Kybernetika 55 no. 2, 295-306, 2019

Sufficient conditions for a T-partial order obtained from triangular norms to be a lattice

Lifeng Li, Jianke Zhang and Chang ZhouDOI: 10.14736/kyb-2019-2-0295

Abstract:

For a t-norm T on a bounded lattice $(L, \leq)$, a partial order $\leq_{T}$ was recently defined and studied. In \cite{Karacal11}, it was pointed out that the binary relation $\leq_{T} $ is a partial order on $L$, but $(L, \leq_{T} )$ may not be a lattice in general. In this paper, several sufficient conditions under which $(L, \leq_{T} )$ is a lattice are given, as an answer to an open problem posed by the authors of \cite{Karacal11}. Furthermore, some examples of t-norms on $L$ such that $(L, \leq_{T}) $ is a lattice are presented.

Keywords:

triangular norm, bounded lattice, T-partial order

Classification:

03E72, 03B52

References:

  1. G. Birkhoff: Lattice Theory. American Mathematical Society Colloquium Publishers, Providence, 1967.   DOI:10.1090/coll/025
  2. E. Aşıcı and F. Karaçal: On the T-partial order and properties. Inf. Sci. 267 (2014), 323-333.   DOI:10.1016/j.ins.2014.01.032
  3. E. Aşıcı: An order induced by nullnorms and its properties. Fuzzy Sets Syst. 325 (2017), 35-46.   DOI:10.1016/j.fss.2016.12.004
  4. J. Casasnovas and G. Mayor: Discrete t-norms and operations on extended multisets. Fuzzy Sets Syst. 1599 (2008), 1165-1177.   DOI:10.1016/j.fss.2007.12.005
  5. G. D. Çaylı, F. Karaçal and R. Mesiar: On a new class of uninorms on bounded lattices. Inf. Sci. 367-368 (2016), 221-231.   DOI:10.1016/j.ins.2016.05.036
  6. G. D. Çaylı: On a new class of t-norms and t-conorms on bounded lattices. Fuzzy Sets Syst. 332 (2018), 129-143.   DOI:10.1016/j.fss.2017.07.015
  7. A. H. Clifford: Naturally totally ordered commutative semigroups. Amer. J. Math. 76 (1954), 631-646.   DOI:10.2307/2372706
  8. P. Drygaś: Isotonic operations with zero element in bounded lattices. In: Soft Computing Foundations and Theoretical Aspect (K. Atanassov, O. Hryniewicz, and J. Kacprzyk,eds.), EXIT, Warszawa 2004, pp. 181-190.   DOI:10.1007/978-3-540-72950-1\_19
  9. Ü. Ertu\v grul, M. N. Kesicio\v glu and F. Karaçal: Ordering based on uninorms. Inform. Sci. 330 (2016), 315-327.   DOI:10.1016/j.ins.2015.10.019
  10. R. Hartwig: How to partially order regular elements. Math. Japon. 25 (1980), 1-13.   CrossRef
  11. F. Karaçal and M. N. Kesicio\v glu: A T-partial order obtained from t-norms. Kybernetika 47 (2011), 300-314.   CrossRef
  12. F. Karaçal, M. A. İnce and R. Mesiar: Nullnorms on bounded lattices. Inf. Sci. 325 (2015), 227-236.   DOI:10.1016/j.ins.2015.06.052
  13. M.N. Kesicio\v glu, F. Karaçal and R. Mesiar: Order-equivalent triangular norms. Fuzzy Sets Syst. 268 (2015), 59-71.   DOI:10.1016/j.fss.2014.10.006
  14. E. P. Klement, R. Mesiar and E. Pap: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.   DOI:10.1007/978-94-015-9540-7
  15. M. Lawson: The natural partial order on an abundant semigroup. Proc. Edinburgh Math. Soc. 30 (1987), 2, 169-186.   CrossRef
  16. J. Lu, K. Y. Wang and B. Zhao: Equivalence relations induced by the U-partial order. Fuzzy Sets Syst. 334 (2018), 73-82.   DOI:10.1016/j.fss.2017.07.013
  17. H. Mitsch: A natural partial order for semigroups. Proc. Amer. Math. Soc. 97 (1986), 384-388.   DOI:10.1090/s0002-9939-1986-0840614-0