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A PRACTICAL SOLUTION TO IMPLEMENT NONLINEAR
OUTPUT REGULATION VIA DYNAMIC MAPPINGS

Carlos Armenta, Jorge Álvarez, Raymundo Márquez, and Miguel Bernal

This paper presents a novel error-feedback practical solution for real-time implementa-
tion of nonlinear output regulation. Sufficient and necessary conditions for both state- and
error-feedback output regulation have been established for linear and nonlinear systems several
decades ago. In their most general form, these solutions require solving a set of nonlinear partial
differential equations, which may be hard or even impossible to solve analytically. In recent
years, a methodology for dynamic calculation of the mappings required for state-feedback regu-
lation has been put forward; following the latter, an error-feedback extension is hereby provided
which, when combined with design conditions in the form of linear matrix inequalities, becomes
suitable for real-time setups. Real-time results are presented for a nonlinear twin rotor MIMO
system. Issues concerning the implementation as well as the solutions adopted, are discussed.
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1. INTRODUCTION

This paper is concerned with nonlinear output regulation and its real-time implemen-
tation issues; a proposal based on the dynamic computing of the required steady-state
maps and the use of convex optimization for determining the required gains is proven
to systematically tackle them.

Output regulation consists in finding a control law able to asymptotically drive to zero
an error signal which depends on the system outputs and the (quasi) periodic trajec-
tories of an exosystem [15]; trajectory tracking of time-varying trajectories is therefore
a particular case of it [18, 20]. Thus, output regulation generalizes the class of error sig-
nals to possibly nonlinear functions of the plant states and the exosystem with a variety
of applications [14, 17, 35]. A typical regulation control law has two parts: one that
drives the system to the desired manifold (reaching phase); another one that keeps it in
the steady-state regime (steady-state phase).

Linear output regulation, also known as the servomechanism problem [8, 34], has
been studied since the seminal work of [12]. Sufficient and necessary conditions where
the control law depends on fully-available states or only on the error are given in [11]:
they are based on solving algebraic linear equations. The solutions in these works were
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reformulated in terms of linear matrix inequalities (LMIs) in [2], which can be efficiently
solved via convex optimization techniques [4]. Since linear output regulation is easy
to implement, most of real-time applications consider a linearized form of the model
[13, 19].

Sufficient and necessary conditions for both state- and error-feedback nonlinear out-
put regulation, first appeared in [16]: these results were derived using very involved
developments from the field of geometric control, which in turn is based on differential
geometry [15]. Error-feedback configurations are also based on the internal model prin-
ciple [5]; along this path several results have appeared enhancing non-equilibrium theory
[6], guaranteeing uniform practical regulation [22], and handling uncertain systems [7];
these approaches are intentionally left out of this paper.

Problem statement: Solving a nonlinear output regulation problem requires dealing
with nonlinear partial differential equations, whose analytical solution –if available–
might be impossible to obtain [21]; this has precluded real-time applications of this
theory [27, 33]. Several works aimed to tackle this problem via Takagi-Sugeno models,
but the solutions thus found remained approximate [23, 3]; some others converted some of
the partial differential equations into ordinary ones, thus easing the former requirement
of finding explicit analytical solutions [24, 29]. The latter has been referred to as dynamic
mappings; it is only available for state feedback, which hinders its application to real-
time setups where very often the full state is not available.

Contribution: A practical solution to perform nonlinear output regulation in the
error-feedback case by determining: (a) controller and observer gains of the reaching
phase via LMIs that meet real-time performance specifications, (b) dynamic mappings
for the steady-state phase that avoid explicit solving of partial differential equations.
Real-time implementation results of the proposed approach are provided for a nonlinear
twin rotor MIMO system whose states are not fully available.

Organization: The theoretical proposal is presented in two parts: section 2 formulates
an LMI approach for determining the controller gains involved in the reaching phase;
section 3 develops a methodology for the dynamic calculation of the mappings required
during the steady-state phase of the nonlinear error-feedback case. The practical contri-
bution via real-time implementation is also twofold: the LMI solution for the reaching
phase along with the dynamic mappings for the steady-state stage in order to perform
regulation in a highly nonlinear MIMO twin rotor system [10, 26] in section 4. Issues
concerning implementation as well as the solutions adopted, are discussed. Conclusions
are drawn in section 5.

2. AN LMI SOLUTION FOR THE REACHING PHASE

In this section we are concerned with the reaching phase which drives the system states
towards the desired manifold; its solution is the same for both the linear and nonlinear
case via linearization1.

1Indeed, as shown in Chapter 8 of [15], controller/observer design of the reaching phase for the
nonlinear case can be achieved via linearization.
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2.1. Preliminaries

Consider the following linear setup:

ẋ(t) = Ax(t) + Bu(t), (1)

ẇ(t) = Sw(t), (2)

e(t) = Cx(t) + Qw(t), (3)

where x(t) ∈ X ⊂ Rn is the state vector of a plant, w(t) ∈ W ⊂ Rq is the state vector
of an exosystem which generates periodic signals2, e(t) ∈ Rm is a linear function of x(t)
and w(t) known as the error signal, u(t) ∈ Rm is the control input; A, B, C, Q, and
S are known matrices of proper dimensions. It is assumed that (x,w) = (0,0) is an
equilibrium point of the system with u(t) = 0.

The linear state-feedback output regulation problem (LSFORP) consists in finding

u(t) = Kx(t) + Lw(t) such that lim
t→∞

e(t) = 0 (4)

for any initial condition (x(0),w(0)) ∈ Ω ⊂ X ×W with (A + BK) Hurwitz (such that
the system is stabilized by u(t) when w(t) = 0).

The LSFORP has a solution if and only if [11]:

1. Re{σ(S)} ≥ 0 and (A,B) is stabilizable,

2. ∃Π ∈ Rn×q, ∃Γ ∈ Rm×q such that

ΠS = AΠ + BΓ, 0 = CΠ + Q. (5)

The gains in the control law (4) are thus K such that (A + BK) is Hurwitz and L =
Γ−KΠ.

The LSFORP requires all the states to be available, which in real-time applications
is hardly the case; thus, an observer must be somehow incorporated in the controller
design to reconstruct the states through the only signal truly available: the error e(t).

The linear error-feedback output regulation problem (LEFORP) consists in finding an
error-fed dynamic observer-based control law of the form

ξ̇(t) = Fξ(t) + Ge(t), u(t) = Hξ(t), (6)

where ξ(t) =
[
ξTf (t) ξTs (t)

]T ∈ Ξ ⊂ Rn+q, ξf (t) ∈ Rn goes to x(t) as t→∞, ξs(t) ∈ Rq

goes to w(t) as t → ∞, while F ∈ R(n+q)×(n+q), G =
[
GT

0 GT
1

]T
, G0 ∈ Rn×m,

G1 ∈ Rq×m, and H ∈ Rm×(n+q) are designed to guarantee that ∀(x(0), ξ(0),w(0)) ∈
Ω ⊂ X × Ξ ×W , the error (3) goes to zero and

[
A BH

GC F

]
is Hurwitz, so the control

u(t) stabilizes the system when w(t) = 0.
The LEFORP has a solution if and only if [11]:

2By definition, as shown in [11], a linear exosystem (2) is such that Re(σ(S)) = 0, where σ(S) stands
for the spectrum of S.
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1. Re{σ(S)} ≥ 0, (A,B) is stabilizable, and the pair
([

A 0
0 S

]
, [C Q]

)
is detectable.

2. ∃Π ∈ Rn×q, ∃Γ ∈ Rm×q such that (5) holds.

Thus, the gains involved in the dynamic control law (6) are K such that (A + BK)

is Hurwitz, G such that the observable modes of
([

A 0
0 S

]
−
[
G0

G1

]
[C Q]

)
are stable,

F =
[
A − G0C + BK −G0Q + B (Γ − KΠ)

−G1C S − G1Q

]
, and H = [K Γ − KΠ].

2.2. An LMI proposal

The solutions in the preceding section are not optimal nor application-oriented; this
is to say that for a concrete plant they cannot guarantee any physically viable con-
troller/observer for the reaching phase. This might translate into low-energy responses
that fall short from the control objective or saturation of the actuators. The LMI
framework, on the other hand, provides a strategy for systematically incorporating such
constraints [4].

In [2], element-wise LMIs were first employed to obtain the gains and mappings
described above in a single step via convex optimization techniques; based on it, we
propose the next application-oriented LMI result to calculate the gains K and G that
solve the reaching phase of a LEFORP with a given decay rate3 that ensures the observer
converges at a given rate αo faster than the controller rate αc while avoiding input
saturation by imposing ‖u(t)‖ ≤ µ.

Theorem 2.1. During the reaching phase, the LEFORP has a solution with controller
and observer decay rate of αc and αo, respectively, 0 < αc < αo, and input constraint
‖u(t)‖ ≤ µ from a given initial condition x0, if there exists matrices X > 0, Y > 0, M,
and N, such that the following LMIs hold:

He (AX + BM) + 2αcX < 0, (7)

He

(
Y

[
A 0
0 S

]
−N

[
C Q

])
+ 2αoY < 0, (8)[

X MT

M µ2I

]
≥ 0,

[
1 xT (0)

x(0) X

]
≥ 0, (9)

where He(·) is an operator defined as He(D) = D+DT . The controller gain is given by
K = MX−1, the observer gains by G = Y−1N. Alternatively, controller and observer
gains can be determined via pole placement by replacing (7) and (8) with the following
LMIs:

min ε > 0 :

− ε ≺ He(AX + BM)−XJ1 ≺ ε (10)

− ε ≺ He
(

Y

[
A 0
0 S

]
−N

[
C Q

])
−YJ2 ≺ ε (11)

3The closed-loop linear system ẋ(t) = (A + BK)x(t) has a decay rate α > 0 if and only if V̇ (x) ≤
−2αV (x), where V (x) is an associated Lyapunov function.
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where J1 and J2 are diagonal matrices whose entries correspond to the desired eigenval-
ues as long as their maxima are −αc and −αo, respectively; ≺ stands for element-wise
negative order relations.

P r o o f . Recall that the separation principle holds for linear systems; this is to say that
the controller and the observer can be designed independently. Since decay rate αc means
that V̇ ≤ −2αcV for an associated Lyapunov function, consider V (x) = xTX−1x with
X > 0 as a Lyapunov function candidate. The decay rate condition directly translates
into (7) for the closed-loop system matrix A+BK; the same goes for the alternative LMI
(10) since the element-wise form ensures the matrix A + BK has the same eigenvalues
of J1 [32], the fact that −αc is the maximum eigenvalue ensures decay rate of αc [9].

Similarly,
([

A 0
0 S

]
−
[
G0

G1

]
[C Q]

)
is the closed-loop system matrix for the observer

because it observes the system and the exosystem states x and w. Considering a Lya-
punov function candidate V (eo) = eTo Yeo with Y > 0 and the observation error

eo =
[
xT−ζTf wT−ζTs

]T
, the same reasoning as before leads to LMIs (8) (or, al-

ternatively, to (11)).
Holding an input constraint µ > 0 for a given initial condition x0 is equivalent to

‖u‖2 = uTu ≤ µ2. which, along with restrictions on the Lyapunov function such that
V ≤ V (0) ≤ 1, can be translated into a standard LMI (9) as shown in [9]; this concludes
the proof. �

The previous theorem is concerned with the reaching phase, but mappings Π and
Γ, which are involved in the steady-state phase, can also be found simultaneously via
element-wise LMIs that implement (5) (see [2] for details).

3. NONLINEAR REGULATION

In this section we are concerned with the steady-state phase of nonlinear output regu-
lation. Once the preliminaries are presented, a second application-oriented contribution
for implementing the required nonlinear mappings in real-time setups whose state might
not be fully available is presented.

3.1. Preliminaries

Consider the following nonlinear system setup:

ẋ(t) = f(x(t)) + g(x(t))u(t) (12)

ẇ(t) = s(w(t)) (13)

e(t) = h(x(t)) + q(w(t)), (14)

where x(t), u(t), w(t), and e(t) are the system state, the control input, the exosystem
state (quasi-periodic or periodic), and the error function, respectively, while f(x(t)),
g(x(t)), s(w(t)), h(x(t)), and q(w(t)) are (possibly nonlinear) vector functions of ade-
quate size.
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Nonlinear state-feedback output regulation problem (NLSFORP): Consists in finding

u(t) = α(x(t),w(t)) such that lim
t→∞

e(t) = 0 (15)

for any initial condition (x(0),w(0)) ∈ Ω ⊂ X×W (in a neighbourhood of (0,0)) as well
as guaranteeing x=0 is an exponentially stable equilibrium point of (12) with w(t)=0.

The NLSFORP has a solution if and only if [16]:

1. w(t)=0 is an equilibrium point with a neighborhood W̃ ⊂W in which every initial
condition w(0) is Poisson stable4, and the pair (f(x),g(x)) has a stabilizable linear
approximation (A,B) at x=0.

2. ∃x=π(w) with π(0)=0 and ∃u=γ(w) with γ(0)=0, both mappings C k (k ≥ 2)
defined in a neighborhood W o ⊂ W of w(t)=0, satisfying the Francis-Isidori-
Byrnes (FIB) conditions

∂π

∂w
s(w) = f (π(w)) + g (π(w))γ(w), (16)

0 = h (π(w)) + q(w). (17)

Thus, the control law performing the regulation task for every initial condition in W o

is

u(t)=α(x(t),w(t))=γ(w(t))+K (x(t)−π(w(t))) , (18)

where K is any gain such that (A + BK) is Hurwitz for A = ∂f/∂x|x=0, B = g(0).

As mentioned earlier, the state may not be available to perform output regulation.
An usual answer to this problem consists in designing an observer which reconstructs
the state based on the output (the error signal e(t) in this case). This is the purpose
behind the construction of a dynamical controller whose internal model is supposed to
eventually match both the system and the exosystem. To this end, consider the following
dynamical controller:

ξ̇(t) = η (ξ, e) , u = θ (ξ) (19)

where ξ ∈ Ξ ⊂ Rn+q is intended to observe both the system states x(t) and the ex-
osystem ones w(t). It is assumed that η(0,0) = 0 and θ(0) = 0, so the closed-loop
system

ẋ(t) = f(x) + g(x)θ(ξ)

ξ̇(t) = η (ξ,h(x) + q(w))

ẇ(t) = s(w)

(20)

has an equilibrium at (x, ξ,w) = (0,0,0).

Nonlinear error-feedback output regulation problem (NLEFORP): Consists in finding
an error-fed dynamic observer-based control law (19) such that ∀ (x(0), ξ(0),w(0)) ∈

4A point w(0) is Poisson stable if the trajectory w(t) which contains it passes arbitrarily close to
w(0) for arbitrarily large times, in forward and backward direction [15].
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Ω ⊂ X × Ξ×W (in a neighbourhood of (0,0,0)), the closed-loop system (20) satisfies
lim
t→∞

e(t) = 0, and, if w(t) = 0 then q(w) = 0, therefore the system

ẋ(t) = f(x) + g(x)θ(ξ)

ξ̇(t) = η (ξ,h(x))
(21)

has an equilibrium point at (x, ξ) = (0,0) which is exponentially stable.

The NLEFORP has a solution if and only if [16]:

1. w(t)=0 is an equilibrium point with a neighborhood W̃ ⊂W in which every initial
condition w(0) generates a Poisson stable trajectory,

2. provided A, B, and C are linear approximations of f(x), g(x), and h(x), respec-
tively, the matrices F = (∂η/∂ξ)|ξ=0 and H = (∂θ/∂ξ)|ξ=0 are such that the
pair (

A 0
GC F

)
,

(
B
0

)
(22)

is stabilizable for some choice of G, and the pair

(
C 0

)
,

(
A BH
0 F

)
(23)

is detectable.

3. ∃x = π(w) with π(0) = 0 and ∃u = γ(w) with γ(0) = 0 such that (16)-(17) hold
for any w(t) ∈W 0 ⊂W ⊃ 0.

4. the exosystem with output {W o, s,γ} is immersed into the system (19) with e(t) =
0, i. e., into ξ̇ = η (ξ,0), u = θ (ξ), defined on a neighborhood Ξo of the origin in
Rn+q in which η(0) = 0 and θ(0) = 0.

Splitting ξ as ξ =
[
ξTf ξTs

]T
, with ξf ∈ Rn, ξs ∈ Rq, the control law in (19)

achieving error-feedback output regulation for every initial condition in W o is

u
(
ξf , ξs

)
= θ(ξ) = γ (ξs) + K

(
ξf − π (ξs)

)
, (24)

where ξf and ξs are dynamically implemented by splitting η(·, ·) =
[
ηTf (·, ·) ηTs (·, ·)

]T
in order to fit

ξ̇f = ηf
(
ξf , ξs, e

)
= f

(
ξf
)
+g

(
ξf
)
u
(
ξf , ξs

)
−G1

(
h
(
ξf
)
+q (ξs)−e

)
(25)

ξ̇s = ηs
(
ξf , ξs, e

)
= s (ξs)−G2

(
h
(
ξf
)
+q (ξs)−e

)
,

where G =
[
GT

1 GT
2

]T
.
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3.2. A dynamic mapping proposal

Solving nonlinear partial differential equations such as (16) – (17) to find the steady-state
nonlinear mappings π(w) and γ(w) is a difficult task, especially for high-order systems;
moreover, even if these mappings are found, they might be too involved for real-time
implementation. The methodology in [24], corrected in [29], tackles this problem by
relaxing the requirement of finding an explicit static mapping π(w); instead, implicit
dynamic mappings are used. This novel methodology – depicted in Figure 1 – is hereby
extended to the error-feedback case.

To do so, consider the class of nonlinear systems whose equations (12) – (14) can be
rewritten as follows:

ẋ(t) = A(x(t))x(t) + B(x(t))u(t), (26)

ẇ(t) = S(w(t))w(t), (27)

e(t) = C(x(t))x(t) + Q(w(t))w(t), (28)

where (possibly nonlinear) matrix expressions A(x), B(x), S(w), C(x), and Q(w) are
well defined with σ(S(0)) ⊂ I.

Fig. 1: Block diagram for Dynamic Nonlinear Error-Feedback Output Regulation.

Theorem 3.1. Given a nonlinear setup as described in (26) – (28) along with a dynam-
ical controller of the form (19) with closed-loop structure (25), the NLEFORP has a
solution if: (a) there exists matrices X > 0, Y > 0, M, and N, such that LMIs (7) – (9)
hold for given constants αc, αo, µ > 0, initial condition x0, and matrices A = A(0),
B = B(0), S = S(0), C = C(0), and Q = Q(0); (b) there exist possibly nonlinear
matrix functions Π(w) and Γ(w) such that

Π̇(w) = A(Π(w)w)Π(w) + B(Π(w)w)Γ(w)−Π(w)S(w), (29)

0 = C(Π(w)w)Π(w) + Q(w). (30)

The corresponding control law is given by

u(t) = Γ(ξs)ξs(t) + K
(
ξf −Π(ξf , ξs)ξs(t)

)
. (31)

P r o o f . Clearly, the matrices corresponding to linearization of (26) – (28) are A =
A(0), B = B(0), S = S(0), C = C(0), and Q = Q(0). Since σ(S(0)) ⊂ I, condition 1
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for the NLEFORP to have a solution (see the previous section) is satisfied, i. e., trajec-
tories are Poisson stable. Feasibility of LMIs (7) – (9) implies the existence of a local
controller with gain K and a local observer with gain G whose linearization is the same
as that of (25); thus, condition 2 for the solution of the NLEFORP is also satisfied by
defining F and H in the same way as in section 2 (linear case).

Defining nonlinear mappings x = π(w) = Π(w)w and u = γ(w) = Γ(w)w, condi-
tion 3 for solving the NLEFORP translates into rewriting (16) – (17) as:

∂π

∂w
S(w)w = π̇(w) = Π̇(w)w + Π(w)ẇ = Π̇(w)w + Π(w)S(w)w

=A(Π(w)w)Π(w)w + B(Π(w)w)Γ(w)w,

0 = C(Π(w)w)Π(w)w + Q(w)w,

from which (29) – (30) can be straightforwardly obtained [24, 29].
Condition 4 for solvability of the NLEFORP is directly satisfied by construction of

the dynamical controller (19) with closed-loop structure (25). Substituting the corre-
sponding mappings in (24) we obtain (31), which concludes the proof. �

Scheme implementation: The proposed scheme requires solving equations (29) – (30)
(a) for each entry of Γ and Π whenever an explicit solution is possible, or (b) for Π̇ij at
those entries (i, j) of Π where no explicit solution can be found: these are dynamically
implemented, i. e., they are obtained on-line via integration of the differential equations
that describe them [29].

Note that the entries of Π can be threefold: a constant Πij = k, an explicit static
mapping Πij(w) depending on w(t), or a dynamic mapping Πij which can be initialized
at any value. This is not surprising as the FIB equations (16) – (17) are being satisfied by
(not necessarily unique) mappings π = Πw and γ = Γw (arguments omitted) satisfying
(29) – (30).

Use of available signals in real-time setups: Notice that dynamic mappings for Π are
fed with ξs(t), which is part of the observer state which follows w(t), the exosystem
state. Nevertheless, real-time implementations can benefit from any knowledge of the
plant and exosystem states, since usually some of the states of the former and all the
states of the latter are known (the exosystem being normally an artificial setup for
generating signals to be tracked).

Further improvements: Controller and observer design for the pairs

(A(x),B(x)),

(([
A(x) 0

0 S(w)

]
,
[
C(x) Q(w)

]))
can be achieved through nonlinear techniques such as those based on exact convex
models and LMIs [3, 30] instead of linear ones as before; this may increase the size of
the neighbourhood on which regulation takes place, though at a higher computational
price.

4. IMPLEMENTATION ON THE TWIN ROTOR

Modelling: The twin rotor intends to model in a simple way the dynamics of a heli-
copter; it is a MIMO system since there are two actuators (inputs) and two angles of
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interest (outputs). Two DC motors are placed at the extreme points of a beam with
a counterbalance pole at the middle, in order to control two helixes; these are oriented
in azimuth and elevation angles. Besides the high-order and nonlinear characteristics of
the plant, there is an important coupling between the two rotors. The plant by Feedback
TM [10] is shown in Figure 2.

Several models of the twin rotor are available: 6-state simplified models that ignore
the nonlinear coupling between the two rotors can be found in [25, 28, 31]; the states are
the elevation x2 and azimuth angles x5, their corresponding angular velocities x3 and x6,
and the motor speeds x1 and x4. On the other hand, the provider model is a 7-state one
which incorporates an internal state x7 which is a torque associated with the azimuth
angle that relates both helixes [1, 10], a representation usually enlarged with two other
states x8 and x9 which are the integrals of x2 and x5, respectively. Recall that only the
angles x2 and x5 can be measured by the encoder sensors. Thus, the 9-state twin rotor
model as expressed in (26), the exosystem generating sinusoidal references w1 and w2 to
be followed by angles x2 and x5, and the corresponding error signal are the following:



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

ẋ8

ẋ9


=



0.8333 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

E1 E2 −
B1Ψ

I1
0 0 E3 0 0 0

0 0 0 −1 0 0 0 0 0

0 0 0 0 −1 0 0 0 0

0 0 0 E4 0 −
B1Φ

I2
−

1

I2
0 0

E5 0 0 0 0 0 −
1

I2
0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0


︸ ︷︷ ︸

A(x(t))



x1

x2

x3

x4

x5

x6

x7

x8

x9


+



0.9166 0
0 0
0 0
0 0.8
0 0
0 0
E6 0
0 0
0 0


︸ ︷︷ ︸

B(x(t))

[
u1

u2

]
,

[
ẇ1

ẇ2

]
=

[
0 1
−1 0

]
︸ ︷︷ ︸

S(w(t))

[
w1

w2

]
, e(t) =

[
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0

]
︸ ︷︷ ︸

C(x)

x(t) +

[
−1 0
0 −1

]
︸ ︷︷ ︸

Q(w)

w(t),

E1 =(b1 +a1x1)(1−Kgyx6 cosx2)/I1, E2 =−Mg sinx2/(I1x2), E3 =0.0163x6 sin(2x2)/I2,
E4 =(b2+a2x4)/I2, E5 =0.5Bcte(b1+a1x1)−Acte(0.5b1+a1x1), E6 = 0.9166Acte(0.5b1+
a1x1), and parameters taken from Table 1.

Dynamic mappings: Applying Theorem 3.1, equations (29) – (30) need to be solved
according to the procedures described in section 3; to this end, every expression in them
should be in terms of mapping entries Πij and Γkj , i ∈ {1, 2, . . . , 9}, j, k ∈ {1, 2}, as
well as w1 and w2, i. e., each xi in A(x(t)), B(x(t)), and C(x(t)) should be replaced by
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x5

x2

Fig. 2: The Twin Rotor MIMO System.

xi = Πi1w1 + Πi2w2, i ∈ {1, 2, . . . , 9}. From equation (30) yields:

0 =

Π21 Π22

Π51 Π52


︸ ︷︷ ︸

CΠ

+

−1 0

0 −1


︸ ︷︷ ︸

Q

⇒ Π21 = 1, Π22 = 0,
Π51 = 0, Π52 = 1.

After substitution of these data in (29), the designer is faced with 18 equations
corresponding to each Π̇ij . Most of these expressions are quite long, so only the variables
they depend on are shown in Table 2; otherwise, they are explicitly stated. Notice
that Π31 = 0, Π32 = 1, Π61 = −1, and Π62 = 0 follow directly from the fact that
Π̇21 = Π̇22 = Π̇51 = Π̇52 = 0. Moreover, due to the simplicity of the equations in the
last two rows of Table 2, which are isolated from the rest, the corresponding mappings
can be straightforwardly given as Π81 = 0, Π82 = −1, Π91 = 1, and Π92 = 0.

Once the aforementioned constant terms are taken into account, it is found that the
equations corresponding to Π̇31 = 0 and Π̇32 = 0 are only in terms of w1, w2, Π11,

Symbol Description Value Units
I1 Moment of inertia (vertical rotor) 0.068 kg·m2

I2 Moment of inertia (horizontal rotor) 0.02 kg·m2

a1 Static characteristic parameters 0.0135 -
b1 Static characteristic parameters 0.0924 -
a2 Static characteristic parameters 0.02 -
b2 Static characteristic parameters 0.09 -
Mg Gravity momentum 0.32 N·m
B1ψ Friction momentum parameter 0.006 N·m·s/rad
B1φ Friction momentum parameter 0.1 N·m·s/rad
Kgy Gyroscopic momentum parameter 0.05 s/rad
Acte Constant related to coupling state −0.7 -
Bcte Constant related to coupling state −0.2 -

Tab. 1: Twin Rotor parameters.
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Π̇ij depends on

Π̇11 : Γ11,Π11,Π12 Π̇12 : Γ12,Π11,Π12

Π̇21 = Π31 = 0 Π̇22 = Π32 − 1 = 0

Π̇31 :
w1, w2,Π11,Π12

Π31,Π32,Π61,Π62

Π̇32 :
w1, w2,Π11,Π12

Π31,Π32,Π61,Π62

Π̇41 : Γ21,Π41,Π42 Π̇42 : Γ22,Π41,Π42

Π̇51 = Π61 + 1 = 0 Π̇52 = Π62 = 0

Π̇61 :
w1, w2,Π41,Π42,

Π61,Π62,Π71

Π̇62 :
w1, w2,Π41,Π42,

Π61,Π62,Π72

Π̇71 :
w1, w2,Π11,Π12,

Π71,Π72,Γ11

Π̇72 :
w1, w2,Π11,Π12,

Π71,Π72,Γ12

Π̇81 = Π82 + 1 Π̇82 = −Π81

Π̇91 = Π92 Π̇92 = 1−Π91

Tab. 2: Π̇ij equations.

and Π12, enabling us to solve for Π11 and Π12; deriving the latter provides explicit
expressions for Π̇11 and Π̇12, from which mappings Γ11 and Γ12 can be solved. At this
point, since Π̇71 and Π̇72 depend on Π71, Π72, and known terms, they can be dynamically
implemented and are thus left as they are.

From equations Π̇61 = 0 and Π̇62 = 0, the values of Π41 and Π42 can be solved;
finally, from the time derivatives of the latter, the remaining mappings Γ21 and Γ22

can be explicitly found. Except for the constant terms, most of the expressions above
are very long; therefore, they are omitted for brevity. Nevertheless, for illustration
purposes the following explicit expressions are given: Π41 = −5(10Π71−1)(∆1−9)/∆2,
Π42 = −(50Π72 − 1)(∆1 − 9)/∆2, with

∆1 =
√

400Π71w1 − 8w2 − 40w1 + 400Π72w2 + 81,

∆2 = 10w1 + 2w2 − 100Π71w1 − 100Π72w2.

Controller and observer gains: Based on the linearization A = ∂f/∂x|x=0, B = g(0),
and C, controller and observer gains K and G maximizing decay rate αc were found via
LMIs in Theorem 2.1 (referred also in Theorem 3.1) with F and H as defined therein
and µ = 2.5

√
2 given from TRMS parameters:

K =

[
−6.3995 −1.0306 −19.892 −0.0351 −0.0709 −0.0029 75 −21.499 −0.0377
2.7251 1.3715 8.8202 −1.9858 −6.6418 −2.1542 −10.144 10.177 −2.722

]
,



A practical solution to implement nonlinear output regulation via dynamic mappings 397

G =



20.622 −24.383
−67.186 42.997
49.178 56.141
30.15 −33.375
−79.934 113.93
39.732 40.671
−0.38746 −7.1283
−3.0266 −17.494
−86.575 46.506
−86.575 45.506
−76.285 96.742


, αc = 0.7.

Initialization: In order to generate a sinusoidal, the exosystem is initialized as w(0) =[
0.2 0

]T
; the observer as ξf (0) = 0 ∈ R9 and ξs(0) =

[
0.2 0

]T
. Note that the

exosystem is artificially constructed to generate the references; different initial conditions
lead to different references which do not require any further adaptation of the nonlinear
mappings Π(·) and Γ(·), which depend on w(t). As for the observer, initialization of
ξf (0) can be anywhere; for simplicity, it has been assumed at “rest”; ξs(0) can also be
initialized at any place, but since the current configuration allows to know where the
exosystem has been initialized, it is only logical to use this knowledge in real-time. As
for those mappings which are going to be dynamic, this is to say, Π71 and Π72, initial
conditions can be set anywhere since dynamic implementation enforces them to hold the
FIB equations (16) – (17). Some suggestions concerning the initialization of the dynamic
mappings can be found in [24], but since they require some assumptions on the plant
states and the exosystem, they have not been followed in this report.

Results: Regulation results for the elevation (x2) and the azimuth (x5) angles are
shown in Figures 3 and 4, respectively; left-hand side corresponds to simulation, right-
hand side to real-time results. The corresponding control signals for elevation and az-
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Fig. 3: Dynamic nonlinear output regu-
lation of the elevation angle x2: simula-
tion (left), real-time (right).
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Fig. 4: Dynamic nonlinear output regu-
lation of the azimuth angle x5: simula-
tion (left), real-time (right).
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Fig. 5: Dynamic nonlinear output regu-
lation (elevation control signal u1): sim-
ulation (left), real-time (right).
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Fig. 6: Dynamic nonlinear output regu-
lation (azimuth control signal u2): sim-
ulation (left), real-time (right).

imuth angles, both in simulation (left) and real-time (right) are shown in Figures 5 and
6. Note that, in contrast with the simulation case, the physical setup of the twin rotor
obliges the real-time control signal u1(t) to have a cd-component, this is to say, to be
biased w.r.t. zero (otherwise, the beam will fall due to the counterbalance pole at its
middle). Real-time implementations take advantage of any available signal: x2 and x5

given by the encoders, w1 and w2 as reference signals.

The results so far presented correspond to error-based output regulation. As a way
of comparison, Figures 7 and 8, corresponding to a state-feedback output regulation of
angles x2 and x5, respectively, are provided. States which are not directly measurable are
read from the provider’s estimators, such as x3 (elevation angle speed) and x6 (azimuth
angle speed); others like x8 and x9 are obtained by integration of x2 and x5, respectively.
Again, simulation results are shown on the left-hand side; real-time on the right one.
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Fig. 7: Dynamic nonlinear regulation of
the elevation x2 (state feedback): sim-
ulation (left), real-time (right).

0 10 20

−15

−10

−5

0

5

10

15

Time (s)

x
5
v
s
w

2
(d
eg
re
es
)

 

 

w2
x5

0 10 20

−15

−10

−5

0

5

10

15

Time (s)

 

 

w2
x5

Fig. 8: Dynamic nonlinear regulation of
the azimuth x5 (state feedback): simu-
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5. CONCLUSION

An application-oriented methodology for the nonlinear error-feedback output regulation
problem has been presented. It takes advantage of linear matrix inequalities for deter-
mining controller and observer gains that meet real-time requirements for the reaching
phase while dynamically calculating the mappings of the steady-state phase whose ex-
plicit expressions might be too involved or impossible to find. Simulation as well as
real-time implementations in a 9th-order nonlinear twin rotor, have been presented; reg-
ulation is well performed. Issues concerning the implementation as well as the solutions
adopted have been discussed.
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