Kybernetika 55 no. 1, 134-151, 2019

H sliding mode control for Markov jump systems with interval time-varying delays and general transition probabilities

Lingchun Li, Guangming Zhang, Meiying Ou and Yujie WangDOI: 10.14736/kyb-2019-1-0134


This paper is devoted to design $H_\infty$ sliding mode controller for continuous-time Markov jump systems with interval time-varying delays and general transition probabilities. An integral sliding surface is constructed and its reachability is guaranteed via a sliding mode control law. Meanwhile, a linearisation strategy is applied to treat the nonlinearity induced by general transition probabilities. Using a separation method based on Finsler lemma to eliminate the coupling among Lyapunov variables and controller parameters, sufficient conditions for asymptotically stochastic stability of sliding mode dynamics are formulated in terms of linear matrix inequalities. Finally, a single-link robot arm system is simulated to demonstrate the effectiveness of the proposed method.


sliding mode control, Markov jump systems, time-varying delays


93E03, 93D09, 93D15


  1. M. Liu, P. Shi, L. Zhang and X. Zhao: Fault-tolerant control for nonlinear Markovian jump systems via proportional and derivative sliding mode observer technique. IEEE Transa. Circuits Systems I: Regular Papers 58 (2011), 2755-2764.   DOI:10.1109/tcsi.2011.2157734
  2. Y. Shi and B. Yu: Output feedback stabilization of networked control systems with random delays modeled by Markov chains. IEEE Trans. Automat. Control 54 (2009), 1668-1674.   DOI:10.1109/tac.2009.2020638
  3. D. D. Sworder and R. O. Rogers: An LQ-solution to a control problem associated with a solar thermal central receiver. EEE Trans. Automat. Control 28 (1983), 971-978.   DOI:10.1109/tac.1983.1103151
  4. P. Shi and F. Li: A survey on Markovian jump systems: Modeling and design. Int. J. Control Automat. Systems 13 (2015), 1-16.   DOI:10.1007/s12555-014-0576-4
  5. F. Li, P. Shi, C. C. Lim and L. Wu: Fault detection filtering for nonhomogeneous Markovian jump systems via fuzzy approach. IEEE Trans. Fuzzy Systems 26 (2018), 131-141.   DOI:10.1109/tfuzz.2016.2641022
  6. D. P. De Farias, J. C. Geromel, J. B. R. Do Val and O. L. V. Costa: Output feedback control of Markov jump linear systems in continuous-time. IEEE Trans. Automat. Control 45 (2000), 944-949.   DOI:10.1109/9.855557
  7. M. Shen, S. Yan, G. Zhang and J. H. Park: Finite-time $H_{\infty}$ static output control of Markov jump systems with an auxiliary approach. Appl. Math. Comput. 273 (2016), 553-561.   DOI:10.1016/j.amc.2015.10.038
  8. F. Li, P. Shi, C. C. Lim and L. Wu: Fault detection filtering for nonhomogeneous Markovian jump systems via fuzzy approach. IEEE Trans. Fuzzy Systems 26 (2016), 131-144.   DOI:10.1109/tfuzz.2016.2641022
  9. J. Xiong, J. Lam and H. Gao: On robust stabilization of Markovian jump systems with uncertain switching probabilities. Automatica 41 (2005), 897-903.   DOI:10.1016/j.automatica.2004.12.001
  10. Y. Kao, J. Xie and C. Wang: Stabilisation of mode-dependent singular Markovian jump systems with generally uncertain transition rates. Applied Mathematics and Computation 245 (2014), 243-254.   DOI:10.1016/j.amc.2014.06.064
  11. Y. Zhang, Y. Shi and P. Shi: Robust and non-fragile finite-time $H_{\infty}$ control for uncertain Markovian jump nonlinear systems. Appl. Math. Comput. 279 (2016), 125-138.   DOI:10.1016/j.amc.2016.01.012
  12. H. Wu and K. Cai: Mode-independent robust stabilization for uncertain Markovian jump nonlinear systems via fuzzy control. IEEE Trans. Syst., Man, Cybern.-Part B: Cybern. 36 (2006), 509-519.   DOI:10.1109/tsmcb.2005.862486
  13. L. Zhang and E. K. Boukas: Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities. Automatica 45 (2009), 463-468.   DOI:10.1016/j.automatica.2008.08.010
  14. L. Li, M. Shen, G. Zhang and S. Yan: $H_\infty$ control of Markov jump systems with time-varying delay and incomplete transition probabilities. Appl. Math. Comput. 301 (2017), 95-106.   DOI:10.1016/j.amc.2016.12.027
  15. L. Li and Q. Zhang: Finite-time $H_{\infty}$ control for singular Markovian jump systems with partly unknown transition rates. Appl. Math. Modell. 40 (2016), 302-314.   CrossRef
  16. M. Shen, G. Zhang, Y. Yuan and L. Mei: Non-fragile sampled data $ H_\infty $ filtering of general continuous Markov jump linear systems. Kybernetika 50 (2014), 580-595.   DOI:10.14736/kyb-2014-4-0580
  17. Y. Niu, W. Ho and X. Wang: Robust $ H_ {\infty} $ control for nonlinear stochastic systems: a sliding-mode approach. IEEE Trans. Automat. Control 53 (2008), 1695-1701.   DOI:10.1109/tac.2008.929376
  18. B, Chen, Y. Niu and Y. Zou: Adaptive sliding mode control for stochastic Markovian jumping systems with actuator degradation. Automatica 49 (2013), 1748-1754.   DOI:10.1016/j.automatica.2013.02.014
  19. S. Mobayen and F. Tchier: A new LMI-based robust finite-time sliding mode control strategy for a class of uncertain nonlinear systems. Kybernetika 51 (2015), 1035-1048.   DOI:10.14736/kyb-2015-6-1035
  20. P. Park: A delay-dependent stability criterion for systems with uncertain time-invariant delays. IEEE Trans. Automat. Control 44 (1999), 876-877.   DOI:10.1109/9.754838
  21. E. Fridman and U. Shaked: A descriptor system approach to $H_{\infty}$ control of linear time-delay systems. Automatica 47 (2002), 253-270.   DOI:10.1109/9.983353
  22. L. Wang, Y. Xie, Z. Wei and J Peng: Stability analysis and absolute synchronization of a three-unit delayed neural network. Kybernetika 51 (2015), 800-813.   DOI:10.14736/kyb-2015-5-0800
  23. A. Benabdallah: A separation principle for the stabilization of a class of time delay nonlinear systems. Kybernetika 51 (2015), 99-111.   DOI:10.14736/kyb-2015-1-0099
  24. R. Joice Nirmala and K. Balachandran: Relative controllability of nonlinear fractional delay integrodifferential systems with multiple delays in control. Kybernetika 53 (2017), 161-178.   DOI:10.14736/kyb-2017-1-0161
  25. Z. Ma, Y. Sun and H. Shi: Finite-time outer synchronization between two complex dynamical networks with time delay and noise perturbation. Kybernetika 52 (2016), 607-628.   DOI:10.14736/kyb-2016-4-0607
  26. L. Ma, M. Xu, R. Jia and H Ye: Exponential $ H_ {\infty} $ filter design for stochastic Markovian jump systems with both discrete and distributed time-varying delays. Kybernetika 50 (2014), 491-511.   DOI:10.14736/kyb-2014-4-0491
  27. C. Zhang, Y. He and L. Jiang: Stability analysis of systems with time-varying delay via relaxed integral inequalities. Systems Control Lett. 92 (2016), 52-61.   DOI:10.1016/j.sysconle.2016.03.002
  28. A. Seuret and F. Gouaisbaut: Wirtinger-based integral inequality: application to time-delay systems. Automatica 49 (2013), 2860-2866.   DOI:10.1016/j.automatica.2013.05.030
  29. P. Park, J. Ko and C. Jeong: Reciprocally convex approach to stability of systems with time-varying delays. Kybernetika 47 (2011), 235-238.   DOI:10.1016/j.automatica.2010.10.014
  30. Y. Kao, C. Wang, J. Xie, H. R. Karimi and W. Li: $H_{\infty}$ sliding mode control for uncertain neutral-type stochastic systems with Markovian jumping parameters. Inform. Sci. 304 (2015), 200-211.   CrossRef
  31. L. Wu, X. Su and P. Shi: Sliding mode control with bounded $L_{2}$ gain performance of Markovian jump singular time-delay systems. Automatica 48 (2012), 1929-1933.   DOI:10.1016/j.automatica.2012.05.064
  32. L. Ma, C. Wang, S. Ding and L. Dong: Integral sliding mode control for stochastic Markovian jump system with time-varying delay. Neurocomputing 179 (2016), 118-125.   DOI:10.1016/j.neucom.2015.11.071
  33. X. Su, X. Liu, P. Shi and Y. Song: Sliding mode control of hybrid switched systems via an event-triggered mechanism. Automatica 90 (2018), 294-303.   DOI:10.1016/j.automatica.2017.12.033
  34. R. Skelton, T. Iwazaki and K. Grigoriadis: A United Algebric Approach to Linear Control Design. Taylor and Francis Series in Systems and Control, 1998.   DOI:10.1002/rnc.694
  35. M. C. D Oliveira: A robust version of the elimination lemma. In: 16th Triennial World Congress (2005), Prague, pp. 310-314.   DOI:10.3182/20050703-6-cz-1902.00996