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ON THE DISTRIBUTIVITY
EQUATION FOR UNI-NULLNORMS

Ya-Ming Wang and Hua-Wen Liu

A uni-nullnorm is a special case of 2-uninorms obtained by letting a uninorm and a nullnorm
share the same underlying t-conorm. This paper is mainly devoted to solving the distribu-
tivity equation between uni-nullnorms with continuous Archimedean underlying t-norms and
t-conorms and some binary operators, such as, continuous t-norms, continuous t-conorms, uni-
norms, and nullnorms. The new results differ from the previous ones about the distributivity
in the class of 2-uninorms, which have not yet been fully characterized.
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1. INTRODUCTION

Uninorms as aggregation operators generalizing and unifying the concepts of t-norms
and t-conorms were introduced by Yager and Rybalov [30], and have been proved to
be useful in many fields like fuzzy system modeling, decision making and so on [31].
Fodor et al. [7] studied the structure of uninorms and gave the characterization of
uninorms, which can be built up from t-norms and t-conorms by using an ordinal sum
structure. And Fodor and Li et al. gave a single-point characterization of uninorms
in recent years [8, 10, 11]. Nullnorms and t-operators as another generalizations of t-
norms and t-conorms were respectively introduced by Calvo [3] and Mas et al. [12],
and they have been proved to be equivalent [13]. 2-uninorms as a generalization of
uninorms and nullnorms, and such generalization further extended to n-uninorms, were
introduced by Akella in [2]. However, the structure of 2-uninorms has not yet been fully
characterized. Recently, Sun et al. [26] developed the concept of a uni-nullnorm (null-
uninorm) by letting a uninorm and a nullnorm share the same underlying t-conorm
(t-norm). Uni-nullnorms and null-uninorms as special cases of 2-uninorms generalize
uninorms and nullnorms and have been proved that they are a pair of dual binary
operations. After that, Sun et al. showed the full characterizations of uni-nullnorms
with continuous Archimedean underlying t-norms and t-conorms [27]. Although a uni-
nullnorm with continuous Archimedean underlying t-norms and a t-conorm is a special
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case of 2-uninorms, it is not included in the structures of 2-uninorms given in [5] that
just have five special structures of 2-uninorms.

The role of functional equations involving aggregation operators is very important in
theories of fuzzy sets and fuzzy logic. According to the literature we can find, there are
a lot of studies on distributivity equation about uninorms, nullnorms, semi-uninorms,
semi-nullnorms and semi-t-operators [11, 13, 16-20, 22-25, 29]. But for 2-uninorms,
there are only a few studies on distributivity equation [5, 15, 28]. The reason for the
lack of study on the distributivity equation about 2-uninorms is that there is no complete
characterization of 2-uninorms. Now Sun et al. have given the full description of uni-
nullnorms, which is a special case of 2-uninorms. Obviously, the study of distributivity
about uni-nullnorms is the preparation for the discussion of distributive 2-uninorms, so
it is necessary to characterize the distributivity equation of uni-nullnorms.

This paper is organized as follows. In Section 2, we present the definitions and
structures of some concerning binary operators used later in the paper. In Section
3, we investigate the distributivity between uni-nullnorms and continuous t-norms (t-
conorms). After that, we characterize the distributivity equation between uni-nullnorms
and uninorms in Section 4, and the distributivity equation between uni-nullnorms and
nullnorms in Section 5. Section 6 is conclusion and further work.

2. PRELIMINARIES

We only recall some facts on t-norms, t-conorms, uninorms, nullnorms and uni-nullnorms,
which will be used throughout the paper. More details about them can be found in
[3, 4, 7, 9, 22, 27].

Definition 2.1. (Klement et al. [9]) A t-norm is a binary function T : [0, 1]2 → [0, 1]
which is a commutative, associative, increasing binary operator with a neutral element 1.
A t-conorm is a binary function S : [0, 1]2 → [0, 1] which is a commutative, associative,
increasing binary operator with a neutral element 0. A t-norm T (t-conorm S) is called

Archimedean if for each (x, y) ∈ (0, 1)2 there is an n ∈ N such that T (x, · · · , x) = x
(n)
T <

y (x
(n)
S > y).

A t-norm and a t-conorm are a pair of dual operators, we can obtain the corresponding
results for t-conorms by interchanging the words t-norms and t-conorms and the roles
of 0 and 1, respectively. Thus we only give some definitions and lemmas about t-norms.

For a t-norm T , an element c ∈ (0, 1) is called a nilpotent element of T if there

exists some n ∈ N such that c
(n)
T = 0. T is said to be strictly monotone (SM) if

T (x, y) < T (x, z) whenever x > 0 and y < z. T satisfies the cancellation law (CL) if
T (x, y) = T (x, z) implies x = 0 or y = z. T satisfies the conditional cancellation law
(CCL) if T (x, y) = T (x, z) > 0 implies y = z. For a continuous t-norm T , T is called
strict if it is strictly monotone, and T is called nilpotent if every c ∈ (0, 1) is a nilpotent
element of T . Any continuous Archimedean t-norms is either strict or nilpotent.

Lemma 2.2. (Klement et al. [9]) A continuous t-norm T is Archimedean if and only
if it satisfies CCL.

Lemma 2.3. (Klement et al. [9]) A continuous t-norm T is Archimedean if and only
if T (x, x) < x for all x ∈ (0, 1).
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Definition 2.4. (Fodor et al. [7]) A uninorm is a binary function U : [0, 1]2 → [0, 1]
which is commutative, associative, increasing in each variable and there is a neutral
element f ∈ [0, 1] such that U(f, x) = x for all x ∈ [0, 1].

Evidently, a uninorm with a neutral element f = 1 is a t-norm and a uninorm with a
neutral element f = 0 is a t-conorm. For any uninorm U , we have U(0, 1) ∈ {0, 1}, and
U is called conjunctive when U(0, 1) = 0 and disjunctive when U(0, 1) = 1. By Uf we
denote the family of all uninorms with neutral element f ∈ [0, 1]. In what follows we give
the description of uninorms by using the notation A(f) = [0, f)× (f, 1] ∪ (f, 1]× [0, f).

Theorem 2.5. (Fodor et al. [7]) Let f ∈ (0, 1). U ∈ Uf if and only if

U(x, y) =


fTU (x

f ,
y
f ) if (x, y) ∈ [0, f ]2,

f + (1− f)SU (x−f
1−f ,

y−f
1−f ) if (x, y) ∈ [f, 1]2,

C(x, y) if (x, y) ∈ A(f),

(1)

where TU and SU are respectively a t-norm and a t-conorm, the associative and increasing
operation C : A(f)→ [0, 1] fulfills min(x, y) 6 C(x, y) 6 max(x, y) for (x, y) ∈ A(f).

Definition 2.6. (Fodor et al. [7]) Consider f ∈ (0, 1). A binary operator U : [0, 1]2 →
[0, 1] is a representable uninorm if and only if there exists a continuous strictly increasing
function h : [0, 1]→ [−∞,+∞] with h(0) = −∞, h(f) = 0 and h(1) = +∞ such that

U(x, y) = h−1(h(x) + h(y))

for all (x, y) ∈ [0, 1]2 \ {(0, 1), (1, 0)} and U(0, 1) = U(1, 0) ∈ {0, 1}. The function h is
usually called an additive generator of U .

Recall that there are no continuous uninorms with neutral element f ∈ (0, 1). In
fact, representable uninorms were characterized as those uninorms that are continuous
in [0, 1]2 \{(0, 1), (1, 0)} (see [22]) as well as those that are strictly increasing in the open
unit square (see [8, 22]).

Definition 2.7. (Calvo et al. [3]) A nullnorm is a binary function V : [0, 1]2 → [0, 1]
which is commutative, associative, increasing and has a zero element k ∈ [0, 1] such that

(i) V (0, x) = V (x, 0) = x for all x 6 k,

(ii) V (1, x) = V (x, 1) = x for all x > k.

By Definition 2.7, the case k = 0 leads back to a t-norm, while the case k = 1 leads
back to a t-conorm. By Vk we denote the family of all nullnorms with the zero element
k ∈ [0, 1].

Theorem 2.8. (Calvo et al. [3]) Let k ∈ (0, 1). V ∈ Vk if and only if there exists a
t-norm TV and a t-conorm SV such that

V (x, y) =


kSV (x

k ,
y
k ) if (x, y) ∈ [0, k]2,

k + (1− k)TV (x−k
1−k ,

y−k
1−k ) if (x, y) ∈ [k, 1]2,

k otherwise.

(2)
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Definition 2.9. (De Baets [4]) An element s ∈ [0, 1] is called an idempotent element
of operation F : [0, 1]2 → [0, 1] if F (s, s) = s. Operation F is called idempotent if all
elements from [0, 1] are idempotent.

Definition 2.10. (Akella [2], Fechner et al. [6]) Let G be a binary operator on [0, 1]
which is commutative. Then {e1, e2}a is called the 2-neutral element of G if G(e1, x) = x
for all x 6 a and G(e2, x) = x for all x > a where 0 < a < 1 and e1 ∈ [0, a], e2 ∈ [a, 1].

Definition 2.11. (Akella [2], Fechner et al. [6]) A binary operator G on [0, 1] is
a 2-uninorm if it is commutative, associative, increasing in both the variable and has
a 2-neutral element {e1, e2}a.

Definition 2.12. (Sun et al. [26]) A uni-nullnorm G is a 2-uninorm having a 2-neutral
element {e, 1}a with a being the zero element over [e, 1].

Note that a uni-nullnorm is a special case of a 2-uninorm, where the underlying
upper uninorm of the 2-uninorm is a t-norm. Obviously, uni-nullnorms generalize both
uninorms and nullnorms. For a uni-nullnorm G with a 2-neutral element {e, 1}a, G is
a uninorm if a = 1 and a nullnorm if e = 0. A uni-nullnorm with a 2-neutral element
{e, 1}a is proper if 0 < e < 1.

Theorem 2.13. (Sun et al. [26]) Let G : [0, 1]2 → [0, 1] be a uni-nullnorm such that
the underlying t-norms T ll

G, Tur
G and t-conorm SG are continuous Archimedean. Then

G has one of the following structures:

(i)

G(x, y) =



eT ll
G(x

e ,
y
e ) if (x, y) ∈ [0, e]2,

e + (a− e)SG(x−e
a−e ,

y−e
a−e ) if (x, y) ∈ [e, a]2,

a + (1− a)Tur
G (x−a

1−a ,
y−a
1−a ) if (x, y) ∈ [a, 1]2,

a if (x, y) ∈ [e, a]× [a, 1] ∪ [a, 1]× [e, a],

min(x, y) otherwise.

(3)

(ii)

G(x, y) =



eT ll
G(x

e ,
y
e ) if (x, y) ∈ [0, e]2,

e + (a− e)SG(x−e
a−e ,

y−e
a−e ) if (x, y) ∈ [e, a]2,

a + (1− a)Tur
G (x−a

1−a ,
y−a
1−a ) if (x, y) ∈ [a, 1]2,

a if (x, y) ∈ [0, a]× [a, 1] ∪ [a, 1]× [0, a],

min(x, y) otherwise.

(4)
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(iii)

G(x, y) =



eT ll
G(x

e ,
y
e ) if (x, y) ∈ [0, e]2,

e + (a− e)SG(x−e
a−e ,

y−e
a−e ) if (x, y) ∈ [e, a]2,

a + (1− a)Tur
G (x−a

1−a ,
y−a
1−a ) if (x, y) ∈ [a, 1]2,

a if (x, y) ∈ (0, a]× [a, 1] ∪ [a, 1]× (0, a],

min(x, y) otherwise.

(5)

(iv)

G(x, y) =



eT ll
G(x

e ,
y
e ) if (x, y) ∈ [0, e]2,

e + (a− e)SG(x−e
a−e ,

y−e
a−e ) if (x, y) ∈ [e, a]2,

a + (1− a)Tur
G (x−a

1−a ,
y−a
1−a ) if (x, y) ∈ [a, 1]2,

a if (x, y) ∈ [0, a]× [a, 1] ∪ [a, 1]× [0, a],

max(x, y) otherwise.

(6)

(v)

G(x, y) =



eT ll
G(x

e ,
y
e ) if (x, y) ∈ [0, e]2,

e + (a− e)SG(x−e
a−e ,

y−e
a−e ) if (x, y) ∈ [e, a]2,

a + (1− a)Tur
G (x−a

1−a ,
y−a
1−a ) if (x, y) ∈ [a, 1]2,

a if (x, y) ∈ [0, a]× [a, 1] ∪ [a, 1]× [0, a],

0 if (x, y) ∈ {0} × (e, a) ∪ (e, a)× {0},
max(x, y) otherwise.

(7)

(vi)

G(x, y) =



eT ll
G(x

e ,
y
e ) if (x, y) ∈ [0, e]2,

e + (a− e)SG(x−e
a−e ,

y−e
a−e ) if (x, y) ∈ [e, a]2,

a + (1− a)Tur
G (x−a

1−a ,
y−a
1−a ) if (x, y) ∈ [a, 1]2,

a if (x, y) ∈ (0, a]× [a, 1] ∪ [a, 1]× (0, a],

0 if (x, y) ∈ {0} × [0, 1] ∪ [0, 1]× {0},
max(x, y) otherwise.

(8)

(vii)

G(x, y) =


aUG(x

a ,
y
a ) if (x, y) ∈ [0, a]2,

a + (1− a)Tur
G (x−a

1−a ,
y−a
1−a ) if (x, y) ∈ [a, 1]2,

a if (x, y) ∈ (0, a]× [a, 1] ∪ [a, 1]× (0, a],

0 otherwise,

(9)
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where UG is a conjunctive representable uninorm.

(viii)

G(x, y) =


aUG(x

a ,
y
a ) if (x, y) ∈ [0, a]2,

a + (1− a)Tur
G (x−a

1−a ,
y−a
1−a ) if (x, y) ∈ [a, 1]2,

a if (x, y) ∈ [0, a]× [a, 1] ∪ [a, 1]× [0, a],

(10)
where UG is a disjunctive representable uninorm.

Now, we recall the distributivity equations.

Definition 2.14. (Aczél [1]) Let G,F : [0, 1]2 → [0, 1]. We say that

(i) G is left distributive over F , if for all x, y, z ∈ [0, 1],

G(x, F (y, z)) = F (G(x, y), G(x, z)). (11)

(ii) G is right distributive over F , if for all x, y, z ∈ [0, 1],

G(F (x, y), z) = F (G(x, z), G(y, z)). (12)

If Eqs. (11) and (12) are fulfilled simultaneously, for example, G is commutative, we say
that G is distributive over F .

Lemma 2.15. (Rak [18]) Every increasing operation F : [0, 1]2 → [0, 1] is distributive
over max and min.

Theorem 2.16. (Ruiz and Torrens [22]) Let U be a representable uninorm with neu-
tral element f ∈ (0, 1) and T be a continuous t-norm. The following conditions are
equivalent.

(i) U is distributive over T .

(ii) U is conditionally distributive over T .

(iii) We have either one of the following cases:

(a) T = TM .

(b) T is strict and if t is the additive generator of T satisfying t(f) = 1, then 1
t

is also a multiplicative generator of U .

Theorem 2.17. (Ruiz and Torrens [22]) Let U be a representable uninorm with neu-
tral element f ∈ (0, 1) and S be a continuous t-conorm. The following conditions are
equivalent.

(i) U is distributive over S.

(ii) U is conditionally distributive over S.

(iii) We have either one of the following cases:

(a) S = SM .

(b) S is strict and if s is the additive generator of S satisfying s(f) = 1, then 1
s

is also a multiplicative generator of U .
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3. DISTRIBUTIVITY BETWEEN UNI-NULLNORMS AND CONTINUOUS
T-NORMS (T-CONORMS)

In this section, we will discuss distributivity between continuous t-norms (t-conorms) and
proper uni-nullnorms with continuous Archimedean underlying t-norms and t-conorms.
Here we investigate the distributivity equation between continuous t-norms and uni-
nullnorms in detail, and only list the results of this equation for uni-nullnorms and
continuous t-conorms as corollaries in this section because t-norms and t-conorms are
a pair of dual operators. First of all, let us discuss the distributivity for uni-nullnorms
over continuous t-norms.

Theorem 3.1. Let uni-nullnorm G be one of Eqs. (3) – (8) with 0 < e < a < 1 and T
be a continuous t-norm. Then G is distributive over T if and only if T = min.

P r o o f . Suppose uni-nullnorm G is one of Eqs. (3),(4),(5). Let x = a and y = z = 1
in the distributivity equation, then we can easily obtain a = G(a, 1) = G(a, T (1, 1)) =
T (G(a, 1), G(a, 1)) = T (a, a).

Now let us prove T (e, e) = e. It follows from the continuity of T that there exists
t1 ∈ [e, a) such that T (t1, t1) = e. Then we have x = G(x, e) = G(x, T (t1, t1)) =
T (G(x, t1), G(x, t1)) = T (x ∧ t1, x ∧ t1) = T (x, x) for any x ∈ (0, e). Thus we obtain
T (e, e) = e by the continuity of T .

Next we will prove T is idempotent. In fact, we have x = G(x, e) = G(x, T (e, e)) =
T (G(x, e), G(x, e)) = T (x, x) for all x ∈ [0, a], and x = G(x, 1) = G(x, T (1, 1)) =
T (G(x, 1), G(x, 1)) = T (x, x) for all x ∈ [a, 1]. That is, T (x, x) = x for all x ∈ [0, 1].

The converse statement is obvious from Lemma 2.15.
Suppose uni-nullnorm G is one of Eqs. (6),(7),(8). Based on the above proof, here we

only need to prove T (e, e) = e. Assume T (e, e) < e, then it follows from the continuity
of T that there exists t2 ∈ (e, a) such that T (t2, t2) = e. Then for any x ∈ (0, e) we have
x = G(x, e) = G(x, T (t2, t2)) = T (G(x, t2), G(x, t2)) = T (x ∨ t2, x ∨ t2) = T (t2, t2) = e,
which is a contradiction. So we have T (e, e) = e. �

Theorem 3.2. Let uni-nullnorm G be one of Eqs. (9),(10) with 0 < e < a < 1 and T
be a continuous t-norm. Then G is distributive over T if and only if one of the following
cases holds:

(i) T = TM .

(ii) The structure of T is as follows:

T (x, y) =

{
aT1(x

a ,
y
a ) if (x, y) ∈ [0, a]2,

min(x, y) otherwise,
(13)

where T1 is a strict t-norm and if t1 is the additive generator of T1 satisfying
t1( e

a ) = 1, then 1
t1

is a multiplicative generator of the underlying representable
uninorm UG of uni-nullnorm G.

P r o o f . Firstly, it is obvious that x = G(x, 1) = G(x, T (1, 1)) = T (G(x, 1), G(x, 1)) =
T (x, x) for all x ∈ [a, 1]. So we have T (x, y) = min(x, y) for (x, y) ∈ [0, a]× [a, 1]∪ [a, 1]×
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[0, 1] by the continuity of T . Then it follows from Theorem 2.16 that one of the cases
(i) and (ii) holds.

Conversely, it is easy to verify that G is distributive over T . �

Next we will discuss the distributivity for continuous t-norms over proper uni-nullnorms
with continuous Archimedean underlying t-norms and t-conorms.

Theorem 3.3. Let G be a proper uni-nullnorm with continuous Archimedean under-
lying t-norms T ll

G, Tur
G and t-conorm SG, and T be a continuous t-norm. Then T is not

distributive over G.

P r o o f . Let y = z = 1 in the distributivity equation, then for any x ∈ [0, 1] we have
x = T (x, 1) = T (x,G(1, 1)) = G(T (x, 1), T (x, 1)) = G(x, x), which contradicts with
G(x, x) < x for x ∈ (0, e) ∪ (a, 1) and G(x, x) > x for x ∈ (e, a). �

Corollary 3.4. Let uni-nullnorm G be one of Eqs. (3) – (8) with 0 < e < a < 1, and S
be a continuous t-conorm. Then G is distributive over S if and only if S = max.

Corollary 3.5. Let uni-nullnorm G be one of Eqs. (9),(10) with 0 < e < a < 1 and
S be a continuous t-conorm. Then G is distributive over S if and only if one of the
following cases holds:

(i) S = SM .

(ii) The structure of S is as follows:

S(x, y) =

{
aS1(x

a ,
y
a ) if (x, y) ∈ [0, a]2,

max(x, y) otherwise,
(14)

where S1 is a strict t-conorm and if s1 is the additive generator of S1 satisfying
s1( e

a ) = 1, then s1 is also a multiplicative generator of the underlying representable
uninorm UG of uni-nullnorm G.

Corollary 3.6. Let G be a proper uni-nullnorm with continuous Archimedean under-
lying t-norms T ll

G, Tur
G and t-conorm SG, and S be a continuous t-conorm. Then S is

not distributive over G.

4. DISTRIBUTIVITY BETWEEN UNI-NULLNORMS AND UNINORMS

From now on, G will denote a uni-nullnorm with a 2-neutral element {e, 1}a, where
0 < e < a < 1 and the underlying t-norms and t-conorm are continuous Archimedean,
and U ∈ Uf will denote a uninorm with a neutral element 0 < f < 1. Depending
on whether the neutral elements of G and U are same or not, there are two cases:
distributivity between G and U with f = e, and distributivity between G and U with
f 6= e.
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4.1. Distributivity between G and U with f = e

In this section, we will investigate distributivity for G over U and U over G with f = e,
respectively. Firstly, let us discuss the distributivity equation for uni-nullnorms over
uninorms.

Theorem 4.1. Let uni-nullnorm G be Eq.(3) with 0 < e < a < 1 and U be a uninorm
with neutral element e ∈ (0, 1). Then G is distributive over U if and only if the structure
of U is as follows:

U(x, y) =

{
max(x, y) if (x, y) ∈ [e, 1]2,

min(x, y) otherwise.
(15)

P r o o f . It is easy for us to prove that U is idempotent. In fact, we have x = G(x, e) =
G(x, U(e, e)) = U(G(x, e), G(x, e)) = U(x, x) for any x ∈ [0, a], and x = G(x, 1) =
G(x, U(1, 1)) = U(G(x, 1), G(x, 1)) = U(x, x) for any x ∈ [a, 1]. That is, U(x, x) = x for
all x ∈ [0, 1].

Now let us prove U(x, y) = min(x, y) for (x, y) ∈ [0, e)×[e, 1]. Let x ∈ (0, e), y ∈ (0, e)
and z ∈ [e, 1], then it follows from the structures of G and U that G(x, U(y, z)) =
U(G(x, y), G(x, z)) = U(G(x, y), x∧z) = U(G(x, y), x) = G(x, y)∧x = G(x, y). Assume
there exists some y0 ∈ (0, e) and z0 ∈ [e, 1] such that U(y0, z0) > e, then for any
x ∈ (0, e) we have G(x, y0) = G(x, U(y0, z0)) = x ∧ U(y0, z0) = x, which contradicts
with the structure of G. So we have U(y, z) < e for all (y, z) ∈ (0, e)× [e, 1]. Then from
the continuity of the underlying t-norm T ll

G of G, it follows that for every y ∈ (0, e) there
must exist x0 ∈ (0, e) such that G(x0, y) > 0, that is, G(x0, U(y, z)) = G(x0, y) > 0.
Thus we have U(y, z) = y = min(y, z) for (y, z) ∈ (0, e) × [e, 1] by the conditional
cancellation law. From above, we know U(0, 1) = 0 by the monotonicity of U , so
U(0, z) = 0 for z ∈ [e, 1]. Therefore, U(y, z) = y = min(y, z) for (y, z) ∈ [0, e)× [e, 1] .

The converse statement is obvious. �

Theorem 4.2. Let uni-nullnorm G be Eq.(4) with 0 < e < a < 1 and U be a uninorm
with neutral element e ∈ (0, 1). Then G is distributive over U if and only if the structure
of U is as follows:

U(x, y) =

{
max(x, y) if (x, y) ∈ [0, e]× [a, 1] ∪ [a, 1]× [0, e] ∪ [e, 1]2,

min(x, y) otherwise.
(16)

P r o o f . Based on the proof of Theorem 4.1, we only need to prove U(x, y) = max(x, y)
for (x, y) ∈ [0, e] × [a, 1]. Firstly, let x ∈ [0, e], y = e and z ∈ [a, 1] in distributivity
equation, then a = G(x, z) = G(x, U(e, z)) = U(G(x, e), G(x, z)) = U(x, a) for any
x ∈ [0, e].

Now let x ∈ (a, 1], y ∈ [0, e] and z ∈ (a, 1], then it follows from the structures of G
and U that G(x, U(y, z)) = U(G(x, y), G(x, z)) = U(a,G(x, z)) = a ∨G(x, z) = G(x, z).
So we have U(y, z) = z = max(y, z) for (y, z) ∈ [0, e] × (a, 1] since the underlying
operator Tur

G of G is a continuous Archimedean t-norm, which satisfies the conditional
cancellation law.

Conversely, it is easy to verify that G is distributive over U . �
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Theorem 4.3. Let uni-nullnorm G be Eq.(5) with 0 < e < a < 1 and U be a uninorm
with neutral element e ∈ (0, 1). Then G is distributive over U if and only if the structure
of U is as follows:

U(x, y) =


max(x, y) if (x, y) ∈ (0, e]× [a, 1] ∪ [a, 1]× (0, e] ∪ [e, 1]2,

0 if (x, y) ∈ {0} × [a, 1] ∪ [a, 1]× {0},
min(x, y) otherwise.

(17)

P r o o f . Based on the proof of Theorem 4.2, here we only prove U(0, a) = U(0, 1) = 0.
Firstly, take x = a, y = 0 and z = e in distributivity equation, then we have 0 =
G(a, 0) = G(a, U(0, e)) = U(G(a, 0), G(a, e)) = U(0, a). And take x = e, y = 0 and
z = 1 in distributivity equation, then we have G(e, U(0, 1)) = U(G(e, 0), G(e, 1)) =
U(0, a) = 0. Suppose U(0, 1) = 1, then it follows from the structure of G that 0 =
G(e, U(0, 1)) = G(e, 1) = a, which is a contradiction. So we have U(0, 1) = 0. �
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Fig. 1. (Left:) U in Theorem 4.1; (middle:) U in Theorem 4.2;

(right:) U in Theorem 4.3.

Theorem 4.4. Let uni-nullnorm G be Eq.(6) with 0 < e < a < 1 and U be a uninorm
with neutral element e ∈ (0, 1). Then G is distributive over U if and only if the structure
of U is as follows:

U(x, y) =

{
min(x, y) if (x, y) ∈ [0, e]2,

max(x, y) otherwise.
(18)

P r o o f . Firstly, we know that U is idempotent from the proof of Theorem 4.1. Let
x ∈ [0, e], y = e and z ∈ [a, 1] in distributivity equation, then we have a = G(x, z) =
G(x, U(e, z)) = U(G(x, e), G(x, z)) = U(x, a). That is, U(x, a) = a for all x ∈ [0, e].

Now let us prove U(x, y) = max(x, y) for (x, y) ∈ [0, e]×(e, 1]. Let x ∈ (e, a), y ∈ [0, e]
and z ∈ (e, a), then it follows from the structures of G and U that G(x, U(y, z)) =
U(G(x, y), G(x, z)) = U(x∨y,G(x, z)) = U(x,G(x, z)) = x∨G(x, z) = G(x, z). Assume
there exists some y′ ∈ [0, e] and z′ ∈ (e, a) such that U(y′, z′) 6 e, then for any x ∈ (e, a)
we have x = x ∨ U(y′, z′) = G(x, U(y′, z′)) = G(x, z′), which contradicts with the
structure of G. So e < U(y, z) 6 a for all (y, z) ∈ [0, e] × (e, a). Thus we obtain
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U(y, z) = z = max(y, z) for (y, z) ∈ [0, e] × (e, a) since the underlying operator SG is
a continuous Archimedean t-conorm, which satisfies the conditional cancellation law.
And let x ∈ (a, 1], y ∈ [0, e] and z ∈ (a, 1], it follows from the structures of G and U
that G(x, U(y, z)) = U(G(x, y), G(x, z)) = U(a,G(x, z)) = a ∨ G(x, z) = G(x, z), then
U(y, z) = z = max(y, z) for (y, z) ∈ [0, e]× (a, 1] since the underlying operator Tur

G is a
continuous Archimedean t-norm, which satisfies the conditional cancellation law.

The converse statement is obvious. �

Theorem 4.5. Let uni-nullnorm G be Eq.(7) with 0 < e < a < 1 and U be a uninorm
with neutral element e ∈ (0, 1). Then G is distributive over U if and only if the structure
of U is as follows:

U(x, y) =


min(x, y) if (x, y) ∈ [0, e]2,

0 if (x, y) ∈ {0} × (e, a) ∪ (e, a)× {0},
max(x, y) otherwise.

(19)

P r o o f . Based on the proof of Theorem 4.4, we just prove U(x, 0) = 0 for x ∈ (e, a).
Let x ∈ (e, a), y ∈ (0, e] and z = 0 in distributivity equation, then we have 0 = G(x, 0) =
G(x, U(y, 0)) = U(G(x, y), G(x, 0)) = U(x ∨ y, 0) = U(x, 0). �

Theorem 4.6. Let uni-nullnorm G be Eq.(8) with 0 < e < a < 1 and U be a uninorm
with neutral element e ∈ (0, 1). Then G is distributive over U if and only if the structure
of U is as follows:

U(x, y) =


min(x, y) if (x, y) ∈ [0, e]2,

0 if (x, y) ∈ {0} × [e, 1] ∪ [e, 1]× {0},
max(x, y) otherwise.

(20)

P r o o f . Based on the proof of Theorem 4.5, we just prove U(0, a) = U(0, 1) = 0.
Take x = a, y = 0 and z ∈ (0, e] in distributivity equation, we have 0 = G(a, 0) =
G(a, U(0, z)) = U(G(a, 0), G(a, z)) = U(0, a). And take x = a, y = 0 and z = 1
in distributivity equation, we have G(a, U(0, 1)) = U(G(a, 0), G(a, 1)) = U(0, a) = 0.
Suppose U(0, 1) = 1, then a = G(a, 1) = G(a, U(0, 1)) = 0, which is a contradiction. So
we have U(0, 1) = 0. �

The distributivity for representable uninorms over uninorms was already studied in
[21], and it was proved that there are no solutions in this case. That is, representable
uninorms are not distributive over uninorms. Thus, we have the following conclusion.

Theorem 4.7. Let uni-nullnorm G be one of Eqs. (9),(10) with 0 < e < a < 1 and U
be a uninorm with neutral element e ∈ (0, 1). Then G is not distributive over U .

P r o o f . First of all, we know that U is idempotent from the proof of Theorem 4.1.
Let x ∈ (0, e), y ∈ (e, a) and z = e in distributivity equation, then we have G(x, y) =
G(x, U(y, e)) = U(G(x, y), G(x, e)) = U(G(x, y), x).
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Now let us prove U(x, y) 6= e for (x, y) ∈ (0, e)×(e, a). Assume there exists some x0 ∈
(0, e) and y0 ∈ (e, a) such that G(x0, y0) = e, then e = G(x0, y0) = U(G(x0, y0), x0) =
U(e, x0) = x0, which is a contradiction. So we have G(x, y) 6= e and x = G(x, e) <
G(x, y) < G(e, y) = y for (x, y) ∈ (0, e) × (e, a) from the strict monotonicity of the
underlying representable uninorm UG of G. Thus, there are two possibilities: 0 < x <
G(x, y) < e < y < a and 0 < x < e < G(x, y) < y < a. When 0 < x < G(x, y) < e < y <
a, then from the structure of U it follows that G(x, y) = U(G(x, y), x) = G(x, y)∧x = x,
which is a contradiction. When 0 < x < e < G(x, y) < y < a, then from the structure
of U it follows that G(x, y) = G(y, x) = U(G(y, x), y) = G(x, y) ∨ y = y, which is a
contradiction. Therefore, G is not distributive over U . �
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Fig. 2. (Left:) U in Theorem 4.4; (middle:) U in Theorem 4.5;

(right:) U in Theorem 4.6.

Next we will discuss the distributivity for uninorms over proper uni-nullnorms with
continuous Archimedean underlying t-norms and t-conorms.

Theorem 4.8. Let G be a proper uni-nullnorm with continuous Archimedean under-
lying t-norms T ll

G, Tur
G and t-conorm SG, and U be a uninorm with neutral element

e ∈ (0, 1). Then U is not distributive over G.

P r o o f . The proof is similar to the one of Theorem 3.3. �

4.2. Distributivity between G and U with f 6= e

In this section, we will investigate distributivity for G over U and U over G with f 6= e,
respectively. Firstly, let us discuss the distributivity equation for uni-nullnorms over
uninorms.

Theorem 4.9. Let uni-nullnorm G be Eq.(3) with 0 < e < a < 1 and U be a uninorm
with neutral element f 6= e, where the underlying t-norm TU is continuous. Then G is
distributive over U if and only if f = a and U has the form (15).

P r o o f . First of all, let us prove f = a. Assume f ∈ (0, e), then we know G(f, f) < f
from Lemma 2.3. Taking x = z = f and y = e in distributivity equation, then we have
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f = G(f, e) = G(f, U(e, f)) = U(G(f, e), G(f, f)) = U(f,G(f, f)) = G(f, f), which is
a contradiction. Assume f ∈ (e, a), then we know G(f, f) > f . Taking x = z = f
and y = e in distributivity equation, then we have f = G(f, e) = G(f, U(e, f)) =
U(G(f, e), G(f, f)) = U(f,G(f, f)) = G(f, f), which is a contradiction. Assume f ∈
(a, 1), then we know G(f, f) < f from Lemma 2.3. Taking x = z = f and y = 1 in dis-
tributivity equation, then we have f = G(f, 1) = G(f, U(1, f)) = U(G(f, 1), G(f, f)) =
U(f,G(f, f)) = G(f, f), which is a contradiction. So we have f = a.

Next, let us prove that U is idempotent. From the structure of U , it follows that
U(e, e) 6 e, then there must exist t1 ∈ [e, a) such that U(t1, t1) = e by the continuity of
TU . So for any x ∈ (0, e), we have x = G(x, e) = G(x, U(t1, t1)) = U(G(x, t1), G(x, t1)) =
U(x∧ t1, x∧ t1) = U(x, x). Thus, we obtain U(e, e) = e by the continuity of TU . There-
fore, we have x = G(x, e) = G(x, U(e, e)) = U(G(x, e), G(x, e)) = U(x, x) for any
x ∈ [0, a] and x = G(x, 1) = G(x, U(1, 1)) = U(G(x, 1), G(x, 1)) = U(x, x) for any
x ∈ [a, 1]. That is, U is idempotent. And similar to the proof of Theorem 4.1, we have
U(x, y) = min(x, y) for (x, y) ∈ [0, a] × [a, 1] ∪ [a, 1] × [0, a]. The converse statement is
obvious from Lemma 2.15. �

Theorem 4.10. Let uni-nullnorm G be one of Eqs. (4) – (10) with 0 < e < a < 1 and
U be a uninorm with neutral element f 6= e. Then G is distributive over U if and only
if f = a and U has the form (15).

P r o o f . The proof is similar to the one of Theorem 4.9. �

Theorem 4.11. Let uni-nullnorm G be Eq.(3) with 0 < e < a < 1 and U be a uninorm
with neutral element f 6= e. Then U is not distributive over G.

P r o o f . Suppose U is distributive over G. If f ∈ (0, e), then we have x = U(x, f) =
U(x,G(e, f)) = G(U(x, e), U(x, f)) = G(U(x, e), x) for x ∈ (e, a). Assume there ex-
ists x0 ∈ (e, a) such that U(x0, e) > a, then from the structure of G we have x0 =
G(U(x0, e), x0) = a, which is a contradiction. That is, e 6 U(x, e) < a for x ∈ (e, a).
Thus, from the structure of the underlying t-conorm SG of G, it follows that G(x, x) >
x = G(U(x, e), x) for any x ∈ (e, a). So we obtain U(x, e) < x for x ∈ (e, a), which con-
tradicts with the fact that U(x, e) > x for x ∈ (e, a) by the structure of U . If f ∈ (e, a],
then we have x = U(x, f) = U(x,G(e, f)) = G(U(x, e), U(x, f)) = G(U(x, e), x) for
x ∈ (0, e). From the structure of the underlying t-norm T ll

G of G, it follows that G(x, x) <
x = G(U(x, e), x) for any x ∈ (0, e). So we obtain U(x, e) > x for x ∈ (0, e), which con-
tradicts with the fact that U(x, e) 6 x for x ∈ (0, e) by the structure of U . If f ∈ (a, 1),
then we have x = U(x, f) = U(x,G(1, f)) = G(U(x, 1), U(x, f)) = G(U(x, 1), x) for
x ∈ (e, a). Assume there exists x0 ∈ (e, a) such that U(x0, 1) > a, then from the
structure of G we have x0 = G(U(x0, 1), x0) = a, which is a contradiction. That is,
e < x 6 U(x, 1) < a for x ∈ (e, a). Thus, from the structure of the underlying t-conorm
SG of G, it follows that G(x, x) > x = G(U(x, 1), x) for any x ∈ (e, a). So we obtain
U(x, 1) < x for x ∈ (e, a), which contradicts with the fact that U(x, 1) > x for x ∈ (e, a)
by the structure of U . �

Theorem 4.12. Let uni-nullnorm G be one of Eqs. (4) – (8) with 0 < e < a < 1 and U
be a uninorm with neutral element f 6= e. Then U is not distributive over G.
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P r o o f . The proof is similar to the one of Theorem 4.11. �

Theorem 4.13. Let uni-nullnorm G be Eq.(9) with 0 < e < a < 1 and U be a uninorm
with neutral element f 6= e. Then U is not distributive over G.

P r o o f . Suppose U is distributive over G. If f ∈ (0, e), then we have x = U(x, f) =
U(x,G(e, f)) = G(U(x, e), U(x, f)) = G(U(x, e), x) for x ∈ (e, a). Assume there ex-
ists x0 ∈ (0, a) such that U(x0, e) > a, then by the structure of G we have x0 =
G(U(x0, e), x0) = a, which is a contradiction. That is, U(x, e) < a for x ∈ (0, a). Thus,
from the structure of the underlying representable uninorm UG of G, it follows that
G(x, e) = x = G(U(x, e), x) for any x ∈ (0, a). So we obtain U(x, e) = e for x ∈ (0, a),
which contradicts with the fact that U(x, e) > x > e. And we can similarly obtain
contradictions if f ∈ (e, 1). �

Theorem 4.14. Let uni-nullnorm G be Eq.(10) with 0 < e < a < 1 and U be a uninorm
with neutral element f 6= e. Then U is not distributive over G.

P r o o f . The proof is similar to the one of Theorem 4.13. �

5. DISTRIBUTIVITY BETWEEN UNI-NULLNORMS AND NULLNORMS

From now on, V ∈ Vk will denote a nullnorm with a zero element 0 < k < 1. De-
pending on whether the zero elements of G and V are same or not, there are two cases:
distributivity between G and V with k = a, and distributivity between G and V with
k 6= a.

5.1. Distributivity between G and V with k = a

In this section, we will investigate distributivity for G over V and V over G with k = a,
respectively. Firstly, let us discuss the distributivity equation for uni-nullnorms over
nullnorms.

Theorem 5.1. Let uni-nullnorm G be Eq.(3) with 0 < e < a < 1 and V be a nullnorm
with zero element a ∈ (0, 1). If G is distributive over V , then V (x, y) = max(x, y) for
(x, y) ∈ [0, e)2 and V (x, y) = min(x, y) for (x, y) ∈ [a, 1]2.

P r o o f . Taking y = z = e and x ∈ [0, e) in distributivity equation, then we have
x = x ∧ V (e, e) = G(x, V (e, e)) = V (G(x, e), G(x, e)) = V (x, x). And let y = z =
1 and x ∈ [a, 1] in distributivity equation, we have x = G(x, 1) = G(x, V (1, 1)) =
V (G(x, 1), G(x, 1)) = V (x, x). That is, V (x, y) = max(x, y) for (x, y) ∈ [0, e)2 and
V (x, y) = min(x, y) for (x, y) ∈ [a, 1]2. �

Theorem 5.2. Let uni-nullnorm G be Eq.(4) with 0 < e < a < 1 and V be a nullnorm
with zero element a ∈ (0, 1). If G is distributive over V , then e 6 V (e, e) < a, and
V (x, y) = max(x, y) for (x, y) ∈ [0, e)2 and V (x, y) = min(x, y) for (x, y) ∈ [a, 1]2.
Especially, if V (e, e) = e, then G is distributive over V if and only if V is idempotent.
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P r o o f . Based on the proof of Theorem 5.1, we only need to prove V (e, e) < a. Assume
V (e, e) = a, then we have a = G(0, a) = G(0, V (e, e)) = V (G(0, e), G(0, e)) = V (0, 0) =
0, which is a contradiction. �

Theorem 5.3. Let uni-nullnorm G be Eq.(5) with 0 < e < a < 1 and V be a nullnorm
with zero element a ∈ (0, 1). Then one of the following cases holds:

(i) If V (e, e) = e, then G is distributive over V if and only if V is idempotent.

(ii) If e < V (e, e) < a, and G is distributive over V , then V (x, y) = max(x, y) for
(x, y) ∈ [0, e)2 and V (x, y) = min(x, y) for (x, y) ∈ [a, 1]2.

(iii) If V (e, e) = a, then G is distributive over V if and only if the underlying t-norm
T ll
G is strict and the structure of V is as follows:

V (x, y) =


min(x, y) if (x, y) ∈ [a, 1]2,

y if (x, y) ∈ {0} × [0, a],

x if (x, y) ∈ [0, a]× {0},
a otherwise.

(21)

P r o o f . We only prove (iii) here. For any x ∈ (0, a], we can easily obtain a = G(x, a) =
G(x, V (e, e)) = V (G(x, e), G(x, e)) = V (x, x). So for any x, y ∈ (0, a], we have a =
V (x ∧ y, x ∧ y) 6 V (x, y) 6 V (x ∨ y, x ∨ y) = a. Now assume the underlying t-norm
T ll
G is nilpotent7, then there must exist t ∈ (0, e) such that G(t, t) = 0. Thus, for any

x, y, z ∈ (0, t], we have a = G(x, a) = G(x, V (y, z)) = V (G(x, y), G(x, z)) = V (0, 0) = 0,
which is a contradiction.

Conversely, in order to verify that G is distributive over V , we need to consider the
following cases by the commutativity of V .

1) When y, z ∈ (0, a].
If x > 0, then G(x, V (y, z)) = G(x, a) = a = V (G(x, y), G(x, z)) by the structures of

G and V .
If x = 0, then G(x, V (y, z)) = G(0, a) = 0 = V (0, 0) = V (G(0, y), G(0, z)) =

V (G(x, y), G(x, z)) by the structures of G and V .

2) When y = 0 and z ∈ [0, a]. It is obvious for any x ∈ [0, 1] that G(x, V (0, z)) =
G(x, z) = V (0, G(x, z)) = V (G(x, 0), G(x, z)) by the structures of G and V .

3) When y ∈ [0, a] and z ∈ [a, 1].
If x > 0, then G(x, V (y, z)) = G(x, a) = a = V (G(x, y), G(x, z)) by the structures of

G and V .
If x = 0, then G(x, V (y, z)) = G(0, a) = 0 = V (0, 0) = V (G(0, y), G(0, z)) =

V (G(x, y), G(x, z)) by the structures of G and V .

4) When y, z ∈ [a, 1]. Without loss of generality, we assume y 6 z.
If x > 0, then G(x, V (y, z)) = G(x, y ∧ z) = G(x, y) = G(x, y)∧G(x, z) = V (G(x, y),

G(x, z)) by the structures of G and V .
If x = 0, then G(x, V (y, z)) = G(0, y) = 0 = V (0, 0) = V (G(0, y), G(0, z)) =

V (G(x, y), G(x, z)) by the structures of G and V . �
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Theorem 5.4. Let uni-nullnorm G be Eq.(6) with 0 < e < a < 1 and V be a nullnorm
with zero element a ∈ (0, 1). Then G is distributive over V if and only if V is idempotent.

P r o o f . In order to prove that V is idempotent, we just need to prove V (e, e) = e.
Firstly, we know that e 6 V (e, e) 6 a by the structure of V . Assume V (e, e) = a,
then we have a = G(0, a) = G(0, V (e, e)) = V (G(0, e), G(0, e)) = V (0, 0) = 0, which is a
contradiction. Assume e < V (e, e) < a, then we have V (e, e)=0∨V (e, e)=G(0, V (e, e))=
V (G(0, e), G(0, e))=V (0, 0)=0, which is a contradiction. So V (e, e) =e. �

Theorem 5.5. Let uni-nullnorm G be Eq.(7) with 0 < e < a < 1 and V be a nullnorm
with zero element a ∈ (0, 1). If G is distributive over V , then e 6 V (e, e) < a. Especially,

(i) If V (e, e) = e, then G is distributive over V if and only if V is idempotent.

(ii) If e < V (e, e) < a, and G is distributive over V , then V (x, y) = V (e, e) for
(x, y) ∈ (0, e]2 and V (x, y) = min(x, y) for (x, y) ∈ [a, 1]2.

P r o o f . The proof is similar to the one of Theorem 5.1 and Theorem 5.2. �

Theorem 5.6. Let uni-nullnorm G be Eq.(8) with 0 < e < a < 1 and V be a nullnorm
with zero element a ∈ (0, 1). Then one of the following cases holds:

(i) If V (e, e) = e, then G is distributive over V if and only if V is idempotent.

(ii) If e < V (e, e) < a, and G is distributive over V , then V (x, y) = V (e, e) for
(x, y) ∈ (0, e]2 and V (x, y) = min(x, y) for (x, y) ∈ [a, 1]2.

(iii) If V (e, e) = a, then G is distributive over V if and only if the underlying t-norm
T ll
G is strict and the structure of V is Eq. (21).

P r o o f . The proof is similar to the one of Theorem 5.3. �

Theorem 5.7. Let uni-nullnorm G be one of Eqs. (9),(10) with 0 < e < a < 1
and V be a nullnorm with zero element a ∈ (0, 1). If G is distributive over V , then
V (x, y) = min(x, y) for (x, y) ∈ [a, 1]2. Especially, if the underlying t-conorm SV of V is
continuous, then G is distributive over V if and only if one of the following cases holds:

(i) V is idempotent.

(ii) The structure of V is as follows:

V (x, y) =


aSV (x

a ,
y
a ) if (x, y) ∈ [0, a]2,

min(x, y) if (x, y) ∈ [a, 1]2,

a otherwise,

(22)

where the underlying t-conorm SV of V is strict, and if s is the additive generator
of SV satisfying s( e

a ) = 1, is also a multiplicative generator of UG.
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Fig. 3. (Left:) V in Theorem 5.3(ii); (middle:) V in Theorem 5.3(iii);

(right:) V in Theorem 5.7(ii).

P r o o f . The proof is similar to the one of Theorem 3.2. �
Next we will discuss the distributivity for nullnorms over proper uni-nullnorms with

continuous Archimedean underlying t-norms and t-conorms.

Theorem 5.8. Let G be a proper uni-nullnorm with continuous Archimedean underly-
ing t-norms T ll

G, Tur
G and t-conorm SG, and V be a nullnorm. Then V is not distributive

over G.

P r o o f . The proof is similar to the one of Theorem 3.3. �

5.2. Distributivity between G and V with k 6= a

In this section, we will investigate distributivity for G over V and V over G with k 6= a,
respectively. Firstly, let us discuss the distributivity equation for uni-nullnorms over
nullnorms.

Theorem 5.9. Let uni-nullnorm G be Eq.(3) with 0 < e < a < 1 and V be a nullnorm
with zero element k 6= a. Then G is not distributive over V .

P r o o f . Suppose G is distributive over V .
If 0 < k < e, then we have G(k, k) = G(k, V (0, e)) = V (G(k, 0), G(k, e)) = V (0, k) =

k, which contradicts with G(x, x) < x for all x ∈ (0, e).
If k = e, then we have a = G(1, e) = G(1, V (1, 0)) = V (G(1, 1), G(1, 0)) = V (1, 0) =

e, which is a contradiction.
If e < k < a, then we have G(k, k) = G(k, V (a, e)) = V (G(k, a), G(k, e)) = V (a, k) =

k, which contradicts with G(x, x) > x for all x ∈ (e, a).
If a < k < 1, then we have G(k, k) = G(k, V (a, 1)) = V (G(k, a), G(k, 1)) = V (a, k) =

k, which contradicts with G(x, x) < x for all x ∈ (a, 1). �

Theorem 5.10. Let uni-nullnorm G be one of Eqs. (4) – (10) with 0 < e < a < 1 and
V be a nullnorm with zero element k 6= a. Then G is not distributive over V .
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P r o o f . The proof is similar to the one of Theorem 5.9. �

Theorem 5.11. Let G be a proper uni-nullnorm with continuous Archimedean under-
lying t-norms T ll

G, Tur
G and t-conorm SG, and V be a nullnorm with k 6= a. Then V is

not distributive over G.

P r o o f . Suppose that V is distributive over G, then we have x = V (x, 1) = V (x,G(1, 1)) =
G(V (x, 1), V (x, 1)) = G(x, x) for all x ∈ (k, 1), which contradicts with the structure of
the underlying t-norm Tur

G of G. �
From the above Theorems, we can easily obtain the following conclusion.

Remark. Let G and F be two proper uni-nullnorms with continuous Archimedean
underlying t-norms and t-conorm. Then G is not distributive over F .

6. CONCLUSION AND FURTHER WORK

In this paper, we investigated the distributivity between uni-nullnorms and some other
binary operators, such as, continuous t-norms, continuous t-conorms, uninorms and
nullnorms. From the above Theorems and corollaries, we know that there is no solution
of distributivity equation for continuous t-norms (continuous t-conorms, uninorms or
nullnorms) over uni-nullnorms, which have continuous Archimedean underlying t-norms
and t-conorms. As for the distributivity for uni-nullnorms with continuous Archimedean
underlying t-norms and t-conorms over continuous t-norms, continuous t-conorms or
uninorms, we have obtained full characterizations. But for the distributivity for uni-
nullnorms over nullnorms, we obtained partial characterizations about nullnorms.

In the future work, we will consider characterizations of uni-nullnorms with con-
tinuous or left-continuous underlying t-norms and t-conorms. And we also want to
investigate other functional equations about uni-nullnorms.
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