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MULTISTAGE MULTIVARIATE NESTED DISTANCE:
AN EMPIRICAL ANALYSIS

Sebastiano Vitali

Multistage stochastic optimization requires the definition and the generation of a discrete
stochastic tree that represents the evolution of the uncertain parameters in time and space. The
dimension of the tree is the result of a trade-off between the adaptability to the original prob-
ability distribution and the computational tractability. Moreover, the discrete approximation
of a continuous random variable is not unique. The concept of the best discrete approximation
has been widely explored and many enhancements to adjust and fix a stochastic tree in order
to represent as well as possible the real distribution have been proposed. Yet, often, the same
generation algorithm can produce multiple trees to represent the random variable. Therefore,
the recent literature investigates the concept of distance between trees which are candidate to
be adopted as stochastic framework for the multistage model optimization. The contribution of
this paper is to compute the nested distance between a large set of multistage and multivariate
trees and, for a sample of basic financial problems, to empirically show the positive relation
between the tree distance and the distance of the corresponding optimal solutions, and between
the tree distance and the optimal objective values. Moreover, we compute a lower bound for
the Lipschitz constant that bounds the optimal value distance.

Keywords: multistage stochastic optimization, nested distance, portfolio models

Classification: 90C15, 60B05, 62P05

1. INTRODUCTION

Real world is complex and highly structured. Several approaches have been proposed to
solve decision problems under uncertainty. One of the most promising is stochastic opti-
mization that addresses the issue of finding an optimal solution today in order to reduce
the cost to adjust the solution after the realization of an uncertain event in the future,
see [1] and [15]. When the stochastic random variable and the optimal decision evolve
along a sequence of temporal stages, the framework becomes a multistage stochastic
optimization, see [17]. Financial problems require models that very well interface with
multistage stochastic optimization because they typically need to find an optimal port-
folio allocation in financial assets whose future return is uncertain, see [2, 3, 5, 6, 19].
Therefore, the implementation of a multistage stochastic model follows the characteri-
zation of the stochastic environment in which the problem is defined. Such environment
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Fig. 1. Example of stochastic tree evolving on three stages and

having branching 3-2-3.

consists in random parameters which are described by continuous distributions. For
computational reasons, the continuous distribution must be approximated with a dis-
crete representation that takes the name of stochastic tree. Figure 1 shows an example
of discrete multistage stochastic tree having a regular branching which means that each
node has the same number of children as the other nodes in the same stage. In particu-
lar, in the example the root node has three children, each of them has two children and
each of these has three children. We denote such type of branching as 3-2-3. Each path
that connects the root node with one of the node of the last stage is called scenario. The
tree in Figure 1 is composed of 18 scenarios.

Discrete stochastic trees generated under the same distributional assumptions can be
very different and therefore may produce different optimal objective values and different
solutions, see [8, 9] and [10] for different methods to obtain lower and upper bounds
based on finite scenario tree approximations. The purpose of this paper is to investigate
if there exists a concrete and empirical relation between the level of similarity of the
tree and the distance between the optimal objective values and the optimal solutions.
We highlight that such relation differs according to the implemented objective function.
To compute the similarity between the trees we adopt the nested distance proposed in
[11] and [12] and we empirically show that the Lipschitz constant theorized in [11] which
bounds the optimal objective distances represents a weak constraint in the sense that
most of the solutions are relatively far from the bound. The paper is structured as
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follows. In Section 2 we introduce three basic multistage portfolio selection models that
will be used in the further analysis. In Section 3 we recall the nested distance algorithm
and its extension for the case of multivariate multistage stochastic tree. Then, in Section
4 we propose a selection of stochastic trees based on different generation assumptions and
in Section 5 we conduct an empirical analysis of the relation between nested distance,
optimal solution distance and optimal objective function distance. Section 7 summarizes
the results and propose future research extensions.

2. PORTFOLIO SELECTION MODELS

To produce results about the sensitivity of the solution distance with respect to the
tree distance, we propose three portfolio models very well known in the literature that
discusses stochastic optimization applied to financial problems, see e. g. [2, 5, 6, 19].
The three models are: the maximization of the average value-at-risk (AV@R), the max-
imization of the expected wealth and the minimization of the difference between the
expected wealth and its AV@R. In particular, the third model has recently been studied
in [6] and [4].

Given a set i = 1, . . . , N of assets, a sequence of stages tk = t0, . . . , T and a set of
scenarios s = 1, . . . , S having each probability ps, we can define the variables of the
optimization problem:

x+i,tk,s x−i,tk,s represent, respectively, how much we buy and how much we sell of asset
i at stage tk on scenario s,

hi,tk,s represents the holding in asset i at stage tk on scenario s,

wtk,s represents the total wealth of the portfolio at stage tk on scenario s,

zs is the slack variable for the AV@R formulation as proposed in [16].

The random variable is the rate of return ρi,tk,s that expresses the growing rate of asset i
realized in stage tk from stage tk−1 on scenario s. Other parameters are: the confidence
level α for the AV@R definition, the initial wealth w0, and the turnover coefficient θ.

max β1 ·

(
S∑

s=1

(wT,s · ps)

)
+ β2 ·

(
a− 1

α

S∑
s=1

(zs · ps)

)
(1)

s.t. −a+ wT,s + zs ≥ 0, zs ≥ 0, ∀s (2)

N∑
i=1

x+i,t0,s = w0, ∀s (3)

hi,t0,s = x+i,t0,s, ∀i,∀s (4)

hi,tk,s = hi,tk−1,s · (1 + ρi,tk,s) + x+i,tk,s − x
−
i,tk,s

, ∀i, t0 < tk ≤ T, ∀s (5)

wtk,s =

N∑
i=1

hi,tk,s, ∀tk,∀s (6)

N∑
i=1

x+i,tk,s =

N∑
i=1

x−i,tk,s, t0 < tk ≤ T, ∀s (7)
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x−i,tk,s ≤ hi,tk−1,s · (1 + ρi,tk,s), ∀i, t0 < tk ≤ T, ∀s (8)

N∑
i=1

x−i,tk,s ≤ θ · wtk,s, tk ≤ T, ∀s (9)

x+i,tk,s ≥ 0, x−i,tk,s ≥ 0, , ∀i,∀tk,∀s. (10)

Moreover, since we use a stochastic tree structure, we include the set of all the non-
anticipativity constraints on the decision variables. The three proposed models are
obtained by imposing respectively:

• β1 = 0 and β2 = 1: AV@R maximization,

• β1 = 1 and β2 = 0: expected wealth maximization,

• β1 = −1 and β2 = 1: expected wealth – AV@R minimization.

3. MULTISTAGE MULTIVARIATE NESTED DISTANCE FORMULATION

The nested distance between two multistage tree has been proposed in [11] and [12].
Further, it has been investigated in other papers, see e. g. [13, 18], and it has been
adopted also as approach for the stochastic tree generation, see [14] and [7]. The nested
distance proposed in [11] and [12] is consistent with different distance measures. In
this paper we use the Wasserstein distance as adopted in [12]1. Moreover, we need to
extend the proposed algorithm which is constructed for a univariate multistage tree to
a multivariate multistage tree since, instead of having only one random variable in each
node, we have the random vector of the asset returns. Then, let’s assume that we want to
compute the nested distance between stochastic tree T composed of nodes ns,tk (nodes

on scenario s and at stage tk) and stochastic tree T̃ composed of nodes ns̃,tk (nodes on
scenario s̃ and at stage tk). The nodal distance d(ns,tk , ns̃,tk) between node ns,tk and
node ns̃,tk cannot be computed as d(ns,tk , ns̃,tk) = |ξs,tk−ξs̃,tk | as in the case of univariate
stochastic variable ξ, but it can be computed as d(ns,tk , ns̃,tk) =

∥∥ξ̄s,tk − ξ̄s̃,tk∥∥1 where

ξ̄ is the multivariate stochastic vector of node ns,tk . In the model proposed in Section
2, the nodal vector ξ̄s,tk is the vector composed of the returns of all the assets ρi,tk,s in
stage tk and scenario s. Then, the distance d(si, s̃j) between scenario si and scenario

s̃j is computed as d(si, s̃j) =
∑T

tk=t0
d(nsi,tk , ns̃j ,tk). Once the distances between each

couple of scenarios are computed, we proceed backward as suggested by the algorithm
in [12] to define the tree distance d(T , T̃ ) between trees T and T̃ .

4. SCENARIO GENERATION

To produce a wide sensitivity analysis of the relation between the tree distances and
the solution distances, we create different sets of trees. As database, we consider the
historical series composed by 500 monthly returns of 10 financial indexes with a wide
variety of risk/return profiles. A first approach to generate the scenarios moves from
the estimation of the historical average and volatility of the returns. Then, we generate

1see Algorithm 2.1 in [12], p. 86.
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– with a Monte Carlo approach – the asset returns for each node of the tree under a
geometric Brownian motion (GBM) assumption. The asset returns of each node are
hereafter referred to as nodal coefficients. The Monte Carlo procedure is repeated for
each node of the tree to construct a multistage multivariate stochastic tree that evolves
from an initial time t0 along 4 stages, i. e. t = t0, t1, t2, t3, t4, and has a regular branching
5-5-2-2, i. e. 100 scenarios. According to the formulation of model (1)–(10), the return in
t0 is not relevant and then it is always set to zero. Such procedure is repeated to generate
a set of 100 trees which will be denoted as TGBM,0 = {T p

GBM,0, p = 1, . . . , 100}. Then,

we use again the Monte Carlo procedure to generate the set TGBM,1 = {T p
GBM,1, p =

1, . . . , 100} whose trees have in common the nodal coefficients of the first stage t1 and
differ from each other due to the nodal coefficients in stages t2, t3, t4. Similarly, we repeat
the procedure to generate 100 trees which have in common the nodal coefficients of the
first two stages and we obtain the set TGBM,2 = {T p

GBM,2, p = 1, . . . , 100}. Finally,

we generate the set TGBM,3 = {T p
GBM,3, p = 1, . . . , 100} of trees that have in common

the nodal coefficients of the first three stages and differ due to the last stage nodal
coefficients. To summarize:

1. ntk,s ∈ T
p
GBM,0, ñtk,s ∈ T

q
GBM,0, p 6= q ⇒ ntk,s 6= ñtk,s∀tk

2. ntk,s ∈ T
p
GBM,1, ñtk,s ∈ T

q
GBM,1, p 6= q ⇒ ntk,s 6= ñtk,s, tk = t2, t3, t4, ntk,s =

ñtk,s, tk = t1

3. ntk,s ∈ T
p
GBM,2, ñtk,s ∈ T

q
GBM,2, p 6= q ⇒ ntk,s 6= ñtk,s, tk = t3, t4, ntk,s =

ñtk,s, tk = t1, t2

4. ntk,s ∈ T
p
GBM,3, ñtk,s ∈ T

q
GBM,3, p 6= q ⇒ ntk,s 6= ñtk,s, tk = t4, ntk,s = ñtk,s, tk =

t1, t2, t3

To compare with an alternative scenario generation procedure, we adopt the historical
extraction proposed in [6] which requires neither any estimation nor any distribution
assumption on the returns and generates the trees thanks to a pseudo-random extraction
from the historical series. Such generation is able to keep the asset correlations, it
maintains the economic cycles and produces a wide representation in terms of “good”
and “bad” scenarios even in case of small branching. We run the algorithm 100 times
to obtain another set of trees denoted THIST = {T p

HIST , p = 1, . . . , 100}.

5. EMPIRICAL RESULTS

In this section, we discuss the results obtained by solving the portfolio selection model
(1) – (10) and fixing the model parameters: α =5%, w0 =100, θ =80% and, according
to the scenario generation procedure just described, ps = 1/S, i. e. the scenarios are
equiprobable. In particular, considering the three portfolio models and the five tree sets,
we investigate whether to an increasing tree distance corresponds an increasing objective
distance and an increasing solution distance. Therefore, we solve each portfolio selection
model for all trees of each tree set.

Denoting OT p the objective optimal value obtained with the tree T p, the objective
distance is defined as

d(OT p , OT q ) = |OT p −OT q | (11)
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while, denoting hT
p

t0,s = [hT
p

1,t0,s, . . . , h
T p

N,t0,s
]> the vector of the optimal portfolio allocation

in the root node – hereafter referred to as the here-and-now (H&N) allocation – obtained
with the tree T p, the solution distance is computed as

d(hT
p

t0,s,h
T q

t0,s) =
1

2
||hT

p

t0,s − hT
q

t0,s||1 (12)

where for x = [x1, . . . , xN ]>, ||x||1 =
∑N

i=1 |xi|. A solution distance equal to 1 corre-
sponds to two H&N portfolio allocations completely different from each other.

Finally, for each couple of trees of each tree set, we compute the tree distance, the
objective distance and the solution distance, and provide empirical evidences of the
relation between these distances.

In all the Figures of the current section, to a different tree set corresponds a different
color2 according to the following legend:

TGBM,0: purple asterisk

TGBM,1: yellow asterisk

TGBM,2: red asterisk

TGBM,3: blue asterisk

THIST : green dot

All the results have been computed with an algorithm coded and performed in MAT-
LAB R2013b, with an Intel(R) Core(TM) i7-4510U CPU 2.60GHz with 8.00GB RAM
running Windows 10. The portfolio models are fully linear programming problems.
Moreover, because of the purpose of the current work and to produce a large compari-
son, each single tree dimension is relatively small and then the solver CPLEX 12.1 takes
few seconds to find the optimal solution. To compute the distance between each couple
of trees the algorithm takes approximately 20 seconds.

5.1. AV@R portfolio model

The first analysis is conducted using the AV@R maximization model. Figure 2 reports
the relation between the tree distances and the objective distances. As expected, the
different tree sets produce tree distances that span in disjoint ranges, while the trees in
the same set have a substantially homogeneous distance. Therefore, the points turn out
to be naturally clustered according to the tree set. The only exception is represented
by the THIST set that overlaps with both the TGBM,0 and the TGBM,1. In particular,
the average values of the tree distance are 0.51 for TGBM,3, 1.00 for TGBM,2, 1.37 for
TGBM,1, 1.76 for TGBM,0 and 1.68 for THIST . Moving from a tree set to a tree set with
larger average tree distance, the cloud of points becomes more sparse and the objective
distance increases showing a positive relation between the two quantities. The box-plot
representation highlights further the increasing objective distance averages which are

2 For colored figures please see an electronic version:
https://www.kybernetika.cz/content/2018/6/1184

https://www.kybernetika.cz/content/2018/6/1184
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1.77 for TGBM,3, 2.29 for TGBM,2, 2.65 for TGBM,1, 3.16 for TGBM,0 and 3.94 for THIST .
We report in Table 1 a complete description of the distance statistics. In particular, for
THIST , we observe a smaller tree distance than TGBM,0, considering that both the tree
sets are generated with a fully random approach, i. e. not fixing the nodal values as in
the other cases. This behavior suggest that the historical scenario generation technique
represents the information in a more homogeneous way than a fully random generation.

Fig. 2. Objective distance in relation with the tree distance for the

AV@R maximization model and corresponding box-plot for each tree

set.

In Figure 3 we observe the relation between the tree distances and the solution dis-
tances. For all sets, the figure highlights an increasing solution distance average for
increasing tree distance average. In particular, the solution distance averages are 0.28
for TGBM,3, 0.47 for TGBM,2, 0.56 for TGBM,1, 0.80 for TGBM,0 and 0.81 for THIST . For
set TGBM,3 only very few couples of trees propose a completely different H&N alloca-
tion, while in the TGBM,0 case most of the solution distances are close to 1 which is the
maximum value reachable according to formula 12. This means that a relatively small
tree distance ensures a stability of the optimal allocation in the root node.

Figure 4 shows the relation between the objective distance and the solution distance.
The clouds of the points of the different tree sets are not distinct from each other as
in the previous figures. In general, we do not observe an increasing objective distance
for increasing solution distance. This means that a small solution distance does not
correspond necessarily to a small objective distance and vice versa. Figure 5 presents
the relations between the three analyzed distances for the AV@R case. We observe a
sort of cone departing from the origin that highlight the joint increasing movements on
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Fig. 3. Solution distance in relation with the tree distance for the

AV@R maximization model and corresponding box-plot for each tree

set.

Fig. 4. Objective distance in relation with the solution distance for

the AV@R maximization model.

the three dimensions. However, also from this perspective, the solution distance seems
not to influence the objective distance remarkably.
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Fig. 5. Relation between objective distance, solution distance and

tree distance for the AV@R maximization model.

5.2. Expected value portfolio model

The second portfolio model that we investigate is the expected wealth maximization.
In Figure 6 we show the relation between the tree distance and the objective distance.
With respect to the AV@R case, the objective distance averages increase more evidently
with the tree distance averages. The objective distance averages are 0.60 for TGBM,3,
1.09 for TGBM,2, 1.45 for TGBM,1, 3.00 for TGBM,0 and 2.88 for THIST . The box-plot
analysis strengthens this evidence both in terms of objective distance averages and in
terms of objective distance volatilities. In particular, both the THIST and TGBM,0 clouds
of points are much more sparse than the other sets and have some couples of trees with
remarkably high objective distance. In Figure 7 we report the solution distances. For
the cases TGBM,3 and TGBM,2, almost all the solution distances are zero underlying a
very similar allocation determined by the nodal coefficients of the first stages which are
common between the different trees. Moving to TGBM,1 we observe mainly three different
H&N allocations and, therefore, the solution distances are concentrated around 0, 0.2
and 0.4. The cases THIST and TGBM,0 also show four main groups of solution distances
(0, 0.2, 0.8 and 1) corresponding to four representative H&N allocations. This represents
a relevant difference in comparison with the AV@R maximization model for which we
obtained much more diversified H&N allocations. Therefore, the small diversification of
the H&N portfolio induced by the model is reflected by the objective distance measure.
Figure 8 presents the relation between solution distance and objective distance. As
observed in Figure 7, the solution distances are highly concentrated on a restricted set
of points. The TGBM,1, TGBM,2 and TGBM,3 are concentrated in the low-left side of the
graph, while the TGBM,0 case is much more sparse and the THIST is concentrated in
the top-right side. Therefore, in this case, very high values of objective distance are
reached only in correspondence of very different H&N allocations. Such observation is
confirmed by Figure 8 in which it is clear that the three distances increase together.
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Fig. 6. Objective distance in relation with the tree distance for the

expected wealth maximization model and corresponding box-plot for

each tree set.

Fig. 7. Objective distance in relation with the tree distance for the

expected wealth maximization model and corresponding box-plot for

each tree set.

In particular, all the distances of sets TGBM,3 and TGBM,2 are quite small, set TGBM,1

presents medium distances, while the distances of sets TGBM,0 and THIST are sparse
and reach high values.
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Fig. 8. Objective distance in relation with the solution distance for

the expected wealth maximization model.

Fig. 9. Relation between objective distance, solution distance and

tree distance for the expected wealth maximization model.

5.3. Expected value – AV@R portfolio model

The last portfolio model that we study is based on the minimization of the difference
between the expected value and the AV@R of the final wealth. In Figure 10 we report the
relation between the tree distances and the optimal objective distances. In this case, the
evidence that a larger tree distance corresponds to a larger objective value distance is less
strong than in the previous cases. The objective distance averages are 0.95 for TGBM,3,
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0.75 for TGBM,2, 1.00 for TGBM,1, 0.94 for TGBM,0 and 1.53 for THIST . Therefore,
increasing tree distance averages of the different tree sets are not followed by increasing
objective distance averages and to observe a comovement between the objective distance
and the tree distance is necessary to resort to other statistics: comparing the maximum
distance and the standard deviation we observe that both increase as the tree distance
average increases, see Table 1. Such result could be explained by the type of objective
function considered. For instance, considering two different trees, it can happen that
the averages of the wealths on the two trees are very far from each other as well as the
AV@Rs of the wealth distributions, still the respective differences turn out to be very
close. However, we consider important to remark that it makes sense to compare and
interpret the distances considering the peculiarities of the objective function not only
from a mathematical point of view, but also from a financial point of view.

Fig. 10. Objective distance in relation with the tree distance for the

expected wealth – AV@R minimization model and corresponding

box-plot for each tree set.

As confirmation of the previous comment, the anomaly highlighted in the case of
objective distance partially disappears in Figure 11 where we consider the solution dis-
tance. Indeed, the solution distance averages are 0.27 for TGBM,3, 0.46 for TGBM,2,
0.60 for TGBM,1, 0.75 for TGBM,0 and 0.78 for THIST . As in the AV@R model case,
the solutions are quite diversified from each other and do not polarize on a small set
of H&N allocations. Figure 12 presents the relation between the objective distance and
the solution distance. Here, the distribution of colors, compared to Figure 4, gives a
clearer vision of the position occupied by the different tree sets, even if still overlapping.
However, the objective distance does not seem to increase as the solution distance in-
creases. Figure 13 summarizes the three relations. As already remarked in Figure 10,
we do not observe much difference in terms of objective distance among the tree sets,
while we notice an increasing solution distance for increasing tree distance.
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Fig. 11. Solution distance in relation with the tree distance for the

expected wealth – AV@R minimization model and corresponding

box-plot for each tree set.

Fig. 12. Objective distance in relation with the solution distance for

the expected wealth – AV@R minimization model.

In Table 1 we report the statistics extracted from the box-plots of all the analyzed
cases. Thanks to this empirical study, it is possible to confirm that, on average, the
multivariate multistage nested distance between the trees generally comoves with the
objective distance and with the solution distance.
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Fig. 13. Relation between objective distance, solution distance and

tree distance for the expected wealth – AV@R minimization model.

6. LIPSCHITZ CONSTANT LOWER BOUND

As proved in [11], there exists a Lipschitz constant that multiplied by the tree nested
distance produces a bound for the objective distance. Empirically we can compute a
lower bound L for the true Lipschitz constant L as

L = max
p,q

d(OT p , OT q )

d(T p, T q)
(13)

for each tree set and for each model. The estimated values of L are reported in Table
2. However, we empirically show that, for each tree set, the objective distances are not
concentrated close to the point corresponding to the solution of (13) and then the lower
bound L of the Lipschitz constant does not produce a strict bound for the objective
distance.

7. CONCLUSION

To summarize, it has been empirically proven that there exists a positive relation be-
tween the multistage multivariate nested distance of the stochastic trees and the solution
distance, as well as a positive relation between the multistage multivariate nested dis-
tance of the stochastic trees and the objective distance. Moreover, we have shown that
the Lipschitz constant that bounds the objective distance is not a strict bound. Further
research could use the multivariate multistage nested distance to investigate the distance
between stochastic trees with a highly different number of nodes and to theoretically
define and empirically study a measure between stochastic trees with a different number
of stages.
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AV@R Expected value Expected-AV@R

Distances between: tree obj sol obj sol obj sol

TGBM,3

avg 0.51 1.77 0.28 0.60 0.00 0.95 0.27
std 0.02 1.27 0.17 0.44 0.00 0.69 0.19
min 0.44 0.00 0.00 0.00 0.00 0.00 0.00
max 0.62 6.80 1.00 2.38 0.01 3.54 1.00

TGBM,2

avg 1.00 2.29 0.47 1.09 0.00 0.75 0.46
std 0.04 1.66 0.22 0.79 0.00 0.63 0.21
min 0.88 0.00 0.00 0.00 0.00 0.00 0.01
max 1.12 9.11 1.00 4.91 0.01 3.54 1.00

TGBM,1

avg 1.37 2.65 0.56 1.45 0.10 1.00 0.60
std 0.05 2.11 0.29 1.08 0.10 0.88 0.24
min 1.21 0.00 0.00 0.00 0.00 0.00 0.00
max 1.58 13.03 1.00 6.09 0.40 4.70 1.00

TGBM,0

avg 1.76 3.16 0.80 3.00 0.85 0.94 0.75
std 0.10 2.56 0.22 2.32 0.28 0.90 0.22
min 1.49 0.00 0.00 0.00 0.00 0.00 0.00
max 2.33 18.06 1.00 13.82 1.00 5.64 1.00

THIST

avg 1.68 3.94 0.81 2.88 0.87 1.53 0.78
std 0.14 2.87 0.23 2.22 0.27 1.28 0.23
min 1.14 0.00 0.00 0.00 0.00 0.00 0.00
max 2.16 17.17 1.00 12.58 1.00 7.00 1.00

Tab. 1. Statistics of the computed distances for the different tree

sets and the different portfolio models: average (avg), standard

deviation (std), minimum (min) and maximum (max).

AV@R Expected value Expected-AV@R

TGBM,3 12.98 4.73 6.88
TGBM,2 9.20 5.26 3.47
TGBM,1 9.69 4.45 3.60
TGBM,0 9.25 6.59 3.12
THIST 9.09 7.82 3.93

Tab. 2. Lipschitz constant lower bound for the different tree sets and

the different portfolio models.
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