Kybernetika 55 no. 1, 1-11, 2019

Bayesian stopping rule in discrete parameter space with multiple local maxima

Miroslav KárnýDOI: 10.14736/kyb-2019-1-0001


The paper presents the stopping rule for random search for Bayesian model-structure estimation by maximising the likelihood function. The inspected maximisation uses random restarts to cope with local maxima in discrete space. The stopping rule, suitable for any maximisation of this type, exploits the probability of finding global maximum implied by the number of local maxima already found. It stops the search when this probability crosses a given threshold. The inspected case represents an important example of the search in a huge space of hypotheses so common in artificial intelligence, machine learning and computer science.


Bayesian estimation, global maximum, model structure


62L15, 62P99


  1. E. Artin: The Gamma Function. Holt, Rinehart, Winston, NY 1964.   CrossRef
  2. O. Barndorff-Nielsen: Information and Exponential Families in Statistical Theory. Wiley, NY 1978.   DOI:10.1002/9781118857281
  3. J. O. Berger: Statistical Decision Theory and {B}ayesian Analysis. Springer, NY 1985.   DOI:10.1007/978-1-4757-4286-2
  4. K. K. Bharti and P. K. Singh: Hybrid dimension reduction by integrating feature selection with feature extraction method for text clustering. Expert Systems Appl. 42 (2015), 3105-3114.   DOI:10.1016/j.eswa.2014.11.038
  5. T. S. Ferguson: Who solved the secretary problem? Statist. Sci. 4 (1989), 3, 282-289.   DOI:10.1214/ss/1177012493
  6. S. Foss, D. Korshunov and S. Zachary: An Introduction to Heavy-Tailed and Subexponential Distributions. Springer Science and Business Media, 2013.   DOI:10.1007/978-1-4614-7101-1
  7. R. Horst and H. Tuy: Global Optimization. Springer, 1996.   DOI:10.1007/978-3-662-02947-3
  8. M. Kárný: Algorithms for determining the model structure of a controlled system. Kybernetika 9 (1983), 2, 164-178.   CrossRef
  9. M. Kárný, J. Böhm, T. V. Guy, L. Jirsa, I. Nagy, P. Nedoma and L. Tesař: Optimized {B}ayesian Dynamic Advising: {T}heory and Algorithms. Springer, 2006.   DOI:10.1007/1-84628-254-3
  10. M. Kárný and R. Kulhavý: Structure determination of regression-type models for adaptive prediction and control. In: {B}ayesian Analysis of Time Series and Dynamic Models (J. C. Spall, ed.), Marcel Dekker, New York 1988.   CrossRef
  11. D. E. Knuth: The Art of Computer Programming, Sorting and Searching. Addison-Wesley, Reading 1973.   CrossRef
  12. D. J. Lizotte: Practical Bayesian Optimization. PhD Thesis, Edmonton, Alta 2008.   CrossRef
  13. J. Novovičová and A. Malík: Information-theoretic feature selection algorithms for text classification. In: Proc. of the IJCNN 2005, 16th International Joint Conference on Neural Networks, Montreal 2005, pp. 3272-3277.   DOI:10.1109/ijcnn.2005.1556452
  14. V. Peterka: Bayesian system identification. In: Trends and Progress in System Identification (P. Eykhoff, ed.), Pergamon Press, Oxford 1981, pp. 239-304.   DOI:10.1016/b978-0-08-025683-2.50013-2
  15. B. Shahriari, K. Swersky, Z. Wang, R. P. Adams and N. de Freitas: Taking the human out of the loop: A review of Bayesian optimization. Proc. IEEE 104 (2016), 1, 148-175.   DOI:10.1109/jproc.2015.2494218
  16. D. H. Wolpert and W. G. Macready: No free lunch theorems for optimization. IEEE Trans. Evolutionary Comput. 1 (1997), 1, 67-82.   DOI:10.1109/4235.585893
  17. A. Zellner: An Introduction to Bayesian Inference in Econometrics. J. Wiley, NY 1976.   CrossRef