Kybernetika 55 no. 2, 359-366, 2019

On stability and the Łojasiewicz exponent at infinity of coercive polynomials

Tomáš Bajbar and Sönke BehrendsDOI: 10.14736/kyb-2019-2-0359

Abstract:

In this article we analyze the relationship between the growth and stability properties of coercive polynomials. For coercive polynomials we introduce the degree of stable coercivity which measures how stable the coercivity is with respect to small perturbations by other polynomials. We link the degree of stable coercivity to the Łojasiewicz exponent at infinity and we show an explicit relation between them.

Keywords:

coercivity, stability of coercivity, Łojasiewicz exponent at infinity

Classification:

26C05

References:

  1. T. Bajbar and O. Stein: Coercive polynomials and their Newton polytopes. SIAM J. Optim. 25 (2015), 1542-1570.   DOI:10.1137/140980624
  2. T. Bajbar and O. Stein: Coercive polynomials: stability, order of growth, and Newton polytopes. Optimization 68 (2018), 1, 99..124.   DOI:10.1080/02331934.2018.1426585
  3. T. Bajbar and O. Stein: On globally diffeomorphic polynomial maps via Newton polytopes and circuit numbers. Math. Zeitschrift 288 (2018), 915-933.   DOI:10.1007/s00209-017-1920-1
  4. S. Behrends: Geometric and Algebraic Approaches to Mixed-Integer Polynomial Optimization Using Sos Programming. PhD Thesis, Universität Göttingen 2017.   CrossRef
  5. S. Behrends, R. Hübner and A. Schöbel: Norm bounds and underestimators for unconstrained polynomial integer minimization. Math. Methods Oper. Res. 87 (2018), 73-107.   CrossRef
  6. C. Bivià-Ausina: Injectivity of real polynomial maps and Łojasiewicz exponents at infinity. Math. Zeitschrift 257 (2007), 745-767.   DOI:10.1007/s00209-007-0129-0
  7. J. Chadzyński and T. Krasiński: A set on which the Łojasiewicz exponent at infinity is attained. Ann. Polon. Math. 67 (1997), 2, 191-19.   CrossRef
  8. Y. Chen, L. R. G. Dias, K. Takeuchi and M. Tibar: Invertible polynomial mappings via Newton non-degeneracy. Ann. Inst. Fourier 64 (2014), 1807-1822.   DOI:10.5802/aif.2897
  9. M. S. El Din: Computing the global optimum of a multivariate polynomial over the reals. In: Proc. Twenty-first international symposium on Symbolic and algebraic computation 2008, pp. 71-78.   DOI:10.1145/1390768.1390781
  10. E. A. Gorin: Asymptotic properties of polynomials and algebraic functions of several variables. Russian Math. Surveys 16 (1961), 93-119.   DOI:10.1070/rm1961v016n01abeh004100
  11. A. Greuet and M. Safey El Din: Deciding reachability of the infimum of a multivariate polynomial. In: Proc. 36th international symposium on Symbolic and algebraic computation 2011, pp. 131-138.   DOI:10.1145/1993886.1993910
  12. A. Greuet and M. Safey El Din: Probabilistic algorithm for polynomial optimization over a real algebraic set. SIAM J. Optim. 24 (2014), 1313-1343.   DOI:10.1137/130931308
  13. T. Krasiński: On the Łojasiewicz exponent at infinity of polynomial mappings. Acta Math. Vietnam 32 (2007), 189-203.   CrossRef
  14. M. Marshall: Optimization of polynomial functions. Canadian Math. Bull. 46 (2003), 575-587.   DOI:10.4153/cmb-2003-054-7
  15. M. Marshall: Positive polynomials and sums of squares. Amer. Math. Soc. (2008), 3-19.   CrossRef
  16. A. Némethi and A. Zaharia: Milnor fibration at infinity. Indagationes Math. 3 (1992), 323-335.   DOI:10.1016/0019-3577(92)90039-n
  17. J. Nie, J. Demmel and B. Sturmfels: Minimizing polynomials via sum of squares over the gradient ideal. Math. Programm. 106 (2006), 587-606.   DOI:10.1007/s10107-005-0672-6
  18. M. Schweighofer: Global optimization of polynomials using gradient tentacles and sums of squares. SIAM J. Optim. 17 (2006), 920-942.   CrossRef
  19. H. H. Vui and T. S. Pham: Minimizing polynomial functions. Acta Math. Vietnam. 32 (2007), 71-82.   CrossRef
  20. H. H. Vui and T. S. Pham: Representations of positive polynomials and optimization on noncompact semialgebraic sets. SIAM J. Optim. 20 (2010), 3082-3103.   DOI:10.1137/090772903