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SYNCHRONIZATION OF FRACTIONAL CHAOTIC
COMPLEX NETWORKS WITH DELAYS

Jian-Bing Hu, Hua Wei, Ye-Feng Feng and Xiao-Bo Yang

The synchronization of fractional-order complex networks with delay is investigated in this
paper. By constructing a novel Lyapunov-Krasovskii function V and taking integer derivative
instead of fractional derivative of the function, a sufficient criterion is obtained in the form
of linear matrix inequalities to realize synchronizing complex dynamical networks. Finally,
a numerical example is shown to illustrate the feasibility and effectiveness of the proposed
method.
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1. INTRODUCTION

In the past few decades, many efforts have been devoted to complex networks due to
the potential applications in various fields, such as World Wide Web, social networks,
neural networks, gene networks, metabolic networks, power grid networks,information
science and so on [2, 6, 15, 20, 31]. As an interesting and significant dynamic behavior,
synchronization has always been a hot research topic [19, 29, 30, 32, 33]. In the past few
years, much research effort has been dedicated to unveiling the influence of interaction
topologies on the onset of network synchronization and its stability. For example, Li
studied pinning synchronization of complex dynamical networks with mixed coupling
[5, 11]. Tang and Chen studied synchronizing two complex networks with nonidentical
topological structures by adaptive control [18].

However, it should be noted that most of the studies are mainly concentrated on
the integer-order complex networks. In recent years, fractional calculus, as a general-
ization of ordinary differentiation and integration, has received much attention due to
its application in physics and engineering [8, 26]. The behavior of many systems can be
elegantly described by fractional differential systems, such as viscoelasticity, dielectric
polarization, quantum evolution of complex systems and fractional kinetics [1, 17, 27].
Especially, since fractional derivatives are nonlocal and have weakly singular kernels,
fractional derivatives provide an excellent tool for describing the memory and heredi-
tary properties of various materials and processes. Moreover, it would be more accurate
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if practical systems are described by fractional-order dynamical models rather than
integer-order ones. Therefore, it is essential to study the synchronization of fractional
order complex dynamical networks [13, 23].

Recently, the dynamics and the synchronization of fractional-order complex networks
have become a hot topic [21, 22]. The majority of the existing research results relative to
fractional-order networks have been concerned without delay. Due to the limited infor-
mation channels and large-scale interconnected complex networks, time-delayed coupling
extensively exists in many physical systems. This implies that a system with time delay
becomes more complicated and interesting [10, 12, 28]. The same is to fractional com-
plex networks. Even though the synchronization of integer-order complex network with
delay has been intensively studied by various control schemes in the past few years, the
synchronization of fractional order complex dynamical network with delay has received
less attention in spite of its practical significance. To our knowledge, Dai and Si studied
the adaptive lag synchronization of delayed fractional complex networks [7, 14]. Wang
and Yang studied cluster synchronization of fractional-order coupled-delay complex net-
work via adaptive pinning control [25]. Hu and Lu realized synchronizing fractional
complex networks with distributed delays by constructing an extending item based on
the stability theorem of fractional system without delay [9].

Compared with the synchronization of integer complex networks, there is fewer
achievements in the synchronization of fractional complex networks. Although the frac-
tional Lyapunov-Krasovskii stable theorem present a novel approach to study the sta-
bility of fractional system with delay by designing a positive function V1 and a semi
positive extending function V2 and calculating the fractional derivative of the positive
function V1 +V2 [4, 16], it is usually very difficult to construct a semi positive extending
function V2 as fractional derivative is nonlocal and have weakly singular kernels. Aimed
at this problem, we proposed a novel approach to analyze the stability and synchroniza-
tion of fractional complex networks with delay by designing a positive function V1 and
a semi positive extending function V2 and taking integer derivative instead of fractional
derivative in this paper. A numerical example is finally presented to demonstrate the
effectiveness of the theoretical result.

This paper is organized as follows: Sections 2 introduces some definitions, lemmas,
and properties of fractional calculus and complex networks; In Sections 3, the main
approach is proposed to synchronize fractional complex networks with delay; Numerical
examples are presented in Section 4; Finally, a conclusion is drawn in Section 5.

2. PRELIMINARIES AND DEFINITIONS

2.1. Fractional calculus

We first recall some definitions and properties related to fractional derivatives that will
be used in this paper.

There are some definitions for fractional derivative. The commonly used definitions
are Grunwald–Letnikov(GL), Riemann–Liouville(RL) and Caputo(C) definition. In this
paper we mainly use the Caputo fractional operators. The Caputo definition of fractional
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derivative, which sometimes is called smooth fractional derivative, expressed as [25]:

C
aD

α
t f(t) =

1

Γ(n− α)
×
∫ t

a

(t− τ)−α+n−1f (n)(τ) dτ (1)

where n is the first integer which is not less than α, i. e. n− 1 < α ≤ n and Γ(·) is the
Gamma function.

When 0 < α ≤ 1, we can get:

C
aD

α
t f(t) =

1

Γ(1− α)
× ((t)−αu(t)) ∗ (f ′(t)u(t− a))

=
1

Γ(1− α)
× ((t)−αu(t− a)) ∗ ((f(t)u(t− a))′ − f(a)δ(t− a))

=
1

Γ(1− α)
× ((t)−αu(t)) ∗ ((f(t)− f(a))u(t− a))′

=
1

Γ(1− α)
× d

dt
((t)−αu(t)) ∗ ((f(t)− f(a))u(t− a))

=
1

Γ(1− α)

d

dt
((t)−αu(t)) ∗ (f(t)u(t− a))− ((t)−αu(t)) ∗ (f(a)u(t− a)))

=
1

Γ(1− α)
(

d

dt
((t)−αu(t)) ∗ (f(t)u(t− a))− f(a)((t− a)−αδ(t− a))

(2)

and∫ t

a

C
aD

α
τ f(τ) dτ =

1

Γ(1− α)
× ((t)−αu(t− a)) ∗ ((f(t)u(t− a))− f(a)u(t− a)) (3)

where u(t) is the unit step function and the symbol ∗ represents convolution operation.

Lemma 1. (Aquila-Camacho et al. [3]) Let x(t) = [x1(t), . . . , xn(t)]T ∈ Rn be a
differentiable vector-value function. Then for any time instant t ≥ t0

C
aD

α
t [xT (t)Px(t)] ≤ xT (t)PCa D

α
t x(t) + C

aD
α
t (xT (t))Px(t) (4)

where α ∈ (0, 1] and P ∈ Rn×n is a symmetric positive definite matrix.

2.2. Fractional complex networks

A. Notations
Throughout this paper, Rn shall denote the n−dimensional Euclidean space and Rn×n
denotes the set of all n×n real matrices. For a real matrix A, let AT be its transpose and
As = (A + AT )/2 be its symmetric part. Let In be the n-dimensional identity matrix.
For symmetric matrix A, the notation A > 0 (respectively, < 0) shall mean that A is
a positive-definite (respectively, negative-definite) matrix. The symbol ⊗ denotes the
Kronecker product.
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Lemma 2. (Tang et al. [19]) If matrix Q ∈ Rn×n satisfies qij = qji and qii =
−
∑n
j=1,i6=j qij , i, j = 1, 2, . . . , n, then

uTQ⊗ Pv =

n∑
j=1

n∑
i=1

uiqijPvj = −
∑
j>i

qij(ui − uj)P (vi − vj)

for all matrices P ∈ Rn×n and vectors u = [uT1 , u
T
2 , . . . , u

T
n ]T and v = [vT1 , v

T
2 , . . . , v

T
n ]T ,

where ui = [ui1, ui2, . . . , uim]T and vi = [vi1, vi2, . . . , vim]T .

Lemma 3. [29] For matrices A,B,C and D with appropriate dimensions, one has

(1) (A⊗B)T = AT ⊗BT

(2) (A+B)⊗ C = A⊗ C +B ⊗ C
(3) (A⊗B)(C ⊗D) = (AC)⊗ (BD).

Lemma 4. [12] For matrices X and Y with appropriate dimensions, the following
inequality holds for any η > 0

XTY + Y TX ≤ ηXTX +
1

η
Y TY. (5)

B. Fractional complex networks model
Consider a complex network consisting of N coupled nodes with delays, in which each
node is an n-dimensional fractional chaotic dynamical subsystem expressed as:

C
t0D

α
t xi(t) =f(xi(t)) +

N∑
j=1,i6=j

c1aij(g(xj(t))− g(xi(t)))

+

N∑
j=1,i6=j

c2bij(h(xj(t− τ))− h(xi(t− τ)))

(6)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ Rn is the state vector of the ith node of
the network at time t, f(xi(t)) = [f1(xi(t)), f2(xi(t)), . . . , fn(xi(t))]

T is a continuous
vector-valued function, A = [aij ] ∈ RN×N and B = [bij ] ∈ RN×N are the outer coupling
matrices of the network at time t and t − τ respectively such that aij ≥ 0 for aii =

−
∑N
j=1,j 6=i aij , bii = −

∑N
j=1,j 6=i bij , c1 and c2 represent the coupling strength, τ is

the delay time and the nonlinear coupling functions g(·) : Rn → Rn and h(·) : Rn →
Rn are continuous and of the form g(xi(t)) = [g1(xi(t)), g2(xi(t)), . . . , gn(xi(t))]

T and
h(xi(t− τ)) = [h1(xi1(t− τ)), h2(xi2(t− τ)), . . . , hn(xin(t− τ))]T .

The objective of this paper is to control fractional chaotic dynamical network (6) so
that it stays in the trajectory s(t) ∈ Rn of the system

C
t0D

α
t s(t) = f(s(t)). (7)
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Define the synchronization errors as: ei(t) = xi(t)− s(t). From aii = −
∑N
j=1,j 6=i aij

and bii = −
∑N
j=1,j 6=i bij , we can get the synchronizing error system as:

C
t0D

α
t ei(t) = f(xi(t))− f(s(t)) +

N∑
j=1,i6=j

c1aij(g(xj(t))− g(xi(t)))

+

N∑
j=1,i6=j

c2bij(h(xj(t− τ))− h(xi(t− τ))) + ui(t)

= f(xi(t))− f(s(t)) +

N∑
j=1

c1aijg(xj(t))−
N∑
j=1

c1aijg(s(t))

+

N∑
j=1

c2bijh(xj(t− τ))−
N∑
j=1

c2bijh(s(t− τ))] + ui(t)

= f(xi(t))− f(s(t)) +

N∑
j=1

c1aij(g(xj(t))− g(s(t)))

+

N∑
j=1

c2bij(h(xj(t− τ))− h(s(t− τ))) + ui(t)

i = 1, 2, . . . , N,

where ui = ηiei(t) is the controller to be designed.
That is to say:

C
t0D

α
t e(t) = F (e(t)) + (c1A⊗ In)G(e(t)) + (c2B ⊗ In)H(e(t− τ)) + Θe(t) (8)

where F (e(t)) = [f(x1(t)), f(x2(t)), . . . , f(xN (t))]T − [f(s(t)), f(s(t)), . . . , f(s(t))]T ,
G(e(t)) = [g(x1(t)), g(x2(t)), . . . , g(xN (t))]T − [g(s(t)), g(s(t)), . . . , g(s(t))]T ,
H(e(t− τ)) = [h(x1(t− τ)), h(x2(t− τ)), . . . , h(xN (t− τ))]T − [h(s(t− τ)), h(s(t− τ)),
. . . , h(s(t− τ))]T and Θ = diag{η1(t), η2(t), . . . , ηN (t)} ⊗ In.

Definition 1. The complex network (6) is said to be realized synchronization if the
solution of system (2.2) is such that

N∑
i=1

lim
t→∞

‖ei(t)‖ = 0 (9)

for any initial conditions.

Assumption 1. For each function f(·), g(·), h(·) in network (6), there exist positive
definite matrixes Φ ∈ RN×N and P ∈ Rn×n, and positive constants l1, l2 and l3 such
that

(f(x(t))− f(y(t)))TΦ⊗ P (f(x(t))− f(y(t))) ≤ l1(x(t)− y(t))TΦ⊗ P (x(t)− y(t))
(10)
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(g(x(t))− g(y(t)))TΦ⊗ P (g(x(t))− g(y(t))) ≤ l2(x(t)− y(t))TΦ⊗ P (x(t)− y(t))
(11)

(h(x(t))− h(y(t)))TΦ⊗ P (h(x(t))− h(y(t))) ≤ l3(x(t)− y(t))TΦ⊗ P (x(t)− y(t)).
(12)

3. THE MAIN RESULT

In this section, we derive a sufficient condition for synchronizing fractional complex
networks with delay.

Theorem 1. The controlled fractional complex networks (6) globally asymptotically
synchronizes to the isolated node (7), if there exist positive definite matrixes Φ ∈ RN×N ,
P ∈ Rn×n , a semi positive definite matrix Q ∈ Rn×n and k1, k2, k3 ≥ 0, and then the
synchronizing errors network given by (2.2) satisfy:

ξT (t)


Ξ11 + Φ⊗Q Ξ12 Ξ13 0 Ξ15

∗ Ξ22 0 0 0
∗ ∗ Ξ33 0 0
∗ ∗ ∗ Ξ44 − Φ⊗Q Ξ45

∗ ∗ ∗ ∗ Ξ55

 ξ(t) ≤ 0 (13)

where
Ξ11 = Φ⊗ PΘ + l1k1Φ⊗ P + l2k2Φ⊗ P + l3k3Φ⊗ P ,
Ξ12 = 1

2Φ⊗ P ,
Ξ13 = 1

2c1(ΦA)⊗ P ,
Ξ15 = 1

2c2(ΦB)⊗ P ,
Ξ22 = −k1Φ⊗ P ,
Ξ33 = −k2Φ⊗ P ,
Ξ44 = k3l3Φ⊗ P ,
Ξ45 = − 1

2k3(ΦB)⊗ P ,
Ξ55 = −k3(ΦB)⊗ P ,
ξ(t) = [eT (t), FT (e(t)), GT (e(t)), eT (t− τ)), HT (e(t− τ))]T .

P r o o f . Construct a positive definite Lyapunov function V = V1 + V2,
where

V1 =
1

2
e(t)TΦ⊗ Pe(t) (14)

and

V2 =

∫ t

t−τ
e(ε)TΦ⊗Qe(ε) dε. (15)

Take fractional derivative of the function V1 and get:

C
t0D

α
t V1 ≤ e(t)TΦ⊗ PCt0D

α
t e(t)

= e(t)TΦ⊗ PF (e(t)) + e(t)T (Φ⊗ P )Θe(t) + c1e(t)
T (ΦA)⊗ PG(e(t))

+ c2e(t)
T (ΦB)⊗ PH(e(t− τ))
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≤ e(t)TΦ⊗ PF (e(t)) + e(t)T (Φ⊗ P )Θe(t)

+ k1(l1e(t)
TΦ⊗ Pe(t)− FT (e(t))Φ⊗ PF (e(t)))

+ c1e(t)
T (ΦA)⊗ PG(e(t)) + k2(l2e(t)

TΦ⊗ Pe(t)−GT (e(t))Φ⊗ PG(e(t)))

+ c2e(t)
T (ΦB)⊗ PH(e(t− τ))

+ k3(l3e(t− τ)TΦ⊗ Pe(t− τ)−HT (e(t− τ)Φ⊗ PH(e(t− τ))

= ξT (t)


Ξ11 Ξ12 Ξ13 0 Ξ15

∗ Ξ22 0 0 0
∗ ∗ Ξ33 0 0
∗ ∗ ∗ Ξ44 Ξ45

∗ ∗ ∗ ∗ Ξ55

 ξ(t)
(16)

Take integer derivative of the function V2 and get:

V̇2 = eT (t)Φ⊗Qe(t)− eT (t− τ)Φ⊗Qe(t− τ). (17)

From 16 and 17, we can get:

C
t0D

α
t V1 + V̇2 ≤ ξT (t)


Ξ11 + Φ⊗Q Ξ12 Ξ13 0 Ξ15

∗ Ξ22 0 0 0
∗ ∗ Ξ33 0 0
∗ ∗ ∗ Ξ44 − Φ⊗Q Ξ45

∗ ∗ ∗ ∗ Ξ55

 ξ(t) ≤ 0.

(18)
As CaD

α
t V1(t) + d

dtV2(t) ≤ 0, there must exist ξ(t) ≥ 0 satisfying:

C
aD

α
t V1 +

d

dt
V2(t) + ξ(t) = 0. (19)

As:
C
aD

α
t V1 =

1

Γ(1− α)

∫ ∞
−∞

((t− τ)−αu(t− τ)V ′1(τ)u(τ) dτ

=
1

Γ(1− α)
(tu(t))−α ∗ (V1(t)u(t))′ − 1

Γ(1− α)
V1(0)(tu(t))−α.

(20)

We can get:

0 ≤ 1

Γ(1− α)
(tu(t))−α ∗ (V1(t)u(t)) + V2(t)

= V2(0)−
∫ t

0

ξ(τ) +
1

Γ(1− α)
V1(0)(τu(τ))−αdτ.

(21)

As ξ(t) + 1
Γ(1−α)V1(0)(tu(t))−α ≥ 0 for any time t > 0, then

lim
t→∞

d

dt
(V2(0)−

∫ t

0

ξ(τ) +
1

Γ(1− α)
V1(0)(τu(τ))−αdτ)

= lim
t→∞

−ξ(t) +
1

Γ(1− α)
V1(0)(tu(t))−α

= lim
t→∞

−ξ(t) + 0 ≤ 0.

(22)
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We can draw a conclusion:

lim
t→∞

0 ≤ 1

Γ(1− α)
(tu(t))−α ∗ (V1(t)u(t)) + V2(t)

= lim
t→∞

V2(0)−
∫ t

0

ξ(τ) +
1

Γ(1− α)
V1(0)(τu(τ))−αdτ = 0

(23)

So, limt→∞ V1(t) = 0 and limt→∞ V2(t) = 0. The proof of Theorem 1 is completed. �

4. NUMERICAL EXAMPLES

In the section, we present an example to illustrate the main results obtained in this
paper. Consider the following fractional Lorenz system

C
aD

α
t x1(t) = a(x2(t)− x1(t)) + x4(t)

C
aD

α
t x2(t) = bx1(t)− x2(t)− x1(t)x3(t)

C
aD

α
t x3(t) = x1(t)x2(t)− cx3(t)

C
aD

α
t x4(t) = x2(t)x3(t)− x4(t)

(24)

where a = 10, b = 28, c = 8/3. With the initial value of the fractional chaotic system
x1(0) = 1, x2(0) = 2, x3(0) = 3, x4(0) = 4 the fractional order α = 0.995, the fractional
order chaotic system (24) exhibits the chaotic behavior as shown in Figure 1 [24].

−20 −15 −10 −5 0 5 10 15 20
−20

−10

0

10

20

x1

x
2

Fig. 1. The chaotic attractor x1 - x2 of fractional Lorenz

hyperchaotic system in system (24).

Let complex network be with 6 nodes and the coupling configuration matrixes are
given as follows, respectively.

A = (aij)6×6 =


−4 1 0 1 0 2
1 −6 2 1 1 1
0 2 −5 0 1 1
1 1 0 −4 1 1
0 1 1 1 −4 1
2 1 1 1 1 −6
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B = (bij)6×6 =


−2 1 0 1 0 0
1 −3 2 0 0 0
0 2 −5 0 1 2
1 0 0 −5 2 1
0 0 1 2 −4 1
0 0 2 1 1 −4

 .

Then, we can get the synchronizing error network:

C
t0D

α
t ei(t) = f(xi(t))− f(s(t)) +

N∑
j=1

c1aij(g(xj(t))− g(s(t)))

+

N∑
j=1

c2bij(h(xj(t− τ))− h(s(t− τ))) + ui(t)

i = 1, 2, . . . , N.

(25)

Define f(ei(t)) = f(xi(t))− f(s(t)) and the controller ui(t) = kiei(t) and we can get:

C
aD

α
t ei1(t) = 10ei2(t)− 10ei1(t) + ei4(t) + kiei1

C
aD

α
t ei2(t) = 28ei1(t)− ei2(t)− ei1(t)xi3(t)− xi1(t)ei3(t) + kiei2

C
aD

α
t ei3(t) = ei1(t)xi2(t) + xi1(t)ei2(t)− 8

3
ei3(t) + kiei3

C
aD

α
t ei4(t) = ei2(t)xi3(t) + xi2(t)ei3(t)− ei4(t) + kiei4.

(26)

Then,

eTi (t)f(ei(t)) = 38ei2(t)ei1(t) + (ki − 10)e2
i1(t)

+ ei4(t)ei1(t) + (ki − 1)e2
i2(t)− ei1(t)xi3(t)ei2(t)

ei1(t)xi2(t)ei3(t) + (ki −
8

3
)e2
i3(t) + ei2(t)xi3(t)ei4(t) + xi2(t)ei3(t)ei4(t) + (ki − 1)e2

i4(t)

≤ (9.5 + |0.5xi3(t)|+ 0.5|xi2(t)|+ ki)e
2
i1(t) + (18 + 0.5|xi3(t)|+ 0.5|xi3(t)|+ ki)e

2
i2(t)

+ (0.5|xi2(t)| − 8

3
+ 0.5|xi2(t)|+ ki)e

2
i3(t) + (0.5|xi3(t)|+ 0.5|xi2(t)| − 0.5 + ki)e

2
i4(t).

(27)
In formula (24), taking the initial condition as x0 = [0.1, 0.2, 0.4, 0.5]T , by numerical
simulation and removing the transient process, we can get:

eTi (t)f(ei(t))

eTi (t)ei(t)
≤ 63.724 + ki. (28)

According to theorem 1, when the delay time is taken as τ = 0.2, the error system is
gradually stable to zero according to theorem 1 when ki ≤ −87.724.

In numerical simulations, the Caputo fractional definition is adopted, the feedback
strength is selected as ki = −88(i = 1, 2, . . . , 6) and the initial conditions of the numerical
simulations are taken as :xi0 = [0.1i, 0.2i, 0.4i, 0.5i]T . As the delay time τ = 0.2, we add
the control input after t = 0.2. The synchronizing errors ei(t)(1 ≤ i ≤ 6) of the network
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with distributed delays is shown in Figure 2. It obviously that the synchronizing errors
is gradually stable to zero after t = 0.2. The simulation results show the correctness of
Theorem 1.

0 0.1 0.2 0.3 0.4 0.5
−2

0

2

4

6

8

t

ei1,i=1,2,...,N

ei2,i=1,2,...,N

ei3,i=1,2,...,N

ei4,i=1,2,...,N

Fig. 2. The synchronizing errors ei1, ei2, ei3 and ei4 with time t.

5. CONCLUSION

In this paper, we extend Lyapunov-Krasovskii theorem to delayed fractional systems by
constructing a novel positive function and the sufficient condition of synchronizing frac-
tional complex networks with delays is derived by taking the integer derivative instead
of fractional derivative of the positive function. The numerical example has been given
to show the effectiveness of the approach.
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