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CHANCE CONSTRAINED OPTIMAL BEAM DESIGN:
CONVEX REFORMULATION AND PROBABILISTIC
ROBUST DESIGN

Jakub Kůdela and Pavel Popela

In this paper, we are concerned with a civil engineering application of optimization, namely
the optimal design of a loaded beam. The developed optimization model includes ODE-type
constraints and chance constraints. We use the finite element method (FEM) for the approxi-
mation of the ODE constraints. We derive a convex reformulation that transforms the problem
into a linear one and find its analytic solution. Afterwards, we impose chance constraints on
the stress and the deflection of the beam. These chance constraints are handled by a sampling
method (Probabilistic Robust Design).
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1. INTRODUCTION

Optimal design problems in engineering frequently lead to optimization problems involv-
ing differential equations. One of the classes of these problems is shape optimization
[11]. The particular shape optimization problem considered in this paper is the optimal
design of a beam (be it a fixed beam, a cantilever beam, etc.) subjected to some kind of
loading. Since shape optimization problems are inherently non-convex, most approaches
use metaheuristics such as genetic algorithms [13] or cuckoo search [9]. A closely related
field of topology optimization (where the size and shape of the structure can be ma-
nipulated) has developed a multitude of successful methods (level set, homogenization,
topological derivative, etc.), see [19].

This problem was previously also examined in [21] and [24], where the authors used
the finite element method (FEM) and the finite difference method to approximate the
ordinary differential equations (ODE) and solve the problem by nonlinear programming
techniques. Our paper shows that this beam design problem can be formulated as
a geometric programming problem, which can be further transformed into a convex
one, and thus can be efficiently solved (in comparison with the previous approaches).
Geometric programming problems with random coefficients (although without chance
constraints) were investigated in [8].
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An important issue regarding the design is its reliability (see [12]). In the context
of this paper the reliability of the design will mean that the constraints in the result-
ing optimization program should hold with high probability. Depending on how reliable
design is required, we can destinguish between the so-called chance constrained (or prob-
abilistic constrained) optimization problems (see, e. g. [20]) and the robust optimization
problems (see, e. g. [3]). Current approaches dealing with reliability constrained beam
design, such as [2] and [25] use simple (point) loads and Gaussian distribution of the
unknown parameters. In this paper we investigate the chance constrained beam de-
sign problem under more complicated random loads. We utilize the sampling approach
(called Probabilistic Robust Design) developed in [5, 6] and [7] to obtain a manageable
approximation of the chance constrained problem and use a scenario-deletion method
to compute a trade-off between the reliability of the design and the objective value.

2. PROBLEM FORMULATION

The problem is best described by Figure 1. We consider a fixed beam of length l with
rectangular cross-section that is subjected to a load hpxq (with the opposite direction
than the axis y), which is depicted in Figure 1a. The task is to find the optimal design,
in terms of the cross-section dimensions a and b (Figure 1b), that minimizes the weight
of the beam.

Naturally, given a load hpxq the beam will deflect and will be subjected to a bending
stress. The requirement for the design is that the maximum stress in the beam is less
then a material-specific constant, that ensures that the design is safe (we use the value
at which the material begins to deform plastically). The problem can be formulated as
the following ODE-constrained optimization program:

minimize
a,b,vpxq

ρabl (1)

subject to E
ab3

12

d4v

dx4
pxq “ hpxq, x P r0, ls, (2)

ˇ

ˇ

ˇ

ˇ

E
b

2

d2v

dx2
pxq

ˇ

ˇ

ˇ

ˇ

ď σM , x P r0, ls, (3)

vp0q “ 0,
dv

dx
p0q “ 0, vplq “ 0,

dv

dx
plq “ 0, (4)

aL ď a ď aU , bL ď b ď bU , (5)

(6)

where ρ is the density of the material, vpxq is the deflection of the beam (with the
opposite direction than the axis y) in a point x P r0, ls, E is the Young modulus, σM
is the maximum stress allowed, and aL, aU , bL, bU are the bounds on the cross-section
dimensions. The constraint (2) is the ODE that governs the deflection of the beam vpxq
given a specific load hpxq. The constraint (3) is the maximum allowed stress in the
beam. The constraint (4) defines the boundary conditions for the ODE (i. e. that we
have a fixed beam).
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a: The scheme of loaded beam.
b: Beam cross-
section.

Fig. 1. The problem geometry.

2.1. FEM problem approximation and solution

To tackle the problem (1) – (5) we use the FEM to approximate the ODE in (2) and (3).
Following [22] (p. 25 – 27), we divide the one-dimensional beam with the space dimension
x into N finite elements. We will denote the nodal value of the deflection vpxq in the node
xe as Ve “ vpxeq and the nodal value of its derivative in the same node as θe “

dv
dx pxeq.

The continuous variable v is approximated by ṽ in terms of nodal values as follows:

ṽe “ rN1N2N3N4srVe´1 θe´1 Ve θes
T

where N1, . . . , N4 are the following cubic shape functions:

N1 “
1

d3
pd3 ´ 3dx2 ` 2x3q, N2 “

1

d2
pd2x´ 2dx2 ` x3q,

N3 “
1

d3
p3dx2 ´ 2x3q, N4 “

1

d2
px3 ´ dx2q,

and d “ l
N is the length of one element. Substitution in (2) and application of Galerkin’s

method leads to four element equations:

ż d

0

»

—

—

–

N1

N2

N3

N4

fi

ffi

ffi

fl

E
ab3

12

d4

dx4
rN1N2N3N4s dx

»

—

—

–

Ve´1

θe´1

Ve
θe

fi

ffi

ffi

fl

“

ż d

0

»

—

—

–

N1

N2

N3

N4

fi

ffi

ffi

fl

hpxqdx.

To avoid differentiating four times, the following approximation is used:
ż

Ni
d4Nj
dx4

dx « ´

ż

dNi
dx

d3Nj
dx3

dx «

ż

d2Ni
dx2

d2Nj
dx2

dx.

The resulting system of linear equations has the form: E ab3

12 KV “ h, where V “

pV0, θ0, . . . , VN , θN q
T . The dimensions of the stiffness matrix K are p2N ` 2qˆp2N ` 2q

and its precise description can be found in [21] or [22]. The order of accuracy of the
finite element approximation is Opd2q.

Using this approximation of the deflection, the stress limit (3) on each element is
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given by

|E
b

2
rN

2

1 N
2

2 N
2

3 N
2

4 srVe´1 θe´1 Ve θes
T | ď σM .

This equation describing the stress in one specific node holds only for the end nodes
belonging to one element (the first one at x0 and the last one at xN ). Since the rest of
the nodes belongs to two adjacent elements, the stresses are not equal. Therefore, we
consider the average stress from this discontinuity:

E
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.

The system of inequalities that approximates (4) can be written as |E b
2CV| ď σM , where

the matrix C has dimensions pN`1qˆp2N`2q and its complete description can be found
in [21].

The FEM approximation of the problem (1) – (5) is then the following (using the
notation described above):

minimize
a,b,V

ρabl (7)

subject to E
ab3

12
KV “ h, (8)

|E
b

2
CV| ď σM , (9)

aL ď a ď aU , bL ď b ď bU . (10)

This problem has 2N variables (2N`2 in V of which 4 are fixed by boundary conditions,
and 2 design variables a and b), 2N ` 2 constraints and a box constraints on a and b,
and is non-convex, meaning that the certification of global optimality is computationally
very demanding.

The crucial realization (the one that is absent in [21] and [24]) is that the stiffness
matrix K is, by design, always invertible. In other words – given a, b and h, the equation
describing the deflection of the beam has a unique solution. Using this fact, we can
rewrite (8) as:

V “ 12

Eab3
K´1h, (11)

and (9) becomes:

|
6

ab2
CK´1h| “

1

ab2
|6CK´1h| ď σM . (12)

Let us denote as vM the maximum of |6CK´1h| over all the nodes of the FEM discretiza-
tion. Since σM is the same for all N ` 1 nodes, the N ` 1 inequalities (9) are equivalent
to a single inequality:

vM
ab2

ď σM . (13)

Utilizing these results and neglecting the constants ρ and l in the objective (7), we can
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reformulated the problem (7) – (10) as the following equivalent problem:

minimize
a,b

ab (14)

subject to
vM
ab2

ď σM , aL ď a ď aU , bL ď b ď bU , (15)

which is a geometric program, that can be transformed into a convex program (this
transformation is utilized in the following sections), with 2 variables, 1 constraint and
box constraints on variables. This problem has the following analytic solution (that is
derived in the Appendix A):

• if vM
aUb2U

ą σM , the problem is infeasible,

• if vM
aLb2L

ď σM , the solution is a˚ “ aL, b
˚ “ bL,

• if b “
b

vM
aLσM

is within the bounds, b˚ “ b, a˚ “ aL,

• else a “ vM
b2UσM

and a˚ “ a, b˚ “ bU .

This can be readily seen from the problem structure – a percentage increase in both a
and b has the same result on the objective function value. However, percentage increase
in b causes the left hand side of the inequality (13) to decrease faster than an equal
percentage increase in a, making it preferable to increase b as much as needed (i. e.
satisfying the inequality or the box constraint) before increasing a.

This result covers some of the numerical examinations done in [21] and [24] (which
were more focused on the illustration of the combination of FEM and stochastic pro-
gramming), without the need for using any optimization software (the only value one
has to compute numerically is vM ). Another advantage is that for the same geometry
(i. e. the same boundary conditions and number of elements) we can precompute the
FEM matrices C and K (or its appropriate factorization, see [22], Chapter 3) and use
them to quickly get optimal solution for different values of the load h.

2.2. Additional variable, constraints and convex reformulation

The structure of the problem allows us to consider the material constant E as a variable,
without destroying the convexity of the upcoming reformulation. This means we can
choose the quality of the material – higher E corresponding to better and more expensive
one. To be able to perform the convex reformulation, the dependence of the cost on the
material (per volume units) must be in the form cEp, with c ą 0, p P R. The objective
function then becomes cEpabl, where the constants c and l can be dropped during the
optimization.

An additional restriction on the solution involves the maximum absolute deflection
of the beam, which we denote as δM . In our FEM formulation, the vector V includes
both the deflection of the beam and its first derivative in each node of the division. The
condition on maximum deflection involves only the odd components in V:

|Vi| ď δM , i “ 1, 3, 5, . . . , 2N ` 1, (16)
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which is equivalent to a single inequality

max
i“1,3,5,...,2N`1

|Vi| ď δM , (17)

using (11) and denoting the maximum of the odd components of |12K´1h| as wM we
get

wM
Eab3

ď δM . (18)

The final constraint restricts the ratio between b and a to be less then the maximum
allowed rM .

Adding these constraints to (14) – (15), treating E as a design variable (within the
bounds 0 ă EL ď EU ) and changing the objective yields the following geometric program
(presented here in its standard form):

minimize
a,b,E

Epab (19)

subject to
vM
σM

a´1b´2 ď 1, (20)

wM
δM

E´1a´1b´3 ď 1, (21)

1

rM
ba´1 ď 1, (22)

aLa
´1 ď 1,

1

aU
a ď 1, bLb

´1 ď 1,
1

bU
b ď 1, ELE

´1 ď 1,
1

EU
E ď 1, (23)

where all the coefficients of the monomials in (19) – (23) are clearly positive, meaning
we can use the following transformation to derive an equivalent convex program. First,
we transform the variables: ya “ log a, yb “ log b, yE “ logE. Then, we can write every
monomial fpa, b, Eq “ caα1bα2Eα3 , where c ą 0, α1, α2, α3 P R in the form

fpa, b, Eq “ fpeya , eyb , eyE q “ ceα1yaeα2ybeα3yE “ eα1ya`α2yb`α3yE`log c,

turning a monomial function into the exponential of an affine function. Next we trans-
form the objective and the constraints, by taking the logarithm. Since every function
both in the objective and the constraints is a monomial, the transformation results in a
linear program:

minimize
ya,yb,yE

ya ` yb ` p yE (24)

subject to ´ ya ´ 2yb ` log vM ´ log σM ď 0, (25)

´ ya ´ 3yb ´ yE ` logwM ´ log δM ď 0, (26)

´ ya ` yb ´ log rM ď 0, (27)

log aL ď ya ď log aU , log bL ď yb ď log bU , logEL ď yE ď logEU . (28)

Remark 2.1. If the dependence of the material cost was
ř

iPI ciE
pi , ci ą 0, instead

of the simple cEp, there would still be a convex reformulation, but it would no longer
result in a linear program – there would be a term involving a logarithm of a sum of
exponentials in the objective (see [4], p. 160 – 162).
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3. RANDOM LOADS AND ROBUST SOLUTION

Next we investigate how the problem changes, when we introduce uncertainty. The
previous papers [21] and [24] dealt with the situation, when the Young modulus E was
random. In this paper, we assume that the randomness is in the load h. Instead of spec-
ifying the distribution of h by its cumulative distribution function or moment generating
function (that would allow us to use the Bernstein approximation, see [16]), we devised
a mechanism that produces random samples/scenarios. The use of scenarios is typical
for engineering applications because of the difficulty of identifying the probability distri-
bution. In this way, we imitate the situation when one does not know the distribution
of a certain random variable, but only has access to its realizations – in our experience
a much more common case. The sampling procedure is the following (Upa, bq denotes a

Fig. 2. A sample of 5 scenarios of the load hpxq.

uniform distribution):

0. Pick a random integer i between 1 and 4. Set hpxq “ 0.

1. Repeat i times: Generate a Bernoulli trial.

a) If 0, randomly pick 4 points 0 ď xa ď xb ď xc ď xd ď l and add to
hpxq a trapezoidal load hapxq between xa and xd. Height of the trapezoid is
hM „ Up0, 1q (Figure 2, scenarios 1 and 3).

b) If 1, sample hµ „ Up0, lq, hσ „ Up0, lq and add to hpxq the bell curve load:

hbpxq “
1

hσ
?

2π
e
´px´hµq

2

2h2σ .

2. Normalize the load hpxq: Pick H „ Up8000 N, 15000 Nq. Compute hi “
şl

0
hpxqdx,

and set hpxq “ H
hi
hpxq.
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This sampling procedure generates very real-life like loads as can be seen in Figure 2 (see
[15]). Because we transformed the original problem (1) – (5) into the problem (24) – (28),
we are much more interested in the values vM and wM resulting from the the different
load scenarios, and the actual loads hpxq are of little importance. In Figure 3 we see the
scatter plots and histograms of log vM and logwM using 2,000 scenarios of the load.

Fig. 3. Scatter plots and histograms of log vM and logwM , 2,000
scenarios.

The important question is how to approach the optimization model (24) – (28) when
some of its parameters, namely vM and wM , are random. One possibility is to use a so
called robust formulation (see [3]), i. e. to enforce that the constraints will hold for any
possible value of the random parameter. This results in the following formulation:

minimize
ya,yb,yE

ya ` yb ` p yE (29)

subject to ´ ya ´ 2yb ` log vM pξq ´ log σM ď 0, @ξ P Ξ, (30)

´ ya ´ 3yb ´ yE ` logwM pξq ´ log δM ď 0, @ξ P Ξ, (31)

´ ya ` yb ´ log rM ď 0, (32)

log aL ď ya ď log aU , log bL ď yb ď log bU , logEL ď yE ď logEU , (33)

where ξ is a random outcome from a sample space Ξ. This formulation is best suited
for situation, when the violation of the constraints would have disastrous consequences.

Given our scenario generation procedure, the robust formulation requires us to find
the scenarios that result in the highest values of vM and wM , and then optimize the
design with respect to these extreme values. The generation procedure allows for point
loads (setting all 4 point of the trapezoid into a single point) and the magnitude of the
point load is restricted to 15, 000 N by the normalization step. This allows us to find the
worst-case scenarios simply by using the formulas for the deflection and stress of a fixed
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beam under point load (these can be found in [17] and [23]). The analysis of the worst
case situations is carried out in the Appendix B.

4. CHANCE CONSTRAINTS AND PROBABILISTIC ROBUST DESIGN

The issue with the robust formulation is that it produces solutions that may be overly
conservative. A different approach is to allow the possibility, that some of the constraints
are violated, provided that the probability of violation is small. This corresponds to the
following chance constrained (or probabilistic constrained, see [20]) formulation of the
problem:

minimize
ya,yb,yE

ya ` yb ` p yE (34)

subject to P

ˆ

´ya ´ 2yb ` log vM pξq ´ log σM ď 0,
´ya ´ 3yb ´ yE ` logwM pξq ´ log δM ď 0

˙

ě 1´ ε, (35)

´ ya ` yb ´ log rM ď 0, (36)

log aL ď ya ď log aU , log bL ď yb ď log bU , logEL ď yE ď logEU , (37)

where 1´ε is the reliability level (or, alternatively, ε is the allowed violation probability).
Except for some special cases, the formulation (34) – (37) is hard to solve exactly (see
[20]).

One of the standard approaches (see [14]) to get an approximate solution is to fix
the reliability level ε, draw a large number S of scenarios and construct a mixed-integer
program, where for each scenario we have a binary decision variable, that corresponds
to that scenario being neglected or not. One of the constraints then requires that we
neglect less then εS scenarios. This method is clearly constrained by our ability to solve
large mixed-integer programs. One of the most recent of the multiple approaches for
solving the mixed-integer formulation was developed in [1].

In this paper we use a different approach based upon a method called Probabilistic
Robust Design (see [5, 6] and [7]). This approach requires only that the objective is a
convex functions and that the constraint functions are convex for any realization of ξ
– there are no other restrictions on the position of the random variable (such as only
right-hand side, linearly perturbed, etc.). The first part of the method is, again, to draw
a large number S of scenarios (denoted by s) and solve the following problem:

minimize
ya,yb,yE

ya ` yb ` p yE (38)

subject to ´ ya ´ 2yb ` log vM psq ´ log σM ď 0, s “ 1, . . . , S, (39)

´ ya ´ 3yb ´ yE ` logwM psq ´ log δM ď 0, s “ 1, . . . , S, (40)

´ ya ` yb ´ log rM ď 0, (41)

log aL ď ya ď log aU , log bL ď yb ď log bU , logEL ď yE ď logEU , (42)

where the 2N constraints (39) and (40) can be reduced to the following 2 constraints:

´ ya ´ 2yb `max
s
plog vM psqq ´ log σM ď 0, (43)

´ ya ´ 3yb ´ yE `max
s
plogwM psqq ´ log δM ď 0. (44)

For a high enough choice of S, the optimal solution to (38) – (44) yields a feasible solu-
tion for the chance constrained problem (29) – (33) with high probability (see [5]). As
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investigated in [18], the approach tends to be overly conservative (i. e., the feasibility
result holds, but we get a solution that is far from optimal for the chance constrained
problem).

The result regarding optimality for this approach was added in [6], where the idea
of discarding scenarios was developed. The main idea is, in addition to drawing S
scenarios, to determine a number k ă S, such that if we remove any k scenarios, the
optimal solution of this modified problem is, again, feasible for the chance constrained
problem with high probability. Furthermore, if the k scenarios are removed in an optimal
fashion (i. e. we select those whose removal decreases the optimal objective value the
most), there is a direct link between the optimal solution of the modified problem and the
optimal solution of the chance constrained problem (in the sense that we get closer the
more scenarios S we draw). Although this basically recovers the standard mixed-integer
approach discussed above, there is a crucial difference in how the scenario-removal is
achieved.

As discussed in [6], we can remove the k scenarios at once (the mixed-integer variant)
or we can use a greedy approach that removes just one scenario at a time. In our case,
the greedy approach makes perfect sense – there are only two scenarios (called support
scenarios in [7]) whose removal can decrease the optimal objective value of (38) – (44):

s1 “ argmax
s

plog vM psqq and s2 “ argmax
s

plogwM psqq.

To determine, which one of the two scenarios should be removed, we must solve two
additional linear problems (with s1 or s2 temporarily removed) and compare their op-
timal objective values – this is repeated k times. The individual optimization problems
have three variables and differ only in the value of one coefficient in (40) or (41) and as
such can be efficiently solved by warm-starting the optimization algorithm with the last
solution.

There is one different approach we will discuss, and that is the approximation of the
joint chance constraint (35) by individual chance constraints:

P p´ya ´ 2yb ` log vM pξq ´ log σM ď 0q ě 1´ ε1, (45)

P p´ya ´ 3yb ´ yE ` logwM pξq ´ log δM ď 0q ě 1´ ε2, (46)

which become

´ ya ´ 2yb ` Φ´1
v p1´ ε1q ´ log σM ď 0, (47)

´ ya ´ 3yb ´ yE ` Φ´1
w p1´ ε2q ´ log δM ď 0, (48)

where Φ´1
v and Φ´1

w are the (empirical) quantile functions of log vM pξq and logwM pξq,
and ε1, ε2 ą 0 are appropriately chosen. The problem then becomes:

minimize
ya,yb,yE

ya ` yb ` p yE (49)

subject to ´ ya ´ 2yb ` Φ´1
v p1´ ε1q ´ log σM ď 0, (50)

´ ya ´ 3yb ´ yE ` Φ´1
w p1´ ε2q ´ log δM ď 0, (51)

´ ya ` yb ´ log rM ď 0, (52)

log aL ď ya ď log aU , log bL ď yb ď log bU , logEL ď yE ď logEU . (53)

The choice of ε1 and ε2 is crucial – simply setting ε1 “ ε2 “ ε does not guarantee that
the reliability of the optimal solution of (49) – (53) is better than 1´ ε (see Figure 4). To
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obtain a safe approximation of the joint chance constraint (35), ε1 and ε2 must satisfy
(see [16]): ε1 ` ε2 ď ε, the simplest values being ε1 “ ε2 “

ε
2 .

5. NUMERICAL RESULTS

Our goal is to obtain a trade-off curve between the optimal objective value (the weight
of the beam) and the reliability of the design. To achieve this we used our scenarios
generation technique to draw two large sets of scenarios, where the first one contained
S1 and the second S2 scenarios. The first one was used for the optimization part (i. e.
solving (38) – (44)), the second one was used for the estimate of the reliability level ε.
The method proceeded as follows:

0. Generate the two sets of scenarios.
Repeat k times:

1. Solve (38) – (44) using the first set of scenarios. Obtain an optimal design.

2. Estimate the reliability of the design using the second set of scenarios: given a
design in the form of a, b and E, the constraints (39) – (40) either both hold, or
at least one of them does not hold. This outcome describes a binomial random
variable – compute its point estimate (a fraction of scenarios for which at least
on of the constraints did not hold) and its 99.9% confidence interval (using the
Clopper-Pearson interval).

3. Determine, which one of the two support scenarios to remove, and delete it from
the first set of scenarios. Return to 1.

The problem setting under the numerical investigation was as follows: the length of
the beam l “ 1 m, number of elements for the FEM formulation N “ 1,000, objective
coefficient p “ 1

2 , limits on the variables aL “ bL “ 10´2 m, aU “ bU “ 10´1 m,
EL “ 1.9¨105 MPa and EU “ 2.2¨105 MPa, maximum stress σM “ 120 MPa, maximum
deflection δM “ 5¨10´4 m, maximum ratio between the variables rM “ 5, number of
scenarios in the first set S1 “ 50,000, number of scenarios in the second set S2 “ 100,000,
number of scenarios to discard k “ 2,500.

The number of elements was chosen such that the length of one element d “ l
N “

10´3 m results in accuracy Op10´6q of the FEM approximation, which is roughly of
the same order as the accuracy of the optimization algorithm (termination criteria for
optimality), that was set to 10´7. The accuracy of the FEM was checked using the
analytic results in the Appendix B and using ANSYS (commercial engineering simula-
tion software). The FEM formulation was programmed and solved in MATLAB, the
optimization parts were computed using the CVX modeling system (see [10]).

In Figure 4 is depicted the trade-off between the reliability level ε and the optimal
objective value using the two approaches (38) – (44) and (49) – (53). In the first approach
we gradually remove the scenarios (upto k “ 2,500) – the computational time for each
iteration (two optimization problems, scenario removal) was around 0.4 s. In the second
approach (49) – (53) we vary the values of ε1 “ ε2 between 0 and 0.05 – the computational
time for each value was around 0.2 s. Furthermore, used a grid of 1,001 steps for ε1 and
ε2 between 0 and 0.05 and computed the results for all of these grid values (they fill the
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Fig. 4. The trade-off between reliability and optimal objective
value.

grey area in Figure 4), this took 45 hours. The robust solution was computed using the
results in the Appendix B (maximum point loads in 1

2 l and 1
3 l).

The comparison between the two methods favours the scenario-removal one (38) – (44)
over solving (49) – (53) with ε1 “ ε2, as it produces designs with better objective value.
For example, given the target (point estimate of) ε “ 0.01, the closest design produced by
(49) – (53) is for ε1 “ ε2 “ 0.008, with the objective value 1.776¨104, whereas the method
using (38) – (44) with k “ 568 deleted scenarios achieved the objective value 1.769¨104.
Moreover, the scenario-removal method (38) – (44) produced as good solutions as the
best ones using the grid values for ε1 and ε2 and solving (49) – (53).

The shape of the trade-off heavily depends on the distribution of hpxq (and, conse-
quently, on the distribution of vM and wM ). For the computation we used the scenario
generation described earlier, which was constructed ad hoc to demonstrate the method.
In a real situation (e. g., the one in [12]), the scenario generation will be swapped for
the particular problem-specific outcomes.

6. CONCLUSION

In this paper, we have presented new reformulation for the optimal beam design problem,
that serves as a test example for a larger set of problems solvable by similar techniques as
presented. This reformulation leads to a geometric program and as such can be solved
to global optimality. We then used this reformulation and extended the problem by
considering randomness in the load and presented the robust and chance constrained
problems. The chance constrained variant was handled by the Probabilistic Robust
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Design approach. For the given scenario generation procedure we computed the trade-
off between reliability and optimal objective value. Further research will be focused on
situations, when the cross-section of the beam is not rectangular and the reformulation
results in a possibly non-convex problem.

APPENDIX

A. The Analytic Solution

Here we derive the analytic solution for (14) – (15). We use the same convex reformula-
tion as in (34) – (37) to derive an equivalent linear program:

minimize
ya,yb

ya ` yb (54)

subject to ´ ya ´ 2yb ` log
vM
σM

ď 0, (55)

log aL ď ya ď log aU , log bL ď yb ď log bU . (56)

0. a) If log vM
σM

ď log aL ` 2 log bL, we are done, a˚ “ aL, b
˚ “ bL.

b) If log vM
σM

ą log aU ` 2 log bU , the problem is infeasible.

1. Otherwise, we need ya, yb : ya ` 2yb “ log vM
σM

, log aL ď ya ď log aU , log bL ď yb ď
log bU .

2. The KKT conditions:
ˆ

0
0

˙

“

ˆ

1
1

˙

` ν

ˆ

1
2

˙

` λ1

ˆ

´1
0

˙

` λ2

ˆ

0
´1

˙

` λ3

ˆ

1
0

˙

` λ4

ˆ

0
1

˙

, (57)

λ1plog aL ´ yaq “ 0, λ2plog bL ´ ybq “ 0, λ3pya ´ log aU q “ 0, λ4pyb ´ log bU q “ 0,
(58)

log aL ď ya ď log aU , log bL ď yb ď log bU , ya ` 2yb “ log
vM
σM

, λi ě 0, i “ 1, . . . , 4.

(59)

3. From complementary slackness condition (58) we get 16 different possible situa-
tions - corresponding to a or b being at the specific bounds. From the outset it is
clear that the variables cannot be at the lower and upper bound at the same time:
λ1 and λ3 cannot be both nonzero, the same holds for λ2 and λ4. This rules out
7 possibilities.

4. If λ1 “ 0, λ2 “ 0, λ3 “ 0, λ4 “ 0, from (57) we have

ν “ ´1, from the first row, ν “ ´
1

2
, from the second row,

which is not possible. This means that there cannot be an optimal solution such
that aL ă a˚ ă aU and bL ă b˚ ă bU at the same.

5. If λ1 ą 0, λ2 “ 0, λ3 “ 0, λ4 “ 0, i. e. a˚ “ aL, y
˚
a “ log aL. From (57) we have

ν “ ´
1

2
, λ1 “

1

2
ą 0,
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meaning that y˚b “
1
2 log vM

aLσM
and b˚ “ ey

˚
b “

b

vM
aLσM

is a possible solution,

provided bL ă b˚ ă bU .

6. If λ1 ą 0, λ2 ą 0, λ3 “ 0, λ4 “ 0, i. e. a˚ “ aL, b
˚ “ bL. This is the situation in 0.

a).

7. If λ1 ą 0, λ2 “ 0, λ3 “ 0, λ4 ą 0, i. e. a˚ “ aL, b
˚ “ bU . From (57) we have

λ1 “ 1` ν ą 0 ñ ν ą ´1, λ4 “ ´1´ 2ν ą 0 ñ ν ă ´
1

2
, which is possible.

This is the (arguably rare) situation when log aL ` 2 log bU “ log vM
σM

.

8. If λ1 “ 0, λ2 ą 0, λ3 “ 0, λ4 “ 0, i. e. a˚ “ aU . From (57) we have

ν “ ´1, λ2 “ ´1 ą 0, which is not possible.

9. If λ1 “ 0, λ2 ą 0, λ3 ą 0, λ4 “ 0, i. e. a˚ “ aU , b
˚ “ bL from (57) we have

λ3 “ ´1´ ν ą 0 ñ ν ă ´1, λ2 “ 1` 2ν ą 0 ñ ν ą ´
1

2
, which is not possible.

10. If λ1 “ 0, λ2 “ 0, λ3 ą 0, λ4 “ 0, i. e. b˚ “ bL. From (57) we have

ν “ ´
1

2
, λ3 “ ´

1

2
ą 0, which is not possible.

11. If λ1 “ 0, λ2 “ 0, λ3 ą 0, λ4 ą 0, i. e. a˚ “ aU , b
˚ “ bU . From (57) we have

λ3 “ ´1´ ν ą 0 ñ ν ă ´1, λ4 “ ´1´ 2ν ą 0 ñ ν ă ´
1

2
, which is possible.

This is the situation when log aU ` 2 log bU “ log vM
σM

.

12. If λ1 “ 0, λ2 “ 0, λ3 “ 0, λ4 ą 0, i. e. b˚ “ bU . From (57) we have

ν “ ´1, λ4 “ 1 ą 0, which is possible, y˚a “ log
vM
b2UσM

, a˚ “
vM
b2UσM

.

B. Worst case deflection and stress for point load

The following results are using the known formulas for deflection and bending moment
for fixed beam under a point load that can be found in [17] and [23]. The Figure 5

depicts the situation and provides a graphical description of the used notation.

Fig. 5. Point load.
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The maximum deflection of a fixed beam under point load is computed by the fol-
lowing formula (can be found in [23], p. 190):

δM “
2Hl3al

2
b

3EIp3la ` lbq2
, (60)

where la and lb correspond to the location of the point load (la` lb “ l), I is the moment

of inertia of the cross-section and E is the Young modulus. In our case I “ ab3

12 . If we
look at (60) as a function of the location la of the point load, its maximum occurs when
la “ lb “

l
2 l.

The maximum stress for each point x P r0, ls in the beam can be expressed in the

following terms: σM pxq “
Mpxq
I yM , where Mpxq is the bending moment and yM “ ˘ b

2 .
This allows us to use the formulas for maximum bending moment of fixed beam under
point load to find the critical points (the signs in the formulas are neglected, since the
constraint (3) restricts the absolute value of the stress). The bending moment of a beam
under point load changes linearly between the points 0, la, and l, so it suffices to compute
the bending moment in these three points. Given a point load at x “ la bending moment
at the ends of the beam (x “ 0 and x “ l) is

left end: Mpx “ 0q “
Hlal

2
b

l2
, right end: Mpx “ lq “

Hl2alb
l2

,

the maximum occurs when la “
1
3 l (or la “

2
3 l) resulting in Mpx “ 0 or x “ lq “ 4

27 lH.

The moment at the location of the point is Mpx “ laq “
2Hl2al

2
b

l3 , for which the
maximum occurs when la “ lb “

1
2 l, resulting in Mpx “ 1

2 lq “
1
8 lH. This means that

worst case occurs, when the point load is located in la “
1
3 l or la “

2
3 l.
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[19] G. I. N. Rozvany and T. Lewiński (eds.): CISM Courses and Lectures: Topology Opti-
mization in Structural and Continuum Mechanics. Springer-Verlag, Wien 2014.

[20] A. Ruszczynski and A. Shapiro (eds.): Handbooks in Operations Research and Manage-
ment Science: Stochastic Programming. Elsevier, Amsterdam 2003.
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