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A PERTURBATION APPROACH TO APPROXIMATE
VALUE ITERATION FOR AVERAGE COST MARKOV
DECISION PROCESSES WITH BOREL SPACES

AND BOUNDED COSTS

OSsCAR VEGA-AMAYA AND JOAQUIN LOPEZ-BORBON

The present paper studies the approzimate value iteration (AVI) algorithm for the average
cost criterion with bounded costs and Borel spaces. It is shown the convergence of the algorithm
and provided a performance bound assuming that the model satisfies a standard continuity-
compactness assumption and a uniform ergodicity condition. This is done for the class of
approximation procedures that can be represented by linear positive operators which give exact
representation of constant functions and also satisfy certain continuity property. The main
point is that these operators define transition probabilities on the state space of the controlled
system. This has the following important consequences: (a) the approximating function is the
average value of the target function with respect to the induced transition probability; (b) the
approximation step in the AVT algorithm can be seen as a perturbation of the original Markov
model; (c) the perturbed model inherits the ergodicity properties imposed on the original
Markov model. These facts allow to bound the AVI algorithm performance in terms of the
accuracy of the approximations given by this kind of operators for the primitive data model,
namely, the one-step reward function and the system transition law. The bounds are given in
terms of the supremum norm of bounded functions and the total variation norm of finite-signed
measures. The results are illustrated with numerical approximations for a class of single item
inventory systems with linear order cost, no set-up cost and no back-orders.
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tion algorithm, contraction and non-expansive operators, perturbed Markov
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1. INTRODUCTION

The approzimate value iteration (AVI) algorithms is a class of approximating procedures
aiming to cope the numerical computation of solutions to the optimal control problem in
Markov decision processes. The research on approximation procedures is by now a very
active subdiscipline of Markov decision processes with a diversity of problems, and the
literature dealing with them has experienced an explosive growth in the recent years;
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see, for instance, the books [7, [10} B8, 48] and the survey papers [8, [31], [39] 40, 4T, 43|, [44].
In this concern, Powell [40] says that this situation “can sometimes seem like a jungle of
algorithmic strategies.” Nonetheless, the major part of the works are concentrated either
on the discrete space case (mainly, on the finite case) or on the discounted cost criterion.
Bertsekas [8] and Powell and Ma [4I] give succinct but comprehensive reviews on the
approximate policy iteration for the discounted cost criterion; the former deals with
finite models, whereas the latter one reviews the continuous spaces case. For further
results on the discounted criterion with uncountable state and control spaces see the
references [3}, 14}, [15], 34} [42] [45] [47, [53].

The present work studies a class of approximate value iteration (AVI) algorithms for
the average cost criterion with Borel spaces and bounded costs. The average cost optimal
control problem, being by far more difficult that the discounted one, has been much
less studied from the numerical viewpoint. However, there are a number of important
contributions among which we can mention the references [1, 9] [IT] [16] (18| 19, 2T, [30,
30, [46]. The approaches, assumptions and results of the these references differ with
those of the present work in several respects. Here we follow the perturbation approach
developed and applied to discounted problems in [42] 53]. We will comment briefly on
the former references at the end of this section.

The main approach to solve the optimal control problem, either with respect to
the average cost criterion or the discounted cost criterion, is to find solutions to the
corresponding optimality equations. The average cost optimality equation has the form

p* +h* =Th*, (1)

where p* is a constant, h* is a measurable function and T' is the dynamic programming
operator (see @D below). If such a pair (p*, h*) exists and h* is a bounded function, for
instance, it is proved using standard arguments that p* is the optimal average cost and
also that any stationary policy f* that attains the minimum at the right hand-side of
the optimality equation is optimal. For general results on the average cost criterion see,
for instance, [4, 23] 24] 27, 28], 50, 511, (2].

However, equation can be rarely solved analytically, so its solutions have to be
approximated. The major schemes to approximate a solution to the optimality equa-
tion are the value iteration algorithm, the policy iteration algorithm, and the linear
programming approach [0, 22 23], 24, B7]. The present work concerns with the value
iteration algorithm, which, roughly speaking, aims to get a solution (p*, h*) as limit of
the sequences

Pn = Jn — Jn_1, hy = Jn — Jn(2), (2)

for n € N:={1,2,...}, where J,, is the n-step optimal cost function (with Jo = 0), and
z € X is an arbitrary but fixed state.
Using the dynamic programming operator these sequences are related by the equa-
tions
Prt1(2) + hpg1 = Thy, (3)

with hg = 0. Note that pp41(2) = Thy(z) because h,11(z) = 0. Thus, we have that

hn-i-l =T.hn, Vn € N, (4)



A perturbation approach to approximate value iteration for the average cost criterion 83

where the operator T, is defined as
T.u:=Tu— Tu(z) (5)

for functions u belonging to an appropriate space of functions. Observe that (p*, h*)
satisfies () with h*(z) = 0 if and only if h* is a fized point of T.

Thus, it is said that the value iteration algorithm (B)-or (#)-converges if the sequence
(pn(2), hy),n € N, converges to a solution (p*, h*) of the average cost optimality equation
(1). If this is the case and the algorithm is stopped at stage n € N, then it is
computed a greedy stationary policy f, with respect to the function h,—that is, a policy
that attains the minimum at Th,— and the optimal value p* is approximated by the
average cost J(f,) induced by policy f,.

Unfortunately, the procedure (4))-or or (3)-is numerically infeasible for systems
with large or continuous spaces if it is pursued an exact representation of the sequence
{(pn, hn)}. This obstacle is circumvented by considering an approzimate or fitted value
iteration algorithm which interleaves an approximation step between two consecutive
applications of the dynamic programming operator 7. In many cases the approximation
step is represented by an operator L, so Lv is the approximation of function v.

There are two slight different approximate procedures depending on which operator,
either T' or L, acts first. These procedures are given by the composite operators T=TL
and T = LT. Thus, the standard value iteration algorithm (4 llj is substituted by

Tyt = Tohy i= Thy, — Thy(2), (6)

or
i1 = Tohn 1= Thy, — Tohin(2), (7)

for n € Ng := NU{0}.

In several approaches, Lv is the projection of function v into some class of approximat-
ing functions F that depends on finitely many parameters. The family F is usually taken
as the spanned space by linear combinations of a finite “basis function” ¢q, ¢1,...,onN.
The class F is called an architecture for the approximating problem and Lwv is called
scoring function. The main steps in the projection method is the choice of a good archi-
tecture F, which is problem dependent, and the computation of the projections. Usually
the projections are very difficult to find analytically, thus they are approximated by a
variety of simulation methods (see, e.g., [3 [7, B4, B8]). Clearly, this introduces a sec-
ond kind of approximation errors, which in many cases turn out to be quite difficult to
measure or to control.

Other kind of approximation operators is given by the so-called self-approximating
operators, that is, operators that do not need auxiliary methods to produce the ap-
proximation Lv for any function v. Examples of such operators are piecewise constant
approximations, linear and multilinear approximations, splines, Chebyshev polynomials,
kernel-based approximations, etc. (see, e.g., [43] [47]).

Then, as in the exact VI algorithm or , if the algorithm is stopped at
stage m, it computes an h,-greedy policy f,-i.e., a stationary policy that attains the
minimum at Th,—and approximates the optimal average cost p* by means of the average
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cost J(f) incurred by policy f,. Thus, this approximate value iteration algorithm raises
several important problems:

P; The first one is the convergence of the approximate sequence {(ﬁmﬁn)},
P> Once the convergence is ensured, say to (ﬁﬂ), the second one concerns with estab-
lishing computable bounds for the approximation errors p — p* and h — h*.

P53 The third one—perhaps, the most important from the practical viewpoint—consists in
providing performance bounds for the algorithm, that is, bounds for the approxi-

mation error J(f,) — p*.

Obviously, the same problems are raised for the algorithm @ replacing the sequence

{(FaFn)} and (,1) by {(Bn, i)} and (5, h), respectively.

Concerning problem Py, it was noted in previous works that the approximate value
iterations need not to converge even for the discounted cost criterion, at least the ap-
proximator L has a non-expansive property [17), 20, 43]. For instance, it is well known
that the -discounted dynamic programming operator T is a contraction operator on
the space of bounded measurable functions whenever the one-step cost is a bounded
function; thus, if L is non-expansive, the operators T3 := TgL and Tg := LT3 are
contractions operator too. Hence, the Banach fixed-point theorem guarantees the con-
vergence of the approximate sequences. On the other hand, the projection method,
which is the most used approximating procedure, usually leads to expansive operators.
(One exception to this rule is the aggregation-projection scheme used in [49].) Thus, the
convergence of the approximating iterates @ and @ may fail and the hope in this case
is that the sequences of n-step approximation errors or Bellman residuals ||Lﬁn —TLh,, I
and ||k, — Thy||,n € N, remain bounded with respect to some suitable norm || - ||. If
the convergence fails, the problem Pj3 still make sense provided the Bellman residuals
remain bounded, but it becomes in a pretty difficult task; in fact, the authors are un-
aware of general computable finite-time bounds either for the discounted or the average
cost criterion.

We address the problems P —P3 assuming that the Markov decision model satisfies
standard compactness and continuity conditions (Assumptions 2.2 and 2.3, Section 2), a
uniform ergodicity condition (Assumption 2.4) and considering positive linear operators—
as suggested in [20] — that give exact representation of the constant functions and ad-
ditionally have the following continuity property: Lv,, | 0 whenever v, J 0 (Definition
4.1). Following Gordon [20], we call averagers to these operators. The averagers is a
rich class of approximators that includes many of the operators studied in approximation
theory as piecewise constant approximation operators, linear and multilinear interpola-
tors, kernel-based interpolators [20} [47], certain aggregation-projection operators [49],
Schoenberg’ splines, Hermite-Fejér and Bernstein operators [5], [12], among others.

The key point in our approach is that the averagers define transition probabilities on
the state space (see Lemma 4.2). This fact allows to view the approximating action of
an averager as a perturbation of the original Markov decision model and then to provide
the bounds asked in Py and P3. The convergence in P; comes from the fact that the
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perturbations induced by averagers preserve the continuity and ergodic properties im-
posed on the original model (see Assumption 2.4, Section 2). This implies that operators
ZA“Z and fz are contraction mappings with respect to the span semi-norm (see Lemma
4.5), establishing the convergence in problem P;. To the best of the authors’ knowledge,
the aforementioned link between approximation schemes using averagers and perturbed
models has passed unnoticed in the literature excepting the paper by Gordon [20], who
does not take advantage of it. In fact, Gordon referred to such link as an “intriguing
property” that allows to view the “averagers as a Markov processes” [20), Section 4]).
A remarkable fact is that, once the approximation step is seen as a perturbation, the
analysis of problems P;—P3 is direct and the proofs follow by somewhat elementary
arguments.

As mentioned previously, references [11 9, [TT], 16}, 18], 19} 211 [30}, 36}, 46] study numerical
methods for solving the average cost optimal control problem; among these, only [16],
30, [46] deal with Borel spaces. Next we briefly comment on them just for a rough
comparison with the perturbation approach described above.

References [I] and [2I] show the almost surely convergence of Q-learning algorithms
for finite models; the Q-learning variant used in [2I] is based on the policy iteration
algorithm and it applies to both Markov and semi-Markov models. Reference [I1] stud-
ies finite models and also follows a simulation-based approach; it is proposed a policy
iteration algorithm whose evaluation step estimates the exact solution of the Poisson
equations by “direct” simulations and the improvement step is realized with respect to
such estimates; moreover, it is provided a set of verifiable conditions that guarantee that
the proposed simulation-based policy iteration algorithm eventually reaches, and never
leaves, the set of optimal policies almost surely; it is also given three simulation estima-
tors for the evaluation step that satisfy such conditions. In reference [30] is shown the
convergence of a class of actor-critic algorithms for models with both finite and Borel
spaces under several technical requirements; the actor-critic algorithms are simulation-
based methods that works in a parameterized policy space: the critic estimates the
policy value using temporal difference learning and the actor makes the improvement
in the parameterized policy space in an approximate gradient direction. Reference [36]
proposes an state aggregation method based on the notion of similarity among states
defined in terms of certain pseudometrics; its main result establishes an upper bound
for the loss of optimality in the aggregated model. Reference [9] studies an approximate
version of a receding or rolling horizon approach for models with countable state spaces
and finite action sets; it is analyzed the performance of an approximate receding horizon
policy assuming that such a policy is computed using good approximations for the finite
horizon costs.

On the other hand, [I8] develops a two-phase approximate linear program for finite
models; the first phase is to approximate the optimal average cost, whereas the second
phase is to control the accuracy of the approximations of the (differential cost) function
that solves the optimality equation. Reference [19] also develops an approximate linear
programming approach but considering models with countable state spaces and finite
action sets in discrete and continuous time; this last paper exploits the fact that the
average cost problem is the limit of discounted problems when the discount factor van-
ishes, and the discounted optimal problem is seen as a perturbed version of the average
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cost problem. In [I8] and [19], the approximate linear program is based on a linear
architecture.

Reference [16] considers models with Borel spaces and unbounded cost but assumes—
among other technical conditions—that the transition law is absolutely continuous with
respect to some reference probability measure. This probability measure is approximated
by means of empirical measures to obtain a finite-state models, which in turn are used
to compute approximations to an optimal policy as well as to the optimal average cost;
the accuracy of the approximations is measured by means of concentration inequalities
based on the 1-Wassersttein distance of probability measures.

On the other hand, reference [46] also study finite approximations for models with
Borel spaces but using a nearest neighborhood quantizer method to produce discretiza-
tions of the state space. (As can be seen in Remark 5.5 below, this kind of methods
defines a particular class of averagers.) It is shown the asymptotic optimality of the
optimal stationary policies corresponding to the discretized models. This is done in two
settings. In the first one, it is assumed that the state and the control spaces are both
compact subsets, the one-step cost is a bounded continuous function, and the transition
law is continuous with respect to the total variation norm and also that it satisfies an
ergodicity condition. In the second one, it is assumed that the state space is locally com-
pact and the control space is compact, the transition law satisfies a Lyapunov condition
(as in [50} B51), 52]) and that it is continuous with respect to a weighted norm for finite
signed measures. It is also assumed that the cost function is continuous and unbounded
but having a growth dominated by a weighting function. In both cases, the weighting
function is that appearing in the Lyapunov condition.

The remainder of the present work is organized as follows. Section 2 introduces the
Markov decision model, the average cost criterion and the assumptions imposed on the
model. Section 3 contains some well-known results on the value iteration algorithm,
which are our departing point. The core of the work are Sections 4 and 5. Section 4
introduces the averagers and the perturbed models, while Section 5 addresses problems
P, —Pg; specifically, Theorem 5.2 proves the convergence of the AVI algorithm, among
other properties, and Theorems 5.3 and 5.5 give the performance bounds. Section 6
illustrates our perturbation approach with numerical results for a single item inven-
tory system with finite capacity, no backlog and no set-up production cost. Section 7,
Appendix, collects the proof of the results.

2. THE AVERAGE COST CRITERION

We use the following concepts and notation throughout the paper. For a topological
space (S,7), let B(S) denote the Borel o-algebra generated by the topology 7; any
statement about “measurability” will always mean Borel measurability. A Borel space
S is a measurable subset of a complete separable metric space endowed with the inherited
metric. For each subset A C S, [ 4 is the indicator function of A, that is, I4(s) = 1 for
s € A and [4(s) = 0 otherwise. Let M(S) be the class of all measurable functions on
S and My(S) be the subspace of bounded measurable functions; Cy(S) stands for the
subspace of bounded continuous functions. The two latter spaces are endowed with the
supremum norm ||v||ee 1= sup,cg |u(s)|.
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We consider a Markov decision model M = (X, A, {A(z) : z € X},Q,C) with the
usual meaning: the state space X and the action or decision space A are Borel spaces;
A(z) is a nonempty measurable subset of A, which stands for the admissible action or
decision set for state x € X. As usually, it is assumed that the admissible state-action
pairs set K := {(z,a) € X x A : a € A(x),x € X} is a measurable subset of the product
space X X A. The transition law Q(-]-,-) is a stochastic kernel on X given K, that
is, Q(:|z,a) is a probability measure on X for each pair (z,a) € K, and Q(B|-,-) is a
measurable function on K for each measurable subset B of X. Finally, the one-step cost
or running cost function C(-,-) is a measurable function on K.

A Markov decision model is a model of a stochastic dynamical system that evolves as
follows: at time n = 0 the decision-maker observes the system in some state xg =z € X
and chooses a decision or action a9 = @ € A(z) incurring in a cost C(x,a). Then, the
system moves to a new state ;1 = 2’ € X according to the probability measure Q(-|x, a)
and the decision-maker chooses a new admissible decision a1 = a/ € A(z') with a cost
C(2',a’) and so on. We will refer to the processes {2} and {a;} as the state and decision
processes, respectively.

At each decision time n € Ny, the decision-maker chooses the decision variable a,,
according to a deterministic or stochastic rule m,, which may depend on the whole
previous history h,, = (zo,a0,--.,Tn—1,0n-1,%,) of the system. Naturally, the rules
have to choose admissible actions with probability one, that is,

Tn(an € A(xy)|hy) =1 Vhy, € H,,

where Hl,, := K™ x X for n € N and Hj := X. Note that H,, is the set of all admissible
histories up to time n € Ny. We will refer to the sequence 7 = {m,} as (admissible)
decision or control policy. The class of all policies is denoted by II.

Denote by I the class of measurable selectors, that is, the class of measurable func-
tions f : X — A such that f(x) € A(x) for all z € X. A policy 7 = {m,} is called
(deterministic) stationary policy if there exists f € F such that the measure m,(+|hy,) is
concentrated at f(x,) for all history h,, € H,, and n € Ny; thus, the policy = = {r,) is
identified with the selector f and the class of all stationary policies with the family of
selectors F.

Let © := (X x A)™ be the canonical sample space and F the product o-algebra.
It is well-known that for each decision policy 7 = {m,} and initial state 2o = 2 € X
there exists a probability measure P on the measurable space (§2, F) that governs the
evolution of the controlled process {(xn,a,)} induced by the policy 7 = {m,}. The
expectation operator with respect to the probability measure P} is denoted as E7.

The expected cost incurred in n steps when the policy 7 = {m,} € II is used and

Ty = x is given as
n—1

Jn(m,x) = ET Z C(zk, ag).
k=0

Set J§ =0 and let J,n € N, be the n-stage optimal cost function, that is,

Jr(z) = ;relg Jp(m,x), xeX. (8)
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The (expected) average cost is given by

1
J(m,z) :=lm sup —J,(m,z), zeX,mell

n—soo T

and the optimal average control problem is to find a policy 7* = {7} such that

J(r*z) = J*(x) = inf J(m,z) VreX.
mell
If such a policy 7* = {7} exists it is called (expected) average optimal, while J* is
called the (expected) average cost optimal value function.
We will use the following notation. For every measurable function v on K and sta-
tionary policy f € F, set
ve(z) == v(z, f(x)), zeX.

In particular, for the cost function and the transition law we write

Ci(z) :=Cl(z, f(x)) and Qy(-|z):=Q(|z, f(z)), zeX.

Using this notation, Q%(-|-) stands for the n-step transition probability of the Markov
chain induced by the stationary policy f € F.

The main results of the present work are shown assuming that either one of two stan-
dard sets of continuity-compactness conditions holds. These set of conditions are given
below in Assumption 2.2 and Assumption 2.3. The first set includes the continuity of
the correspondence (or set-valued mapping) « — A(z). This concept is briefly presented
below down.

Let Z and W be topological spaces. A correspondence ® from Z to W is a (set-valued)
mapping ¢ : Z — Py(W) where Py(W) stands for the collection of all nonempty subsets
of W. Let ® be a correspondence from Z to W and define

D] :={2€Z:®(2)ND #0}

for each subset D of W. If ®~1[D] is closed (open, resp.) for each closed (open, resp.)
subset D of W, it is said that ® is upper semicontinuous (lower semicontinuous, resp.).
If ® is both upper and lower semicontinuous, it is said that ® is a continuous correspon-
dence.

The next remark provides a characterization using sequences of lower and upper
semicontinuity of correspondences between metric spaces.

Remark 2.1. Suppose that Z and W are metric spaces and also that ® be a corre-
spondence from Z to W such that ®(z) is a compact subset for each w € W. Then:

(a) @ is upper semicontinuous if and only if for each z € Z and all sequences z, — z
and w, € ®(z,),n € N, there exist w € ®(z) and a subsequence {wy, } of {w,} such
that w,, — w;

(b) ® is lower semicontinuous if and only if for each z € Z and all sequences z, — z
and w € ®(z), there exist a subsequence {z,,} of {z,} and wy € ®(z,,),k € N, such
that wp — w.
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For detailed discussions of semicontinuity of correspondences and a proof of Remark
2.1 see, for instance, [2], [29] [33].

Assumption 2.2.
(a) C(-,-) is bounded by a constant K > 0;

(b) A(x) is a compact subset of A for each € X and the correspondence x — A(x)
is continuous;

(¢) C(-,-) is a continuous function on K;

(d) Q(:]-,-) is weakly continuous on K, that is, the mapping
(z,a) — / Q(dy|z,a)
is continuous for each function u € Cp(X).

Assumption 2.3.
(a) C(-,-) is bounded by a constant K > 0;
moreover, the following holds for each z € X :
(b) A(zx) is a compact subset of A;
(¢) C(x,-) is a continuous function on A(x);

(d) Q(-|z,-) is strongly continuous on A(z), that is, the mapping

a — / Q(dyl|z, a)
is continuous for each function u € My(X).

We will assume that either Assumption 2.2 or Assumption 2.3 holds. Thus, C(X)
will denote either the space Cp(X) or M(X) depending on whether Assumption 2.2 or
Assumption 2.3 is being used, respectively. Thus, using this convention, it follows from
[22, Proposition D.3, p. 130] that the dynamic programming operator

Tu(@)i= inf [Cla,a)+ /X w(y)Qylz,a)], = € X, (9)

maps the space C(X) into itself and that for each u € C(X) there exists a selector f,
€ I such that

Tu(e) = Cp.(e)+ [ us)Qs.(dyle) Ve € X,

We will refer to the policy f,, as u-greedy policy.
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For each f € F define the operator
Tru(z) := Cf(z) + Qru(z), zeX,

and observe that it maps Mp(X) into itself whenever the one-step cost function C(,-)
is bounded.

A solution of the average cost optimality equation is a pair formed by a constant p*
and a measurable function h* on X that satisfy the equation

p*+h* =Th". (10)
If such solution exists and h* € C(X), then there is an h*-greedy policy f* € F, that is,
p*+h* =Th* =Tph". (11)

The triplet (p*, h*, f*) is called canonical triplet. Then, standard dynamic programming
arguments show that the stationary policy f* is an optimal policy and that the constant
p* is the optimal cost, that is, J* = J(f*,-) = p*. Moreover, if the pair (p, h) also enters
in a canonical triplet, then p = p* and h = h* + k for a constant k.

The existence of a solution to the average cost optimality equation and the conver-
gence of the value iteration algorithm are guaranteed under the ergodicity condition
given in Assumption 2.4 below. This condition is given in term of the total variation
norm for finite-signed measures A on X, which is defined as

Wirv =sup {| [ cN@n|/lelle v € 10000 20} (12
It can be shown for any two probabilities measures P; and P, on X that
1P, = Pollry = 2sup{|PA(B) — Pa(B)|: B € BX)}. (13)
Assumption 2.4. There exists a positive number o < 1 such that
1Q(|x,a) — Q(|2', )|y < 2a Y(z,a),(x',d) € K. (14)

Remark 2.5. (c.f. Herndndez-Lerma [22, Lemma 3.3, p. 57|, Meyn and Tweedie [32]
Thm. 16.0.2, p. 384]) Assumption 2.4 implies that

su§||Q?(-|x)—uf|\TV§2a" VfeF,neN, (15)
xre

where pf is the (unique) invariant probability measure for the transition probability
Q#(-|-), which means that

s (B) = /X Qy(Bla)us(dz) VB € BX),

Property implies that

sup |Blu(wn) = pg(u)] < 207 ull (16)
xTE
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for all u € My(X) and f € F, where

w@%=4wmwmw

Moreover, property in turn leads to the equality
R
lim —F uw(xy) = py(u) (17)

for all z € X and u € M;(X). In particular,

J(f) = J(f,2) = us(Cr) Ve eX,feF. (18)
For further discussion on Assumption 2.4 and a proof of the reader is referred to
[22, Ch. 3.], [32, Ch. 16], [13, 25, 26].

The proof of our main results (Theorem 5.3, Section 5) uses the the following result
borrowed from [35].

Remark 2.6. Let S(:|-) and R(-|-) be transition probabilities on X. Define
1
0 :=sup ||S(-|z) = R(|a)llrv andv:= 5 sup [[S(|)—S([y)llrv.
rzeX z,yeX
If the transition probability R(:|-) is uniformly ergodic and v < 1, then
I — mllry < 70—
s ~TRITV S 7T

where mg and wg are the invariant probability measures for S(:|-) and R(-|-), respectively.

3. VALUE ITERATION ALGORITHM

Let z € X be an arbitrary but fixed state and MP(X) be the subspace of functions
u € My(X) satisfying the condition u(z) = 0. Similarly, the subspace CP(X) is the
class of function u € Cp(X) with u(z) = 0. Usually, the spaces M(X) and Cp(X) are
endowed with the supremum norm ||u||sc = sup, |u(z)|, but here we also consider the
span semi-norm defined as
[|ul|sp := sup u(x) — inf u(z), ue My(X).
reX zeX

Note that || - ||sp is a semi-norm on M;(X), but it becomes a norm when it is restricted
to the subspace MP(X) or CP(X). Moreover, it holds that

lulloe < llullsp  Vu € M(X), (19)

so the subspaces (M?(X), || - ||sp) and (C(X), || - ||sp) are Banach spaces. It also holds
that
lullsp < 2[[ulloc Vu € My(X).
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Let (p*,h*) be a solution of the optimality equation with h*(z) = 0. Then,
p* =Th*(z) and the optimality equation can be rewritten as

h*(x) =Th*(z) —Th*(z) VzeX.
Thus, define the operator
T.u(z) == Tu(z) — Tu(z), z=e€X.

Let Co(X) denote either CP(X) or MY(X) depending on whether Assumption 2.2
or Assumption 2.3 is being used. Under either one of these assumptions, 7, maps the
subspace Co(X) into itself and a function h* € Co(X) satisfies the optimality equation if
and only if it is a fixed point of T, that is,

h*(z) = Toh*(z) = Th*(z) — Th*(2) Va € X.

On the other hand, the n-stage optimal cost functions (8) satisfy the recursive equa-
tion (see, e.g., [22])
:+1 = TJ; Vn € Ny,

which leads to the equation
pnt1(2) + hypy1 = Thy, VYn € Ny, (20)
where h,, and p,,n € N, are the functions introduced in , that is,
hp=J5—Jr(z) and p,=J;—J,_;, neN.
Notice that can be rewritten as
hnt1 =T.h, =T hy Vn € Ny,

with ho =0.

The value iteration (V1) algorithm is said to converge if the sequence (p,,(2), hy),n €
N, converges to a solution (p*, h*) of the average cost optimality equation. The conver-
gence of the VI algorithm is established in Remark 3.1 and Theorem 3.2 below.

Remark 3.1. Suppose that Assumption 2.4 and either one of Assumptions 2.2 or 2.3
holds. Then:

(a) The operator T, is a contraction from the Banach space (Co(X), || - ||sp) into itself
with modulus « (see [22, Lemma 3.5, p. 59.]). Thus, by the Banach fixed point theorem
and (LI), there exists a canonical triplet (p*,h*, f*) with h* belonging to Co(X) and
p* =Th*(z).
(b) Moreover,

1T 0 = oo < [[T2u = B¥[|sp < @"[[A7[sp — O

for all w € C(X). In particular, taking u = 0, we have

[hn = P [loo < [[hn = h¥[[sp < [[B7[|sp @™ = 0.
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To complete the proof of the convergence of the VI algorithm it only remains to
establish the convergence of sequence p,(z),n € N, to p*. This is shown, among other
useful facts, in the next theorem which comes from [22, Thm. 4.8, p. 64].

Theorem 3.2. Suppose that either one of Assumptions 2.2 or 2.3 holds, and also that
Assumption 2.4 holds. Let h*be as in Remark 3.1 and define the sequences

Sp = inf p,(z) and S, := supp,(z),n € N.
zeX zeX

Then:

a) {s,} is nondecreasing and {5, } is nonincreasing; moreover,
(a) {sn} g g
—a" B |op < s —p" < S —p* <Dl VR EN;

hence, in particular, p,(z) — p*.
(b) If f is an h,-greedy policy, then

0<J(f) = p" <llpnllsp < @M IR*[lsp VR EN.

4. AVERAGERS AND PERTURBED MODELS

As mentioned above, the main concern of the present work are problems P, —P3—stated
in the Introduction—for the approximate value iteration algorithms @ and . These
problems are studied following the approach introduced in [53] to study the discounted
cost criterion. This latter paper focus on a class of approximating operators called
averagers, which are introduced next.

Definition 4.1. The operator L : My(X) — M,(X) is said to be an averager if it
satisfies the following properties:

(a) LIx = Ix;

(b) L is a linear operator;

(c) L is a positive operator, that is, Lu > 0 for each u > 0 in M(X).

(e) L satisfies the following continuity property:

vp 4 0,0, € Mp(X) = Lu, } 0.

If in addition L maps Cp(X) into itself it is called continuous averager.

The averagers is a rich class of approximation operators. As mentioned previously,
it includes many of the approximation operators studied in approximation theory as
piecewise constant approximation operators, linear and multilinear interpolators, kernel-
based interpolators; see [20, [36] 46l [47]; certain aggregation-projection operators [49];
Schoenberg’ splines, Hermite-Fejér and Bernstein operators [, [12], among others.

The key point is that the approximating step in the AVI algorithms @ and @f
when L is an averager—can be seen as a perturbation of the original Markov model. To
introduce the perturbed models we need the following simple but important result; in
fact, the term averager comes from property .
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Lemma 4.2. Suppose that L is an averager. Then, the mapping
L(Blz) := Llg(z), =€ X,B e B(X),

is a transition probability on X and

/Xv(y)L(dyH = Lv Yv e Mp(X). (21)

The proof of Lemma 4.2 is omitted because it follows standard arguments.

Remark 4.3. If L is an averager, then it is monotone and non-expansive with respect
to || - |leo and || - ||sp, that is, for all u,v belonging to M;(X), it holds that

[ILu = Lvfloe < [lu—vlloe  and |[Lu — Lo[|sp < [Ju = v][sp-
The monotonicity property directly follows from property in Definition 4.1(c). Concern-
ing the second statement, note that it suffices to check such property for an arbitrary
function v due to the linearity of the operator L. Then, the monotonicity and the
normalizing condition in Definition 4.1(a) implies that —||v||cc < Lv < ||v]|s and also
that infyex v(z) < Lv < supgex v(x), which in turn lead to ||Lv||eo < ||v]|eo and
1Zollep < llol]sp-

We next introduce two perturbed models M = (X, A {A(z) : = € X}, R, @) and
M = (X,A,{Ry,Qy : f € F}), which are denoted by M and M for short. Recall that
M stands for the original Markov model. We also present in Remarks 4.6 and 4.7 a

third perturbed model M for models with A(z) = A for all z € X.

The perturbed model M. In this model, the state and control spaces, the admissible
decision sets, and the one-step cost function are as in the original model M. The
transition law is defined as

@mWw=Amemwmm,w@eKBemm,

which is clearly a stochastic kernel on X given K because it is the composition of stochas-
tic kernels.

Thus, given a policy 7 € IT and initial state To = = € X, let {(Zk, @)} be the resulting
controlled process and 18;7 the corresponding probability measure, which are defined on
the measurable space (€2, F). Let E;r be the expectation operator with respect to such
probability measure. The (expected) average cost and the average optimal value in the
perturbed model M are given as

n—1

j(ﬂ',l‘) := lim sup 7@: ZC(ﬁc\k,ﬁk), reX,mell,

n
n— 00 k=0

j*(x) = sup f(w,x), reX,
mwell
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respectively. A policy 7* is said to be optimal in the model Mif J, = f(ﬁ*, ).

The dynamic programming operator T in the perturbed model M is given as

Tu(z):= inf [C(x,a)+/)(u(y)@(dy\x,a)], z e X,

acA(x)
=T Lu(z).

Moreover, define the operator

~

= Tu — Tu(z)

and the value iteration functions

o~ ~

Jn = Tjn—h and i)\n = j’ﬂ - jn—l? n < N’

with jo = 0. Observe that the functions defined in @ can also be expressed as

o~

By = Jp — Jp(2) and  pn(z) = Thy(z), neN.

Remark 4.4. (a) Suppose Assumption 2.2 holds and also that L is a continuous
averager. Then, Q(-|-,-) is weakly continuous, T(Cy(X)) CCy(X) and T,(Cp(X)) C
Cp(X). Moreover, for each u € Cy(X) there exists a policy f € F such that Tu = Tu,
where

Tyu(e) == Cyla) + [ unQsvla) e X

(b) Similarly, if L is an averager and Assumption 2.3 holds, then 7'(M,(X)) C My(X)
and T (M,(X)) € MP(X). Moreover, for each u € M,(X) there exists a policy f € F
such that Tu = Tu.

The perturbed model M. In this model, the state and control spaces and the admis-

sible decision sets are the same of the orginal Markov model M. The perturbed one-step
costs and transition laws are only defined for the class of stationary policies as follows:

Cy:=LC; and Qs(B|-) := LQs(B|)

for each f € F and B € B(X). By Lemma 4.2, @f(\), f € F, is a transition probability
on X because it is the composition of two of them:

Q;(Blz) = /XQf(B|y)L(dy|m), Vo € X, B € B(X).

Thus, for each stationary policy f € F and initial state £y = x € X there exists a
Markov chain {Z,} and probability measure ]50[ defined both on the measurable space
(Q, F) such that éf(|) is the one-step transition probability of {Z, }. The expectation
operator with respect to ﬁgf is denoted by Eg: . The corresponding average cost criterion
and optimal value function are given as
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n—1

1~ ~
=i —E! T X,feF
J(f, x) imsup — wZCf(xk), reX, feF,

n—oo k=0

j*(:v) =supJ(f,z), zeX
fer

A policy f* € F is said to be optimal in the perturbed model M if J, = j(f*, ).

The dynamic programming operator T in the model M is defined as
Tu(w) = (G + [ u)Qsylo)l, e X.
for any u € My(X). Moreover, define
Tou := Tu(z) — Tu(z), ue My(X),
and the value iteration functions
Jn=TJn 1, Jo=0 and p,=Jp—Ju_1,n €N,
Functions in can also be expressed as
I = Jp — Ju(2) and  pn(z) = Thy(z), neN.
Remark 4.5. (a) Suppose L is a continuous averager and that Assumption 2.2 holds.

Then, the dynamic programming operator T maps Cp(X) into itself and T = LT. To
verify the last fact, let © € Cp(X) be a fixed function and note that

Tu() < €50+ [ unQs(y}) VF EF.
Thus, using the monotonicity and linearity of L, Lemma 4.2 implies that
I7u() < G50 + [ un Qs
On the other hand, recall that for each u € Cy(X) there exists f,, € F such that

Tu() = Cp, () + /X u(y)Qs. (dy]).

Then, using the linearity of L and Lemma 4.2 again, we see that
ITu() = Cr.()+ [ u(n)Qs. i),

which yields that Tu = LTu. Hence, T =LT.
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(b) If L is an averager and Assumption 2.3 holds, then part (a) holds replacing Cy(X)
by M,(X).

Remark 4.6 If A(z) = A for all z € X, one can consider a third perturbed model
M= (X,A,Q,C) where

C(z,a) / C(y.a)L(ylz) and Q(Blz,a) = / Q(Bly, a)L(y|z)

for (z,a) € X x A. Thus, the dynamic programming operator is

Tu(z) := inf [C(m,a) +/ u(y)Q(dylz,a)], z e X.
a€A X
Under the continuity assumptions in Remark 4.5, it can be easily seen that T="T.
Hence, the value iteration functions in M and M coincide.

Remark 4.7 Consider again a model with A(z) = A for all © € X, and the averager
given by a set-wise constant approximator. Thus, let {Z;}2| be a partition of the state
space X formed by Borel measurable subsets and consider points z; € Z; fori =1,..., N.
The partition can be defined following a nearest neighborhood quantization method—as
in [46]-or any other procedure whenever it yields a partition with Borel measurable
subsets.

Next, fix a reference probability measure v on X such that v(Z;) > 0 for each i =
1,..., N and define the probability measures

I/(B n Zz)
v(Zi)

Next consider the “setwise” constant interpolator

vi(B) = , BeB(X),i=1,...,N.

N

Lu:= Z vi(u)ly,,

i=1

) = [ uwnian) = s [ utwia)

for bounded measurable functions u : X — R. Clearly the constant interpolator L is an
averager; thus, the mapping

where

N
L(Blx) =Y vi(B)lz(z) VBe€B(X),zeX
=1

defines a transition kernel on X. Moreover, observe that

C(x,a) = @ /Zi C(y,a)v(dy),

Q(Blz. a) / Q(Bly, a)v(dy),
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forallz € Z;,ac A,i=1,...,N.
Notice that model M is essentially a finite-state model. In fact, Saldi, Yuksel and
Linder [46] consider the model M, := (X4, A, p, c) where

Xd = {21’ e ,ZN},

forace Ayi,5=1,...,N.

We end the description of the perturbed models emphasizing that the approximate
value iteration algorithms given in (6] and (7)) are exactly the same that the standard

value iteration algorithms in the perturbed models M and M respectively.

5. CONVERGENCE AND PERFORMANCE BOUNDS

This section addresses problems P;—Pj3 posed in the Introduction. The main point
here is that models M and M retain practically all the properties of the original model
M. For instance, it is shown in Lemma 5.1 below that models M and M satisfy the
ergodicity property in Assumption 2.4 provided the original model M does. The proofs
of all results stated in this section are given in Appendix, Section 7.

Lemma 5.1. Suppose that model M satisfies Assumption 2.4. Then,

1Q(|z,a) = Q(|a’,a)||rv < 20 Y(w,a), (+/,a') € K,

1Q(-|x) — Qqu(-l2)||rv < 20 Va,a’ € X, f,g € F.

Lemma 5.1 implies that properties . hold in both models M and M where
fiy and fiy are the invariant probablhtles measures for Q #(-]) and Q #(+]*), respectively,
for each f € F. In particular,

() = J(f.) = /X Cr(0)ir (dy),
() = J(f,) = /X G ()7 (dy).

Lemma 5.1 combined with the continuity and compactness conditions (either As-
sumption 2.2 or Assumption 2.3) implies that operators @ and fz are contractions from
the space Co(X) into itself. This later fact implies the existence of canonical triplets
in the perturbed models and the convergence of the corresponding AVI algorithms as
well, establishing thus the convergence asked in P;. These results are stated in the next
theorem.
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Theorem 5.2. Suppose Assumption 2.4 holds together either one of the following set
of conditions:

(i) L is a continuous averager and Assumption 2.2 holds;
(ii) L is an averager and Assumption 2.3 holds.

Then:

(a) There exist canonical triplets (p,h f) and (5, h, f) for models M and M, respec-
tively, where h and h are functions in Co(X);

(b) p=np, h—Th= ki and Lh—h= ko, where k1 and ko are constants;
(c) the AVT algorithms @ and converge to (p, ﬁ) and (p, E), respectively.

Now, to address problems Py —P3, first it is needed to specify how the accuracy of
averagers is measured. Recall that the goal is to provided performance bounds for the
AVT algorithms in terms of the accuracy of the approximations provided by L for the
primitive data of the original Markov model, namely, the one-step cost function C(-,-)
and the transition law Q(+|-,-).

To this end, let IFO be a subset of stationary policies that contains the subclasses
F, :={f eF:Th* =Tsh*}, F, = {f eF:TLh = Tth}, F, = {felF: TLh, =
Tth for some n € N} Similarly, let IE‘O be a subset of statlonary pohcles that contains

F, and the subclasses Fy := {f € F : Th = Tfh} and Fy := {f € F: Th, = Tfh for
some n € N}.

The accuracy of the approximations given by an operator L is measured by the
constant

So(Fo) = sup_|Qs(2) = Qs(:[a)llrv, (22)

zeX, fefy

in the model M. , and by the constants

5o (Fo) = sup ||Cy = Crlloos  S@(Fo) := sup  [|Q([x) = Qs(-|2)llrv,
feFy zeX, fEFy

in the model M.
With this notation we can give the bounds as asked in Pj.

Theorem 5.3. Suppose that assumptions in Theorem 5.2 hold and let o
Then:

() I — 0"l < To—da(Fo):
2K
1y

- K ~
(¢) [p" = o"| < 2[6c(Fo) + ;—dq(Fo)l;

|
)

|
hs)

(b) ||h — || < 3q(Fo):
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Tyl (o) + S (Fo)l.

The next proposition provides bounds for the performance in the model M of policies
that are canonical in models M and M. The proof is omitted because it is pratically
the same of Theorem 5.5 below.

(d) [|Ih = hlloo <

Proposition 5.4. Suppose that assumptions in Theorem 5.2 hold. Then:
(a) If feFis Lﬁ—greedy, that is, TLh = TfLE, then

K .
dq(Fo);

0<J(f)=p" <72

(b)IfgeTFis h-greedy, that is, Th = Tgﬁ, then
* ™ K ™
0= J(g) = p" = 2[6c(Fo) + 7——0q(Fo)].

Finally, the next theorem gives the performance bounds asked in Pg.
Theorem 5.5. Suppose that assumptions in Theorem 5.2. Then:

(a) If feFis Lﬁn—greedy7 that is, TLh, = TfLﬁn, then

. 2K~
0<I(f) =" < lpnllsp + 7o (Fo);

(b)IfgeTFis En—greedy, that is, Th, = Tgﬁn, then
* ~ ™ K ™
0< J(g) = p" < [Pnllsp + 2[0¢ (Fo) + 1——0q(Fo)]-

Remark 5.6. In a first comparison of parts (a) and (c¢)-or (b) and (d)-in Theorem
5.3 it would seem that perturbed model M gives better bounds than model M , but
it may not be the case. For instance, suppose that Q(B|z,a) = 0 for each discrete
subset B C X := [a,b] and (z,a) € K, and also that L is an interpolator on the grid
so=a<sy <---<sy=>bs0v(s;) =Luv(s;) fori=0,...,N, for each function v on X.
Then, LIp, =0 for By := X\{so, $1,...,$n}, and so @(Bﬂx,a) = 0. Thus, 5@(@0) =2
independently how fine the grid is.

The above fact is an example of a well-known “anomaly”of the total variation norm:
it is too strong to measure the closeness among a discrete measure and a continuous one.
One can go around this obstacle considering the 1-Wassertein distance but paying the
cost of imposing strong Lipschitz-continuity conditions on the control model; see, for
instance, references [16], 46]. The problem can also be dodged using the approximating
model M in lieu of the model M. , since the former one preserves the discrete or continuous
nature of measure ). In fact, in the next section, the model M is used to compute
numerical approximations for an inventory system.
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6. AN EXAMPLE FROM INVENTORY SYSTEMS

The goal of this section is to illustrate the approach developed previously with some
numerical results. It was chosen an inventory system for which is known an analytical
solution with the end of contrasting the numerical solutions and the performance bounds
of the approximate algorithm with the exact solution.

Then, consider an single item inventory system with no backlog, no set-up cost and
finite capacity 6. Let z,, and a,, be the stock of the item and the amount of it ordered
to the production unit at the beginning of the nth-stage, and w,, the product’s demand
during that period. It is assumed the quantity a,, is immediately supplied at beginning
of nth-stage. Since excess demand is not backlogged, the stock evolves according to

Tp+1 = (‘rn +an — wn)+vn S NO»

where 2o = x and v := max(v, 0) for each real number v. The demand process {w,,} is
formed by independent and identically distributed nonnegative random variables with
distribution function F. The state and control spaces are X = A = [0,0] and the
admissible control set for state x € X is A(z) = [0,6 — z].

The one-step cost function is
C(z,a) = pEy,(wo —x —a)" + h(z +a) + ca, (z,a) €K,

where E,,, denotes the expectation operator with respect to the distribution F' of the
random variable wy and the constants p, h and c¢ stand for the unit penalty cost for
unmet demand, the unit holding cost for the stock at hand and the unit production
cost, respectively.

The transition law of the system is

Q(B|z,a) = Pr[(x +a—wo)t € B], B e B(X),(z,a) € K.

In order to guarantee Assumptions 2.2 and 2.4 hold, we suppose that the inventory
system satisfies the following conditions.

Assumption 6.1.
(a) The random variable wy has finite expectation;
(b) F(O) < 1;

(c) the distribution function F' has a density p which is bounded and Lipschitz con-
tinuous on [0, ] with module [, that is,

lp(z) — p(y)| <z —y| Vz,y € [0,0];

(d) p>c¢>0andh>0.

Assumption 6.1(a) implies that one-step cost function C(-,-) is finite. It is also con-
tinuous and bounded because of the bounded convergence theorem and the compactness
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of K. Using Remark 2.1 it can be easily proved that the correspondence © — A(z) is
continuous too. Moreover, note that the equality

[ v)Qk,0) = Buyol(e +a - w0)*)
X

holds for all (z,a) € K and v € Mp(X). This equality and the bounded convergence
theorem imply that the mapping

(2,0) = /X v(1)Q(dylz, a)

is continuous for each v € Cy(X). Therefore, the inventory system satisfies Assump-
tion 2.2.
On the other hand, Assumption 2.4 follows from Assumption 6.1(b) and the inequality

Q({0}|z,a) = Prlwy > x + a]
>1—F(@) >0 V(z,a) e K.

In fact, if 0 € B then Q(B|z,a) > 1—F(0) for all (z,a) € K; if 0 ¢ B, then Q(B|z,a) <
Q((Oa 9]|.’E7 Cl) S F(e) Hence,

|Q(Blx,a) — Q(Bla’,d')| < F(0) V(z,a) €K, B € B(X),

which in turn, from , implies that Assumption 2.4 holds with oo = F(0).
Now, consider the linear interpolation scheme with evenly spaced nodes sy = 0 <
$1 < ...< sy = 0. Thus, the approximating operator L is given as

Lo(z) = bi(z)v(s;) + bi(2)v(six1), * € [8i,5i41],

for each function v € M,(X), where

Si+1 — X -
bi(z) = " and b;(x):=1-bi(x), x € [s4,8i41],
Sit1 — S;
for i =0,...,N — 1. The operator L is clearly a continuous averager, that is, it is an

averager that maps Cp(X) into itself.

In the above inventory model and its perturbation as well, there exist base-stock
average cost optimal policies. This can be shown following, for instance, the arguments
given in [54] combined with the geometric ergodicity property . Recall, that a
stationary policy f is a base-stock policy if f(z) =S — z for x € [0,5], and f(xz) =0
otherwise, where the constant S > 0 is the so-called re-order point. In fact, the optimal
re-order point S* in the original inventory model satisfies the equation

_p—h-c

F(8) =" —

if p > h + ¢, and S* = 0 otherwise. Moreover, the optimal average cost is

p* = pEy, (wg — S*)* + hS* + cE,,, min(S*, wp).
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In view of Remark 5.5, we only consider the perturbed model M and take IFO as the
class of the base-stock policies. Then, Assumption 6.1(c) implies that

dc(Fo) = sup ||Cy — Clloe < (p+h+c)As,

f€Fo

3q(Fo) = sup ||Qs — Qsllrv < (201 +4M') As,

f€Fo

where M’ is a bound of the density p and As := §/N. These bounds follow by elementary
but cumbersome computations, so their derivation is omitted.

to. e=100F | N=102 [ N=10° | N=5x103 [ N =10%
N 7 7 7 7
Shn. 22 21.975 21.975 21.9725
5o (Fo) 1.25 0.125 0.025 0.0125
3¢ (Fo) 0.08125 | 0.008125 0.001625 0.0008125
Ag 40.60904 | 4.060904 0.8121807 0.4060904
T 40.60906 | 4.060929 0.8122065 0.4061161

Tab. 1. Approximated optimal policies and performance bounds for
the AVI algorithm with a linear interpolation scheme with N + 1
evenly spaced nodes for the inventory system with exponentially

distributed demand with parameter A = 0.05, and parameters
c=15h=0.5p=3,0=25.

The numerical results displayed in Tables 1 and 2, and Figure [1| correspond to the
parameter values ¢ = 1.5, h = 0.5,p = 3,60 = 25. The product’s demand has an exponen-
tial density p with parameter A = 0.05. Note that in this case, the density p is bounded
by M’ = XA = 0.05 and also that it has Lipschitz module I = A\?> = 0.0025. With these
parameter values, the above bounds become in

5c(Fo) <5As and  do(Fg) < 0.325As.

Moreover, the optimal re-order point and the optimal average cost are S* = 21.97225
and p* = (c+ h)A~! + hS* = 50.98612, respectively.

The approximate value iteration algorithm was stopped once the stopping error Sg :=
||n|lsp falls below the tolerance ¢ = 10~%. Let n. be the first time Sg is less than ¢
and S(n,) the re-order point of the policy E,L*—greedy. Table 1 and Figure 1 show that
the algorithm converges very fast and practically gets the true optimal policy. The
quantities Ag == 2[5c(Fo) + K (1 — )" '8¢ (Fo)] and T := Ag + Sg are bounds for the
approximation error and the total error, respectively.

The optimal average cost p* is approximated by the sequences S, := inf,cx pn(2)
and S, := sup,cx pn(2),n € N. Table |2 display the values of these sequences for the
grid with NV = 103.
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n 2 3 4 5 6 7

Sp, | 51.79333 | 51.03147 | 50.98637 | 50.98612 | 50.98612 | 50.98612

Sn | 42.80326 | 49.35696 | 50.80725 | 50.97339 | 50.98547 | 50.98610

Tab. 2. Approximated optimal re-order points with a linear

interpolation scheme with 10® + 1 evenly spaced nodes for the

inventory system with exponentially distributed demand with
parameter A = 0.05, and parameters ¢ = 1.5,h = 0.5,p = 3,0 = 25.

30
|

PN WO~

20
|

Fig. 1. Functions h, with N = 10% and 6 = 25.

Figures 2 and 3 show functions iNzn and sequences s,, and §n, respectively, for § = 120
and N = 103.

7. APPENDIX

Proof of Lemma 5.1. Assumption 2.4 can be equivalenty rewritten as

', d')| < 20[vl|

] [ ewale.o - [ wwa

for all (z,a) € K,v € My(X). Now, taking v = Lu with u € M;(X), the above inequality

yields

2',a")] < 2al|Lul|so.

[ muasinn - [ zumeqa
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From definition of @(|, ), and the non-expansiveness property of L, it follows that

‘ / O(dyla,a) - / u(y)O(dyle’, a')| < 2alul].
X
which leads to
10 1z.a) — O(12" ) lrv < 20 ¥(z,a), («',d’) € K.

To prove the second inequality fix policies f,g € F and B € B(X). Assumption 2.4
implies that

—a+Qy(Bly) < Qf(Blz) < Qy(Bly) +a Vz,yeX.

Fixing y € X, properties in Definition 4.1(a)-(c) imply
—a+Qy(Bly) < LQs(Blr) < Qy(Bly) + o Vo € X.

Now fixing = € X, the latter inequality implies

—a+ LQy(Bly) < LQ;(Blz) < LQy(Bly) + a Vy € X.
Then, from definition of @ £ @g and , it follows that

Qs (Blz) = Qy(Bly)| <« Va,y € X, B € B(X).

Hence, from ,

1Qs(|2) = Qo(I)llrv < 20 Va,y, f.g €F.
O

Proof of Theorem 5.2. Under Assumption of Theorem 5.2, model M satisfies all
conditions in Remark 3.1 and Theorem 3.2 (see Remark 4.4). Thus, fz is contraction
from Cp(X) into itself with contraction modulus @ and there exists a canonical triplet
(ﬁ,ﬁ, f) in the model M with belonging to Cyp(X) and p = Twh( ); moreover, all the
conclusions in Theorem 3.2 hold replacing p*, h*, s,,, Sy, hy, and J(f) with p, h Sns Sn, h
and J| (f), respectively, where

Sy = inf p, and §n ‘= SUp Pn, N €N.
zeX zeX

Regarding to model M the contractiveness s property of operator T on Co(X) and the
existence of a canonical triplet (5, k, f) with h in Co(X) and p = Th(z) follow from the
same arguments given in [22, Lemma 3.5, p. 59] for the proof of Remark 3.1, while the
convergence of the value iteration algorithm in the model M follows from the arguments
given in [22 Thm. 4.8, p. 64] for Theorem 3.2 replacing p*, h*, $,,, Sp, hy, and J(f) with
p,h sn,S’n,h and J(f) respectively, where

5, = inf pu(z) and S, :=sup pn(z), neN.
reX reX
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Part (c) follows directly since the AVI algorithms (6]) and (7)) coincide with the stan-
dard value iteration algorithm in the model M and M , respectively.

Thus, it only remains to prove part (b). To do this, first note that ﬁ—l—ﬁ =Th = TLE;
then, p+ Lh = LT(LE), which in turn implies that function v = Lh satisfies the equation

ﬁ—!—v:fv.

Hence, p = p and functions v = Lh ~and 1 differ by a constant.

On the other hand, the palr (P, ) satisfies the equalities p + h=Th= LTh. Now,
observe that p + Th = TL(Th), which yields that the function u := Th satisfies the
equation

pt+u= fu,

which implies that u = Th and % differ by a constant because p = p. g

Lemma 7.1. Let f € F be an arbitrary stationary policy and K the bound of C(-,-).
Then:

(2) o7 = J(f) = T(f);
(b) [J(f) = of < 155 supgex [|Qs (f2) — Qs ([2)ll7v;
(€) [J(f) =gl < NICs — Cplloo + 185 sup,ex [|Qs (fa) — Qs (-|2) [ 7v-
Proof of Lemma 7.1. To prove part (a), let f € F be a fixed policy and define the
operators Tf =T¢L and T 't := LTy. From Lemma 5.1, it follows that operators
fz7f1} = ffv - ffv(z),
fz7f11 = ffv - ffv(z)

are contractions operators from M (X) into itself with contraction modulus «. Hence,
there exist functions A 5 and h 7 in MP(X) that satisfies the Poisson equations

ﬁf-i-/]”;f:Cf—i—@fﬁf (23)
pr+hy=Cr+Qrhy,
where py := ffﬁf () and py := vaﬁf (2). Clearly, it holds that J(f) = pr and J(f) = pr-
Equation implies that
pr+Lhy = LC; + LQshy
= LC; + LQ(Lhy)
= CN'f + @(Lﬁf)

Hence, py = py, which proves part (a). Additionally, note that functions Lh 7 and h ¥
differ only by a constant.
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To prove part (b), note that property and Lemma 5.1 imply

~

| J(f) = J(N) = s (Cr) = 1 (Cp)| < K|y — Figllrv-

Now taking S(|-) = Qs (-), R(|") = Qs (), 0 = sup,ex ||Qs(|z) — Q(|a)[|rv and
v = %supaweX 1Qs(|z) — Qr(-|y)ll7v, Remark 2.6 yields

~

() =T < 1

sup [|Q(-|z) — Qs ([o)lrv,
reX

which implies the first inequality because v < a.
The inequality (b) follows in a similar manner. In fact, note that

7(F) = T < |s(Cp) = 1 (Cp)l + g (Cy) = g (C )|
<||Cr = Cflloo + K [lus = pillrv-
Now use Remark 2.6 again but now taking R(+|-) = @f(|) to obtain the desire result.]

Proof of Theorem 5.3. Parts (a) and (c) follow directly from Lemma 7.1 after
noting that

~ ~

lp" =0 = | inf J(f) = inf J(f)| < sup [J(f) = J(f)],
f€Fo felo &

lp* —o*| = inf J(f)— inf J(f)| < sup [T(f) = T(f)I-
f€Fo f€Fo f€Fo

To prove part (b) recall that h and h are the unique fixed points of T, and fz in the
space (Co(X), || - ||sp), respectively. Then,
||h - h“Sp = HTzh - Tzh”Sp
< |IToh = Tohllop + 1Tk = Toh sy
<allh - h||8p +[|T2h — TZhHSP
< aflh = hl|sp + [|Th — Thl|sp.
Since [|ul]oo < ||ullsp for all u € Co(X) and ||ul|sp < 2||uf|os for all u € My(X), the last

inequality implies that
~ 2 o
h—hlleo < ——||Th — Th||so- 24
| lloe < 31l | (24)

Now put /f\LC i=h— ¢, where c is an arbitrary constant, and notice that
[Th(x) = Th(x)| = [The(x) — The(w)|
=| inf Trhe(z) — inf The(z)|
c€Fo €Fo
< sup |Tf/ﬁc(x) - ﬁc('r)‘
fefy
< sup |Qrhe(w) — Qrhe()|
f€Fo
< |lhelloo 0@ (Fo).
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Therefore, L R R
ITh — Th||oc < |[he||o dq(Fo). (25)

Next consider the canonical policy f, thus,

h(z) = p+/h Q7(dylz) vz e X.
This implies that
h(x) = fip(h) = > _[EICH(ax) — 7,
n=0

which in turn yields

~ 1 K
h — oo< oog
o =77 lloe < = 1IClloc < 7

o~

The last inequality combined with and with ¢ := ﬁf(h), implies that

lh —hl|es < 5o (Fo),

K
(1-a)?
which is the desired result.

The proof of (d) follows the same arguments of part (b) after noting that

|Th = Thlleo < 8¢(Fo) + 6o (Fo).

O

Proof of Theorem 5.5. To prove this theorem recall, as discussed in the proof of
Theorem 5.2, that all the conclusions in Theorem 3.2 remain valid for models M and
M. Thus, let f € F be a Lh,-greedy policy, that is,

TLhy, = Ty Lhy,

which also means that f is ﬁn—greedy in the model M. Then, from Theorem 3.2(b),

~

0 < J(f) = p < |[pnllsp- (26)
On the other hand,
0<J(f) = p" <|T() = TN+ II(f) = ol + 15— 7).
Thus, Theorem 5.3(a), Lemma 7.1(b) and inequality imply

2K
70(5@0 (Q)a

0= J(f) =p" < pullsp + 1

which proves (a).
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The proof of (b) is analogous. First note that

0<J(g) —p* <|J(9) =TIl +1J(g9) — Al + |p — p"]. (27)
Now, since g € F is %n—greedy, then

which means that g is h,-greedy in model M. Thus, from Theorem 3.2(b),

0<J(g) = p <llpnll

Thus, the desire result follows from (27), part (c) and Lemma 7.1(c). O
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