents a quite detailed description of an energy-based controller to swing up the
Furuta pendulum. This energy-based controller does not take into account the dynam-
ics of the actuated degree of freedom; thus, this coordinate may have an unbounded
behavior. In [I0], the authors propose an interpretation of the energy-based controller
of [4] concerning the Fradkov’s Speed-Gradient. Additionally, the authors propose a
swing up approach that considers the complete model of the Furuta pendulum. Thus,
it is possible to prescribe a bounded behavior to the actuated coordinate. The work
in [3] generalizes the construction of dynamic invariants for the Furuta pendulum; then
using the Speed-Gradient method a new swing up strategy is designed. New homoclinic
curves are constructed using virtual holonomic constraints in [I2] and [27]; then con-
ditions guaranteeing the existence of solutions surrounding such curves are given. A
swing up control scheme that injects energy, based on the exponentiation of the pen-
dulum’s angular position, is proposed in [26]. The injected energy is minimal when the
pendulum’s angular position is close to the upright equilibrium point. The brief in [13]
suggests an optimal swing up and stabilization controller for the Furuta pendulum based
on the stable manifold method. In this brief, the stable manifold method approximately
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solves the Hamilton-Jacobi equation that results from the swing up and stabilization
optimal control problem. The work in [I1] proposes a swing up algorithm for a dou-
ble pendulum on a cart based on the inversion-based feedforward control. The swing
up problem for the triple inverted pendulum on a cart is addressed in [9]. The pro-
posed swing up algorithm is based on a nonlinear feedforward controller and an optimal
feedback controller.

A. A. Lambregts introduced the TECS method as a control technique to command
the longitudinal dynamics of a fixed-wing aircraft in [I6], [I7]. The foundation of the
TECS approach is the construction of two signals called the total energy rate and the
energy distribution rate. It turns out that these two signals are proportional to the time
derivatives of two functions strongly related to the concept of energy. The TECS method
proposes to command these two outputs to their desired reference using a proportional-
integral (PI) controller. An interesting point of this control technique is that it ade-
quately models the way that pilots manage kinetic and potential energy when they fly
a plane. A. A. Lambregts proposed TECS at the end of the eighties, however, to the
best knowledge of the author; this control technique remained in the field of control of
aerial vehicles. Hence, the developments in this paper are the first effort to apply TECS
in other scenarios.

This paper considers the problem of swinging up the Furuta pendulum and proposes
a new smooth nonlinear swing up controller based on the concept of energy. The new
controller results from the Total Energy Control System (TECS) approach in conjunc-
tion with a linearizing feedback controller. Regarding the TECS method, the proposed
controller commands, to the desired reference, the total energy rate of the Furuta pendu-
lum. Thus, the Furuta pendulum oscillates and reaches a neighborhood of its unstable
configuration while the rotation of its base remains bounded. Once the Furuta pendulum
arrangement is in the neighborhood of its unstable equilibrium point, a linear controller
stabilizes the unstable configuration of the Furuta pendulum. Real-time experiments
are included to support the theoretical developments.

The proposed algorithm belongs to the class of swing up controllers based on the
concept of energy. While in [I0] and [3] the desired energy function and the desired
energy-like are specified, respectively, here the desired total energy rate is defined. On
the works in [27] and [I2] where the desired homoclinic curves are constructed through
the virtual holonomic constraints, here the homoclinic curve arises from defining the
desired total energy rate.

The developments in this document have the following structure. Section[2)introduces
the Furuta pendulum dynamic model as well as a feedback linearization controller to
simplify the dynamics. Section [3| gives a brief description of the Total Energy Control
System approach in a general setting. Section [d] presents the developments carried out
to obtain the controller that swings up the Furuta pendulum. Section [5|shows a set of
experiments to evaluate the performance of the proposed swing up technique. Section [f]
completes the paper with some concluding remarks.

2. DYNAMIC MODEL OF THE FURUTA PENDULUM

Figure [1| shows the Furuta pendulum. Inside the cubical base, there is an electric motor
that actuates the angular position of the first arm 6. The cylinder contains an encoder
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Fig. 1. Furuta pendulum.

to measure the angular position of the pendulum «. The angular position « is the
non-actuated coordinate. The dynamic model of the Furuta pendulum is available in
the literature. Following any of the available modeling methods such as Newton sec-
ond law, the Lagrangian or Hamiltonian formalisms or the bond graph method, it is
straightforward to obtain a dynamic model of the Furuta pendulum. The following set
of non-linear equations describes the dynamics of the Furuta pendulum

1 .1
(Jp + 4MPL§) &+ §MprLT cos(a)f

1 . 1
_ZMPL’Q’ cos(a) sin(a)0? + iMprg sinfa) = 0 "
1 |
(MpLi + EMPLIQ) sin(a)? + JT> O+5MyLyLy cos(a)d
1 <1 kikm, - k
—|—§MPL}27 sin(«) cos(a)ﬁo'z—iMprLr sin(a)a? + ;%79 = ﬁvm

where J,, M, and L,, are the inertia, the mass, and the length of the pendulum, respec-
tively. J, and L, are the inertia and the length of the first arm, respectively. Moreover,
k; is the torque constant of the electric motor, k,, is the motor back-EMF and R,, is
the rotor terminal resistance. Additionally, g is the acceleration of gravity and V,, is
the control input, the applied voltage to the electric motor.

The following set is the configuration space of the coordinates that describe the
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dynamics of the Furuta pendulum
D={SxSxR xR}

with S the unit circle. The use of local coordinates may introduce singularities and
ambiguities that can be avoided using a geometric formulation for systems evolving in
configuration spaces non homeomorphic to the Euclidean space as presented in [19].
To simplify the dynamics of the Furuta pendulum, assuming that all states are mea-
surable and all parameters are known, the following linearizing control feedback is defined

v MoLplolin o) sina) (L, cos(@)i® — 2
m = cos(a) sin(« cos(a)f” — g)
' 2k (4J, + M,L2) P
M,L2R,, . R, 1
1’2711 cos(a) sin(a)ab + T [MPL,% + ZMpLg(l —cos(a)?) + J,
MJL; L7 L 9o M,L,L,R :
pptir 2 P 2 plplritm . 2
_m cos(a) 1 <2Lr sin(a)6* + Vm) S T sin(a)a® + k6

(2)
with V,,, a new control input. The Furuta pendulum dynamics in closed-loop with
the control input (2)) takes the following form

Ja+M,Lygsin(a) = —M,L,Lrcos(a)Vp,
. L, . w5 (3)
60— 5L, sin()0= =V,

where

. 1
J=2J,+ §MPL§

Note that it is possible to rewrite equation as follows

Ja+M,Lygsin(a) = —M,L,Lrcos(a)d
s (4)
2

sin(«)6

L
+M,L,Lr cos(c) 25

r

The developments in [4] consider the next simplified version of the dynamic model given
in equation

1 .

(27, + 5 pL2)a+MyLygsin(e) = —M,L,Lrcos(a)d (5)
where the control input is 6. The disadvantage of considering 6 as the control input is
that the displacement of the base of the Furuta pendulum could go beyond its physical
limits [I0]. This document considers the dynamic model to design the swing up
controller.

3. THE TECS METHOD

The next paragraphs present a brief description of the TECS method in a general frame-
work.
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Consider a mechanical system described by port Hamiltonian equations [28]

q 0 I
P -1 0
with ¢ € M c R" the generalized coordinate, p € R" the generalized momentum,
u € R" the control input, I the n x n identity matrix and G(¢) € R™™" the input

matrix, assumed to be full rank. Additionally, H(q, p) is the Hamiltonian function given
by

0
G(q)

V.M

o u (6)

H(q,p) = %pTM(Q)’lp +V(q) (7)

with M (q) the inertia matrix and V' (q) the potential energy function. The Lagrangian
function associated to @ and is

£(0,4) = 30" M(@)i - V(a) )

Using the Legendre transform p = M(q)q, with a slight abuse of notation, the Lagrangian
function expressed in generalized position and momentum coordinates takes the form

L(g,p) = %pTM(q)_lp - V(q) (9)

Note that the time derivatives of the Hamiltonian function , and the Lagrangian
function (8) along the port-Hamiltonian system (6] can be written as follows

H = p Mg [l’)+ %Vq (p"M(q)"'p) +VqV(Q)]
(10)
L = p'M(g" [25+ %Vq (p"M(q)"'p) — qu(Q)]

According to references, [I6] and [I7], the total energy rate and the energy distribution
rate are defined as

He

p+ %Vq (p"M(q)"'p) + V4V(q)

Le

P+ %Vq (p" M(q)"'p) = V4V(a)
Straightforward computations show that the following relationships hold
He = Glqu

Lo = Glgu—2VV(g)

The TECS approach proposes to command the total energy and distribution energy
rates to desired references. The control objective determines the desired references for
He and L.
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Assume that, for this developments, the control objective is to command ¢ and p to
desired references gg and 0, respectively. Thus, the total energy and distribution energy
rate errors acquire the following shape

He = p+Ep+VV(9)

~ . . 11
Ee - p+Kpp_qu(Q) ( )

where -
He - He_Hg
,Ze - Ee_ﬁg
g = q—4qq
HE = —Kp+ 5V, (0T M(9)7'p) + VeV(e) - VoV (@)
1 . ~
£l = —Kyp+ 5V, (0 M(a)7'p) = VeV (9) + VoV (@)

and K, a control gain. The references He and L2 are designed to shape the form of the
equations in . Note that convergence of both equations in to zero ensures the
accomplishment of the control objective. Hence, if it is possible to design a control law
such that

lim H, =0, lim £, =0 (12)
t—00 t—o0
then
Jin, V.V (9 =0
and

Jim -+ Ko) =0

thus, if V(§) has a minimum at ¢ = 0 the controller will achieve the objective at least
locally.

TECS approach proposes to achieve using a proportional-integral controller in
terms of the error signals . However, to synthesize the PI controller, it is necessary
to consider the zero relative degree of the error signals . Additionally, it could
happen that there are not enough control inputs to command both error signals. In
[16, 7], it is possible to control both error signals to zero, because the longitudinal
aircraft dynamics has two inputs and the total energy and the distribution energy rates
are scalar functions. In an application of TECS method to control the translational
dynamics of a quadrotor, only one of the TECS error signals is commanded to zero [29].
When it is not possible to command both total energy and distribution energy error
rates to zero, it is mandatory to modify the definition of the error rates to ensure that
the control objective can be accomplished. Here, it is proposed to command the total
energy rate. Thus, the total energy rate error is modified as follows
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with K, a control gain. Thus, the TECS controller reads as

t
u=KpH. + K,/ He(r)dr (13)
0

with Kp and K the PI control gains.

Since H. has zero relative degree, the controller u in is not explicitly defined.
Assuming that the matrix I—KpG(q) has full rank, an explicit definition of the controller
is given by

w = 1= KeGl] " {Kp [V @+ Kopt K= 59 (7M@) - VoV @)

+K M}
(14)
with .
Héz/ 7—26(7’) dr
0

At the level of generality of this example, it is hard to state stability properties of the
port-Hamiltonian system (6) in closed-loop with the TECS controller (14)). Note that
the closed-loop dynamics described by the following equations does not preserve any
particular structure.

g = M(G+aqa) 'p
p o= — {I +G(G+qa) [ — KpG(G+qa)] " Kp} Bvq (p" M(G+qa)"'p)
+V V(G +qa)) + GG+ qa) [ — KpG(G+qa)] " Kp [V{V(G) + Epp + Kpd]

+G(G+ qa) [T — KpG(G + qq)] Ko H!

H = - {I +G(@+qa) [T - KpG(G+qa)] " KP} Bvq (p"M(G+qa)"'p)
+V V(G +qa) + GG+ qa) [ — KpG(G+qa)] " Kp VoV (@) + Kpp + Kpd]

+G(G+ qa) [ = KpG(a+ qa)) " KiHAKp + VoV (@) + Kqyd
(15)
Hence, to verify that the TECS controller achieves the control objective. It is necessary
to check that the closed-loop dynamics has an equilibrium point at the desired
position. The equilibrium points for the dynamic system are the solutions of the
following set of algebraic equations.

0 = M(G+aq) 'p
- - — 1 ~ _

0 = —{1+6(a+a)ll - KeG(a+a) " Kp} [2% ("M (G +a0)"'p)
+VoV(G+qa)] + G(G+ qa) [ - KpG(i+qa)) " Kp VeV (@) + Kpp + K,d]
+G(q+qa) [I — KpG(G+ qa)]  KiH,

0 = Kpp+VV(G)+ Ky

(16)
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From the first and the last equations in , assuming that V(§) has a minimum at ¢,
it follows that p = 0 and ¢ = 0. Then, the set of algebraic equations in reduces to
the following equation

0 = —{14+G) 1~ KeGlan) ™ Kp} VoV () +Glan) [T - KpGlaa)] " K

This equation defines the steady-state value of H:. Finally, appealing to linear control
techniques, it is necessary to verify that the closed-loop dynamics is asymptotically
stable at the desired equilibrium point.

Once the total energy rate reference is defined, the time derivative of the Hamiltonian
function takes the following form

Ho= p M@ [He+ ]
thus, the classical interpretation of the time derivative of the Hamiltonian function in
terms of the passivity concept does not directly follows. Note that

lim H = pTM(q)_I”Hg
He—0

at the desired equilibrium point ¢ = g4 and p = 0 one has

lim H =0

He—0
The interpretation of TECS method in terms of other energy based control techniques
passivity, for example, is an open issue. Even though these technical problems the TECS
method solves the trajectory tracking problem for a quadrotor in [29] and, in this paper
the TECS method will produce a controller to swing up the Furuta pendulum.

4. SWING UP CONTROLLER

This section presents the design procedure of a controller based on the TECS approach
to swing up the pendulum to a neighborhood of its vertical position. Consider the
closed-loop dynamics of the Furuta pendulum described by equation . The total
energy function for the non-actuated coordinate is given by

1=
H= §Jd2 + M,Lyg[1 — cos(a)] (17)

It is easy to verify that the time derivative of the total energy function can be
written as follows

= a  M,L
7_[ = Jg& | = + PP
g p 5 sin(a)
Following the TECS strategy, the total energy rate reads as

Y ML
’Hezg—k I}psin(a)
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Along the trajectories of the dynamic system the total energy rate can be expressed
as follows
M,L, L,
——=t—c¢
g

According to the TECS method, the next step is to define a desired reference for the
total energy rate. The control objective must be to generate harmonic motion for the
no actuated coordinate, to swing up the Furuta pendulum. It can be noticed that with

Vi = 0, it follows that

H, = os(a)Vp, (18)

&+ Li sin(a) = 0 (19)

J
with L, = SV thus; the dynamic system 1) describes a periodic motion for small
plp

oscilations sin(a) ~ a. However, selecting V;, equal zero does not allow to modify the
periodic motion described by . To influence the periodic motion, through the control
input V,,, the desired total energy rate is defined as

He = — 3 (a)sin(a)
L.
with

~ cos(a)?
1+ cos(a)?

d(a)

and k a positive constant. The function is introduced to deal with the fact that the
control input V,,, enters to the first equation of multiplying a cosine function. The
energy rate error reads as

(20)

~ a 1 .
He = 7 t1 1+ kP()]sin(«) (21)

€

with He = He — H2. Combining equation with equation one obtains

Defining

g cos(a) .
Vin = KEW sin(«) (22)

it follows that . )
H, = g + = [1+ r®(a)]sin() = 0 (23)
The controller in closed-loop with generates the following differential equa-
tions

d+ L1+ kd(a)]sinfa) = 0
ke (21)
. L, . _— g cos(a) .
0 5L, sin()f® = L. T+ cos(a)? sin(a)
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The first equation in can be interpreted as a Hamiltonian system of the form @
with Hamiltonian function defined by

1
Ho = 502 + Va(a)

and
g 4—7
Vala) = T {1 t R (14 2k) cos(a) + 2k arctan [cos(a)]}

It is easy to verify that

1
H, = 50‘? + V()
is an invariant for (14). Thus, H, defines a homoclinic orbit for the dynamics in (14)).
Additionally, the gain x can modify the shape of the homoclinic orbit. Now, to limit
the motion of the pendulum’s base, the controller is modified as follows

- g cos(a) . .
Vo =h———"F— — ko0
KLT 1 + cos(a)? sin(er) — ko
with kg a control gain.
Hence, the closed-loop dynamics reads as

a+ B[1+ kP(a)]sin(a) = L5 cos()kqf
I g (@) (25)
0 P sin(a)f? = & J o8 sin(a)—kg

2L, L, 1+ cos(a)?

with 3 = #. All previous developments do not take into account damping forces. Using

experiments, in the next Section, the effect of the damping forces will be included. In
addition, it will be shown that the proposed controller achieves the control objective.

5. EXPERIMENTAL RESULTS

The experimental results were performed with the QUBE Servo prototype from Quanser
[14]. The Qube Servo prototype consists of two Allied Motion, model 16705, brushed
DC motors. The rotating arm is driven by a pulse width modulation (PWM) signal.
The Data Acquisition (DAQ) device, connected to a personal computer (PC) via USB,
generates such a PWM signal. The US Digital rotary optical shaft, model E8P-512-118,
generates 2048 counts per revolution to measure the angular positions of the rotating
arm and the pendulum. Both encoders are connected to the DAQ. The proposed swing
up controller is implemented using the Quanser Real-Time Control (QUARC) software.
The parameters of the Furuta pendulum are: M, = 0.24kg, L, = 0.129m, L, = 0.085m,
Jp, = 3.3282 x 10~kgm?, J, = 5.7198 x 10~°kgm?, R,, = 8.4, k; = 0.042 Nm/A,
k,, = 0.042 Vs/rad, g = 9.81 m/s%.

The first experiment shows that considering x = 0, the control objective is not sat-
isfied as the oscilations vanish. The solution of the linear approximation of , at
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o =d&=0and § =6 = 0 for initial conditions a(0), &(0), #(0) and 6(0) and x = 0 is
given by

_ VBKZL,6(0) + gv/B((0) + k3 BLkgO(0) e
O = T ) VI g
B(ga(0) — Lykg(0)) + gk3a(0)
+( 5L-0(0) (kg(+))/3) 56.(0) e 38L,0(0)
ap — BULO(0) +96(0)) + gh3a(0) _ KBBLAOO) 4,
S R o (ﬂ” o+ 5)
_Bi(ga(O) — L, ke0(0)) + gv/Bk2x
1 90k + 6) in(v/50)
o(t) = —59(0)(1_6—’%)%(0)
O(t) = 6(0)e kot

thus, it seems that the pendulum will swing up until it reaches a neighborhood of the
vertical equilibrium if one selects the right initial conditions. Note that selecting a(0),
&(0), 0(0) and 6(0) different from zero the solution converges to

alt) = VBk;L:6(0) + gv/B((0) + ka(0)) in(/50)

(92(0) g(kg??))
B(ga(0) — L, -kg0(0)) + gkiax
+( )(0) g(kgi))m (0) e
vy BERLA(0) + 9i(0)) + gk3a(0)
a(t) = 3 2+ 5) . (ﬂt)
8% (gal0) — L keb(0)) + gv/Bkia
92 1 5) in(v/50)
0(t) = 6(0)
ot) = 0

Figure [2| shows the time history of the angular position of the pendulum as well as
the control input. Note that the motion of « vanishes. Figure[3|presents the phase plane
of the pendulum states, with x = 1.15 and ky = 0, as well as the angular position of
the pendulum’s base. Notice that the pendulum oscillates, however the angular position
of the pendulum’s base has a transient motion that may take it off the limits of the
prototype. Additionally, the swing up of the pendulum is not close enough to the
vertical position.

In order to show the effect of the control gain ky on the motion of the pendulum’s
base, this gain is now different from zero. Figure [4] shows the results for x = 1.15
and kg = 49.5. The gain kg helps in two ways, it reduces the transient motion of the
pendulum’s base and it increases the magnitude of the oscillation. Figure [5| shows the
control input.

In the last experiment, the control algorithm adds a linear controller to stabilize the
upright position of the pendulum. Thus, when the pendulum’s position satisfies the
condition « + 7 < ]0.2|rad, the balancing linear controller commands the prototype.
Figure [6] shows the phase plane, note that after swinging up the pendulums converges to
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0.5 —

-1 .

time [s]

time [s]

Fig. 2. Experimental results with kK = 0 and k¢ = 49.5. Angular
position « (top), control input V;,, (bottom).

the vertical position. In this phase plane, the zero position for the pendulum corresponds
to the downward configuration. Thus, the vertical position is on 7 radians. Figure [7]
shows that the position of the pendulum’s base remains bounded and it does not have big
transients. Additionally, Figure [7| reports the time history of the control input. Finally,
Figure [8| presents the total energy rate error which satisfies equation

By comparing the proposed swing up strategy with energy based reported procedures,
it is possible to state the following remarks. The controller developed in [4] becomes
equal to zero at & = w/2 and & = 0; the strategy proposed in this paper only equals
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o’s angular velocity [rad/s]

-10

05 : . 4

6 [rad]

-1 .

_15 i i i i i i i i i
[ 5 10 15 20 25 30 35 40 45 50
time [s]

Fig. 3. Experimental results with x = 1.15 and k¢ = 0. Phase plane
a vs & (top), angular position 6 (bottom).

to zero at o = 7w/2. Looking at equation 2.4 of [3], one determines that the swing
up controller becomes equal to zero at a complex combination of the Furuta pendulum
states. The control philosophy followed in [4, [I0], and [20] was to command the energy
function, or an energy-like function, in [3], to the desired reference. The philosophy of
the controller of this paper is to modify the internal dynamics described by equation
. A performance index for swinging up controllers may be the number of swings to
achieve the region of attraction of the local controller. For such a performance index
the controller proposed in [4] is the best one because in a countable number of swings
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o’s angular velocity [rad/s]

0 [rad]

I I I I I I I I
10 15 20 30 35 40 45 50

25
time [s]

Fig. 4. Experimental results with x = 1.15 and k¢ = 49.5. Phase
plane « vs & (top), angular position 6 (bottom).

achieves such a region. Moreover, concerning the complexity of the control strategy, the
controller reported in [4] is also the simplest.

The links http://youtu.be/ELWHPiMkvUI and http://youtu.be/Frhrxul6sSM show
videos of the experiments corresponding to Figures [4] and [6 respectively.

6. CONCLUSION

This paper presents a generalization of the Total Energy Control System methodology
for fully actuated mechanical systems. Then the proposed generalization is employed in


http://youtu.be/ELWHPiMkvUI
http://youtu.be/FrhrxuI6sSM
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Fig. 5. Experimental results with x = 1.15 and k¢ = 49.5. Control
input Vi,.
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Fig. 6. Experimental results with x = 1.15 and k¢ = 49.5. Phase
plane a vs c.

conjunction with a feedback linearization controller to design a strategy to swinging up
the Furuta pendulum. A local controller stabilizes the Furuta pendulum at its upright
configuration. Experimental results show that the proposed swing up algorithm works
appropriately.
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time [s]

51

time [s]

Fig. 7. Experimental results with k = 1.5 and k¢ = 49.5. Pendulum’s
base angular position 6 (top), control input V;,, (bottom).
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