Kybernetika 55 no. 2, 217-232, 2019

An extension of the ordering based on nullnorms

Emel AşıcıDOI: 10.14736/kyb-2019-2-0217

Abstract:

In this paper, we generally study an order induced by nullnorms on bounded lattices. We investigate monotonicity property of nullnorms on bounded lattices with respect to the $F$-partial order. Also, we introduce the set of incomparable elements with respect to the F-partial order for any nullnorm on a bounded lattice. Finally, we investigate the relationship between the order induced by a nullnorm and the distributivity property for nullnorms.

Keywords:

distributivity, bounded lattice, nullnorm, partial order

Classification:

03E72, 03B52

References:

  1. E. Aşıcı: An order induced by nullnorms and its properties. Fuzzy Sets Syst. 325 (2017), 35-46.   DOI:10.1016/j.fss.2016.12.004
  2. E. Aşıcı: On the properties of the $ F $-partial order and the equivalence of nullnorms. Fuzzy Sets Syst. 346 (2018), 72-84.   DOI:10.1016/j.fss.2017.11.008
  3. E. Aşıcı: Some notes on the $ F $-partial order. In: Advances in Fuzzy Logic and Technology 2017 (J. Kacprzyk , E. Szmidt, S. Zadroźny, K. Atanassov, and M.Krawczak, eds.), IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing 641, Springer, Cham, pp. 78-84.   DOI:10.1007/978-3-319-66830-7\_7
  4. E. Aşıcı: Some remarks on an order induced by uninorms. In: Advances in Fuzzy Logic and Technology 2017 (J. Kacprzyk , E. Szmidt, S. Zadroźny, K. Atanassov, and M.Krawczak, eds.), IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing 641, Springer, Cham, pp. 69-77.   DOI:10.1007/978-3-319-66830-7\_7
  5. E. Aşıcı and F. Karaçal: On the $T$-partial order and properties. Inform. Sci. 267 (2014), 323-333.   DOI:10.1016/j.ins.2014.01.032
  6. E. Aşıcı and F. Karaçal: Incomparability with respect to the triangular order. Kybernetika 52 (2016), 15-27.   DOI:10.14736/kyb-2016-1-0015
  7. G. Birkhoff: Lattice Theory. Third edition. Providence, 1967.   DOI:10.1090/coll/025
  8. T. Calvo, B. De Baets and J. Fodor: The functional equations of Frank and Alsina for uninorms and nullnorms. Fuzzy Sets Syst. 120 (2001), 385-394.   DOI:10.1016/s0165-0114(99)00125-6
  9. J. Casasnovas and G. Mayor: Discrete t-norms and operations on extended multisets. Fuzzy Sets Syst. 159 (2008), 1165-1177.   DOI:10.1016/j.fss.2007.12.005
  10. G. D. Çaylı: A characterization of uninorms on bounded lattices by means of triangular norms and triangular conorms. Int. J. General Syst. 47 (2018), 772-793.   DOI:10.1080/03081079.2018.1513929
  11. G. D. Çaylı: On a new class of t-norms and t-conorms on bounded lattices. Fuzzy Sets Syst. 332 (2018), 129-143.   DOI:10.1016/j.fss.2017.07.015
  12. G. D. Çaylı and P. Drygaś: Some properties of idempotent uninorms on a special class of bounded lattices. Inf. Sci. 422 (2018), 352-363.   DOI:10.1016/j.ins.2017.09.018
  13. G. D. Çaylı, F. Karaçal and R. Mesiar: On a new class of uninorms on bounded lattices. Inf. Sci. 367-368 (2016), 221-231.   DOI:10.1016/j.ins.2016.05.036
  14. J. Drewniak, P. Drygaś and E. Rak: Distributivity between uninorms and nullnorms. Fuzzy Sets Syst. 159 (2008), 1646-1657.   DOI:10.1016/j.fss.2007.09.015
  15. P. Drygaś: Distributive between semi-t-operators and semi-nullnorms. Fuzzy Sets Syst. 264 (2015), 100-109.   DOI:10.1016/j.fss.2014.09.003
  16. P. Drygaś: A characterization of idempotent nullnorms. Fuzzy Sets Syst. 145 (2004), 455-461.   DOI:10.1016/s0165-0114(03)00259-8
  17. M. Grabisch, J.-L. Marichal, R. Mesiar and E. Pap: Aggregation Functions. Cambridge University Press, 2009.   DOI:10.1017/cbo9781139644150
  18. B. Jayaram and C. J. M. Rao: On the distributivity of implication operators over $ T $ and $ S $ norms. IEEE Trans. Fuzzy Syst. 12 (2004), 194-198.   DOI:10.1109/tfuzz.2004.825075
  19. F. Karaçal, M. A. Ince and R. Mesiar: Nullnorms on bounded lattices. Inf.Sci. 325 (2015), 227-236.   DOI:10.1016/j.ins.2015.06.052
  20. F. Karaçal and M. N. Kesicioğlu: A T-partial order obtained from t-norms. Kybernetika 47 (2011), 300-314.   CrossRef
  21. E. P. Klement, R. Mesiar and E. Pap: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.   DOI:10.1007/978-94-015-9540-7
  22. M. Mas, G. Mayor and J. Torrens: t-operators. Int. J. Uncertain. Fuzz. Knowl.-Based Syst. 7 (1999), 31-50.   DOI:10.1142/s0218488599000039
  23. M. Mas, G. Mayor and J. Torrens: The distributivity condition for uninorms and t-operators. Fuzzy Sets Syst. 128 (2002), 209-225.   DOI:10.1016/s0165-0114(01)00123-3
  24. B. Schweizer and A. Sklar: Statistical metric spaces. Pacific J. Math. 10 (1960), 313-334.   DOI:10.2140/pjm.1960.10.313