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CHANGE POINT DETECTION
IN VECTOR AUTOREGRESSION

Zuzana Prášková

In the paper a sequential monitoring scheme is proposed to detect instability of parameters in
a multivariate autoregressive process. The proposed monitoring procedure is based on the quasi-
likelihood scores and the quasi-maximum likelihood estimators of the respective parameters
computed from a training sample, and it is designed so that the sequential test has a small
probability of a false alarm and asymptotic power one as the size of the training sample is
sufficiently large. The asymptotic distribution of the detector statistic is established under
both the null hypothesis of no change as well as under the alternative that a change occurs.
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1. INTRODUCTION

Consider a general vector autoregression model of order p, VAR(p),

yt = c+ Φ1yt−1 + · · ·+ Φpyt−p + εt, t ∈ Z

where c is a d × 1 vector of constants, Φ1, . . . ,Φp are d × d matrices of autoregression
parameters, and εt is a d× 1 vector of errors with zero mean and a variance matrix that
is denoted by Ω.

It is well known that any d−dimensional VAR(p) process can be represented by a pd−
dimensional VAR(1) process (cf., e. g., Lütkepohl [16], p. 15) so in what follows, we will
focus on a d−dimensional VAR(1) process only, i. e., on the process yt = c+Φyt−1 +εt.
We introduce a new parametrization

yt − µ = Φ(yt−1 − µ) + Ω
1
2 et, t ∈ Z (1)

if we put et = Ω−
1
2 εt and c = (I −Φ)µ where I denotes the identity matrix.

The vector of parameters of the model is θ = (µ′,φ′,σ′)′ where µ = (I − Φ)−1c,
φ = vec Φ and σ = vech Ω. In this notation, all the vectors are columns and for a vector
x, its transpose is denoted by x′. Further, for a matrix A, vecA is a column vector that
stacks columns of the matrix A one on top of another one in the order from left to right,
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and for a squared symmetric matrix A, vechA is a column vector that stacks columns
of the lower triangular submatrix of A one on top of another one in the order from left
to right. In general, θ = θt. Obviously, for the d−dimensional process given in (1),
θ ∈ Rr, r = 3

2d(d+ 1).
In our next considerations we will deal with the sequential testing of the stability

of parameters θt. For this we assume that a training sample of stable observations
y1, . . . ,ym is available that serves to the calibration of the model, such that

θ1 = · · · = θm = θ0.

New observations are arriving one after another; after each new observation arrives, we
make a decision whether the condition of stability is violated (i. e., if a change occurs)
or not.

The problem of an instability of parameters θt is formulated as a sequential testing
problem, that is, we test the null hypothesis of no change

H0 : θt = θ0, t = 1, 2, . . . , (2)

against the alternative that a change occurs at time k∗ after the monitoring started,
i. e., at a break point m+ k∗,

HA : there exists k∗ ≥ 1,

θt = θ0 , 1 ≤ t ≤ m+ k∗,

θt = θ1 , m+ k∗ < t <∞, θ1 6= θ0,

(3)

where θ0,θ1, k
∗ = k∗m are unknown. The decision is based on a detector statistic con-

structed from all observations up to m + k, k = 1, 2, . . . , and when it exceeds a critical
level for the first time, we stop the monitoring. We utilize here the ideas that appeared
in the papers by Chu et al. [5] and Horváth et al. [10]. For a detector statistic Q(m, k)
that will be considered below we define the stopping time

τ(m) = inf{k ≥ 1, |Q(m, k)| ≥ cα q(m/k)} (4)

(=∞, if |Q(m, k)| < cα q(m/k) for all k ≥ 1)

if we consider an open-end procedure, or, in case of a closed-end procedure,

τm = inf{1 ≤ k ≤ bmT c : Q(k,m)/q(k/m) ≥ cα} (5)

where T > 0 is a positive number that can depend on m, T = Tm, and we assume that
mTm → ∞ as m → ∞. In our case we will assume T to be fixed. By bmT c we mean
the upper bound for the maximum number of possible observations, usually specified a
priori. The function q(t) is a boundary function and cα > 0 is a constant such that

lim
m→∞

P(τ(m) <∞|H0) = α

which means that α is the prescribed probability of false alarm, and

lim
m→∞

P(τ(m) <∞|HA) = 1
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which means that the test is consistent.

In the univariate case, monitoring in autoregressive sequences was considered by
Hušková and Koubková [12], who used CUSUM statistics based on weighted residuals
for monitoring changes in autoregression parameters. Gombay and Serban [8] considered
a procedure based on maximum likelihood scores and normally distributed errors, but
their test statistic depends on prescribed values of monitoring parameters. Lee et al.
[15] and Hlávka et al. [11] considered monitoring procedures based on empirical charac-
teristic functions. Carsoule and Frances [4] considered a procedure based on maximum
likelihood scores under normality assumptions and sketched some theoretical results.
Quasi-maximum likelihood based monitoring in random coefficient autoregression was
considered in Li et al. [14], Na et al. [17] and Prášková [18].

These on-line procedures differ from an alternative approach to the change point
analysis, called off-line or retrospective analysis. The off-line methods detect possible
changes when the observations are available before the analysis and the sample size is
known. The off-line methods in multivariate autoregression were studied under general
assumptions by Dvořák [7] where recent results in the field are also reviewed.

In this paper we consider monitoring in the multivariate autoregressive process (1)
based on the quasi-maximum likelihood score function and under general assumptions on
the errors. The conditional (given y0) log-likelihood function based on the observations
y1, . . . ,yk and normally distributed errors εt is

lk(θ) =− 1

2

k∑
t=1

[
(yt − µ−Φ(yt−1 − µ))′Ω−1(yt − µ−Φ(yt−1 − µ))

+ log det(Ω)
]

=

k∑
t=1

gt(θ) (6)

but in the sequel we will drop the assumption of normality. Then we have the gradient
vector

Gt(θ) =
(∂gt(θ)

∂µ

′
,
∂gt(θ)

∂φ

′
,
∂gt(θ)

∂σ

′)′

=


(I −Φ)′Ω−1εt

(I ⊗Ω−1)vec[εt(yt−1 − µ)′]

1
2D
′
d(Ω

−1 ⊗Ω−1)vec[εtε
′
t −Ω]

 (7)

where εt = yt−µ−Φ(yt−1−µ) and Dd is the d2× d(d+ 1)/2 duplication matrix, i. e.,
such matrix that Dd(vechΩ) = vec(Ω). The symbol ⊗ denotes the Kronecker product.

Let J(θ) be the matrix
J(θ) = EGt(θ)Gt(θ)′. (8)

We define the detector statistic

Q(m, k) =
1√
m
Ĵ
− 1

2

m

m+k∑
t=m+1

Gt(θ̂m) (9)
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where θ̂m is the quasi-maximum likelihood estimator (QMLE) of θ0 based on the his-
torical (training) observations, i. e., a solution of the equation

m∑
t=1

Gt(θ̂m) = 0 (10)

and Ĵm is an estimator of J(θ0) based on the historical observations.
Thus, we can expect that large values of Q(m, k) will detect a violation of the null

hypothesis and we reject H0 when |Q(m, k)| > cαq(k/m) for the first time, where q is a
boundary function, cα is the α−critical value of the test and | · | denotes the maximum
norm of a vector. In the sequel, we will consider the function

q(t) = (1 + t)

(
t

1 + t

)γ
, γ ∈ [0, 1/2) (11)

where γ is a constant that influences the ability of the test to detect a change, see, e. g.,
Horváth et al. [10] for details.

The paper is further organized as follows. In Section 2 we formulate the basic assump-
tions and main results. The proofs of the main theorems together with some auxiliary
assertions are given in Section 3. In Section 4 results of a short simulation study are
presented. In the proofs we will also use the Euclidean and Frobenius norm of a vector
or a matrix, respectively, which will be denoted by || · ||. All the used matrix operations
are taken from Lütkepohl [16].

2. ASSUMPTIONS AND MAIN RESULTS

First, let us introduce the following assumptions.

A1 det(I −Φz) 6= 0, |z| ≤ 1; Ω is positive definite;

A2 {et} is a (strictly) stationary end ergodic sequence of martingale differences with
respect to Ft = σ{es, s ≤ t};

A3 E ete
′
t|Ft−1 = I;

A4 E eitejtekt = 0 ∀(i, j, k),∀t or E eitejtekt|Ft−1 = K <∞ ∀(i, j, k);

A5 E ||et||4 <∞.

Alternatively, we can consider another set of conditions:

B1 det(I −Φz) 6= 0, |z| ≤ 1; Ω is positive definite;

B2 E et = 0, ∀t, E ete′s = Iδ(t− s) ∀t, s;

B3 E eitejtekt = 0 ∀t, ∀(i, j, k);

B4 supt E ||et||4+κ <∞ for some κ > 0;
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B5 {yt} is a stationary and ergodic strong mixing sequence with the mixing coefficient

αn = O(n−(1+ε)(1+ 4
κ )) for some ε > 0.

Remark 2.1. It is obvious that assumptions A1 and B1 are identical but we keep them
in both groups of conditions for completeness.

Notice also that under A1–A5, {Gt(θ)} is a strictly stationary and ergodic sequence
of martingale differences while under B1–B5, {Gt(θ)} is a strictly stationary and ergodic
strong mixing sequence with the mixing coefficient αn.

It is well known that under A1–A3 or B1–B2 and B5, {yt} is stationary with the
infinite moving average representation

yt = µ+

∞∑
j=0

Φjεt−j , t ∈ Z, (12)

and the series on the right-hand side of (12) is component-wise absolutely summable
(see, e. g., Hamilton [9], Chapter 10.1). Then, using A1–A5 or B1–B5, we get from (7)
and (8) that J(θ) is regular and

J(θ) =

J11(θ) 0 0
0 J22(θ) 0
0 0 J33(θ)


where

J11(θ) = (I −Φ)′Ω−1(I −Φ),

J22(θ) = Γy(0)⊗Ω−1, Γy(0) = E (y1 − µ)(y1 − µ)′,

J33(θ) =
1

4
D′d(Ω

−1 ⊗Ω−1)V (Ω−1 ⊗Ω−1)Dd,

V = Var (vec[ε1ε
′
1 −Ω]).

Further, we will need some assumptions on the parameter space.

C1 θ ∈ Θ where Θ is a compact subset of Rr ;

C2 θ0 is an interior point of Θ.

In addition, we will also assume that

C3 infθ∈Θ |det Ω(θ)| ≥ δ > 0.

Asymptotic properties of the QMLE are summarized in the following lemma.

Lemma 2.2. Let {yt} be the sequence defined in (1) with the parameter θ0 which is

unknown. Let θ̂m be the QMLE of θ0 based on y0, . . . ,ym. Then, under A1–A5 or

B1–B5, together with C1–C3, as m→∞, θ̂m → θ0 a.s. and

√
m(θ̂m − θ0)

d−→ N (0, I(θ0)−1J(θ0)I(θ0)−1) (13)

where J(θ0) is defined by (8) and I(θ0) is the information matrix.
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P r o o f . It follows from Theorem 1 in Boubacar Mainassara and Francq [3]. �

The QMLE of θ0 based on the observations y0, . . . ,ym can be computed from the
following relations:

µ̂m = (I − Φ̂m)−1(ym − Φ̂mym(1)),

Φ̂m =
m∑
t=1

(yt − µ̂m)(yt−1 − µ̂m)′

[
m∑
t=1

(yt−1 − µ̂m)(yt−1 − µ̂m)′

]−1

,

Ω̂m =
1

m

m∑
t=1

(yt − µ̂m − Φ̂m(yt−1 − µ̂m))(yt − µ̂m − Φ̂m(yt−1 − µ̂m))′

=
1

m

m∑
t=1

ε̂tε̂
′
t,

V̂ m =
1

m

m∑
t=1

vec(ε̂tε̂
′
t)(vec(ε̂tε̂

′
t))
′ − vecΩ̂m(vecΩ̂m)′,

Γ̂y(0) =
1

m

m∑
t=1

(yt − µ̂m)(yt − µ̂m)′

where we have denoted ym =
∑m
t=1 yt/m and ym(1) =

∑m
t=1 yt−1/m, ε̂t = yt − µ̂m −

Φ̂m(yt−1 − µ̂m).

Now we can formulate the basic result concerning the asymptotic distribution of the
test statistic under H0.

Theorem 2.3. Let assumptions A1–A5 or B1–B5, together with C1–C3 be satisfied.
Let Qmk be the statistic defined by (9) and let Ĵm be an estimator of J(θ0) such that

Ĵm − J(θ0) = op(1) as m→∞. Then, under H0, as m→∞,

P

(
sup

1≤k<∞

∣∣∣∣Q(m, k)

q(m/k)

∣∣∣∣ ≤ x) −→ P

(
sup

0≤t≤1

∣∣∣∣W (t)

tγ

∣∣∣∣ ≤ x) (14)

P

(
sup

1≤k≤bmTc

∣∣∣∣Q(m, k)

q(m/k)

∣∣∣∣ ≤ x
)
−→ P

(
sup

0≤t≤T/(T+1)

∣∣∣∣W (t)

tγ

∣∣∣∣ ≤ x
)

(15)

where {W (t), t ∈ [0, 1]} is an r-dimensional standard Wiener process on [0, 1], r =
3
2d(d+ 1).

P r o o f . The proof is postponed to the next section. �

Next, we will study the asymptotic distribution of the test statistic under the alter-
native hypothesis HA.
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Let us consider the process

yt = µ0 + Φ0(yt−1 − µ0) + Ω
1
2
0 et, t = 1, . . . ,m+ k∗ (16)

= µ1 + Φ1(yt−1 − µ1) + Ω
1
2
1 et, t = m+ k∗ + 1, . . . (17)

where (16) represents the process before a change, while (17) describes the behaviour of
the process after the change that occurred at time m+k∗. Parameters of the process after
the change are θ1 = (µ′1,φ

′
1,σ

′
1)′ with the same meaning as under H0. The error process

{et} is unchanged and we will assume that assumptions A1, B1, C1–C3 are satisfied for
µ1,Φ1 and Ω1, too. We will assume that θ0 6= θ1. Let {ỹt} be a process that solves

equation (17) for all t ∈ Z and {G̃t(θ)} be the corresponding gradient sequence on Θ.

Then, under our assumptions, {ỹt} and {G̃t(θ)} are stationary and ergodic, and in
general,

E G̃t(θ0) 6= 0. (18)

Theorem 2.4. Suppose that the alternative hypothesis (16) and (17) holds and assump-
tions A1–A5 or B1–B5, together with C1–C3 are satisfied for both the parameters θ0 and

θ1, θ0 6= θ1, and condition (18) holds. Suppose that k∗ = k∗m and lim supm→∞
k∗m
m < T.

Then, as m→∞,

sup
1≤k<∞

∣∣∣∣Q(m, k)

q(m/k)

∣∣∣∣ P−→∞ (19)

and

sup
1≤k≤bmTc

∣∣∣∣Q(m, k)

q(m/k)

∣∣∣∣ P−→∞. (20)

P r o o f . The proof is postponed to the next section. �

3. PROOFS

We start this section with the following lemma.

Lemma 3.1. Under A1–A5 or B1–B5, together with C1–C3,

E sup
θ∈Θ
||Gt(θ)Gt(θ)′|| <∞ ∀t (21)

and

E sup
θ∈Θ
||Ht(θ)|| <∞ ∀t (22)

where

Ht(θ) =
∂2gt(θ)

∂θ∂θ′
.
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P r o o f . We will prove (22), only, since the proof of (21) is analogous. Notice that
{Ht(θ)} is a strictly stationary and ergodic sequence and that Ht(θ) is a symmetric,

block-wise divided matrix with the blocks ∂2gt(θ)
∂µ∂µ′ , . . . ,

∂2gt(θ)
∂σ∂σ′ , thus we can consider each

block separately. Throughout the computations we will repeatedly use the relations
||A|| =

√
TrA′A and Tr(A⊗B) = TrATrB, respectively, where Tr denotes the trace of

a matrix and A,B are matrices of the respective sizes.

First, let us consider ∂2gt(θ)
∂µ∂µ′ = −(I − Φ)′Ω−1(I − Φ). Due to assumptions A1/B1

and C1–C3, ||(I −Φ)′Ω−1(I −Φ)|| is a continuous function on the compact set Θ, thus

E sup
θ∈Θ

∥∥∥∥∂2gt(θ)

∂µ∂µ′

∥∥∥∥ <∞. (23)

Next, let us consider

∂2gt(θ)

∂φ∂φ′
= −(yt−1 − µ)(yt−1 − µ)′ ⊗Ω−1.

Then,
||(yt−1 − µ)(yt−1 − µ)′ ⊗Ω−1|| = ||yt − µ||2||Ω

−1||.

Again, due to assumptions C1–C3, ||Ω−1|| is uniformly bounded on Θ. From the moving
average representation (12),

||yt−1 − µ|| ≤
∞∑
j=0

||Φj || · ||εt−1−j ||.

From the Jordan decomposition of Φ it follows that there exists a 0 < ρ < 1 such that

sup
θ∈Θ
||Φj || ≤ Cjdρj (24)

with a positive constant C (for details see, e. g., Dvořák [7], Theorem 2.1). Thus, com-
bining this result and the stationarity of {εt}, we can conclude that

E sup
θ∈Θ
||yt−1 − µ||2||Ω

−1|| ≤ C
∞∑
j=0

∞∑
k=0

jdkdρj+kE ||εt−1−j ||.||εt−1−k||

≤ C

 ∞∑
j=0

jdρj

2

E ||ε1||2 <∞. (25)

Concerning ∂2gt(θ)
∂σ∂σ′ , we have

∂2gt(θ)

∂σ∂σ′
= D′d

∂2gt(θ)

∂ω∂ω′
Dd,

∂2gt(θ)

∂ω∂ω′
=

1

2
(Ω−1 ⊗Ω−1)− 1

2
(Ω−1 ⊗Ω−1εtε

′
tΩ
−1)− 1

2
(Ω−1εtε

′
tΩ
−1 ⊗Ω−1) (26)
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where ω = vec(Ω), see Lütkepohl [16], p. 91. From here we get

sup
θ∈Θ
||Ω−1 ⊗Ω−1|| ≤ C,

||Ω−1 ⊗Ω−1εtε
′
tΩ
−1|| = ||Ω−1|| · ||Ω−1εtε

′
tΩ
−1|| ≤ ||Ω−1||3||εtε′t|| = ||Ω

−1||3||εt||2.
The last term in (26) is treated in the same way, hence

E sup
θ∈Θ

∥∥∥∥∂2gt(θ)

∂σ∂σ′

∥∥∥∥ <∞. (27)

The remaining blocks are (cf. Lütkepohl [16], p. 91)

∂2gt(θ)

∂µ∂φ′
= −(I −Φ)′Ω−1((yt−1 − µ)⊗ I)− (ε′tΩ

−1 ⊗ I)
∂vec(Φ′)

∂φ′
,

∂2gt(θ)

∂σ∂µ′
= −1

2
D′d(Ω

−1 ⊗Ω−1)[(I ⊗ εt)(I −Φ) + (εt ⊗ I)(I −Φ)],

∂2gt(θ)

∂σ∂φ′
= −1

2
D′d(Ω

−1 ⊗Ω−1)[(I ⊗ εt(yt−1 − µ)′)
∂vec(Φ′)

∂φ′
+ (εt(yt−1 − µ)′ ⊗ I)]

and can be treated analogously. �

Condition (22) implies the uniform strong law of large numbers for strictly stationary
and ergodic sequences of random elements {Ht} with values in the space of continuous
functions on Θ, i. e.,

sup
θ∈Θ

∥∥∥∥∥ 1

n

n∑
t=1

Ht(θ)− EH1(θ)

∥∥∥∥∥ a.s.−→ 0 (28)

as n → ∞, see, e. g., Straumann [19], Chapter 2.2. Result (28) holds in the maximum
norm, too.

Lemma 3.2. Under assumptions A1–A5 or B1–B5, together with C1–C3 and under
H0,

sup
1≤k<∞

1

m1/2q(k/m)

∣∣∣∣∣
m+k∑
i=m+1

Gi(θ̂m)−

(
m+k∑
i=m+1

Gi(θ0)− k

m

m∑
i=1

Gi(θ0)

)∣∣∣∣∣ = op(1).

(29)

P r o o f . Due to relation (10) we have

m+k∑
t=m+1

Gt(θ̂m)−

(
m+k∑
t=m+1

Gt(θ0)− k

m

m∑
t=1

Gt(θ0)

)

=

m+k∑
t=m+1

(Gt(θ̂m)−Gt(θ0))− k

m

m∑
t=1

(Gt(θ̂m)− (Gt(θ0)). (30)
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By using the mean value theorem for the jth component Gtj of the gradient vector
Gt(θ) we get

Gtj(θ̂m)−Gtj(θ0) = Htj(θ̃tj)(θ̂m − θ0) (31)

where Htj(θ) means the jth row of the matrix Ht(θ) and θ̃tj lies between θ0 and

θ̂m, |θ̃tj − θ0| ≤ |θ̂m − θ0|. Denoting the jth row of Z(θ) = EH1(θ) by Zj(θ), we can
further write

m+k∑
t=m+1

(Gtj(θ̂m)−Gtj(θ0))− k

m

m∑
t=1

(Gtj(θ̂m)− (Gtj(θ0))

=

[
m+k∑
t=m+1

(Htj(θ̃tj)−Zj(θ̃tj))−
k

m

m∑
t=1

(Htj(θ̃tj)−Zj(θ̃tj))

]
(θ̂m − θ0). (32)

Combining this last relation with the uniform strong law of large numbers (28) and the

fact that |θ̂m − θ0| = Op(m
−1/2), which follows from Lemma 1, we obtain

sup
1≤k<∞

1

m1/2q(k/m)

∣∣∣∣∣
m+k∑
i=m+1

Gi(θ̂m)−

(
m+k∑
i=m+1

Gi(θ0)− k

m

m∑
i=1

Gi(θ0)

)∣∣∣∣∣
≤ max

(
max

1≤k≤m

1

m1/2q(k/m)
km−

1
2 , sup
m+1≤k<∞

1

m1/2q(k/m)
km−

1
2

)
op(1) = op(1).

(33)

�

Lemma 3.3. Under assumptions A1–A5 or B1–B5, together with C1–C3 and under
H0, for every K > 0, as m→∞, 1√

m
J(θ0)−1/2

bmτc∑
t=1

Gt(θ0), τ ∈ [0,K]

 =⇒ {W I(τ), τ ∈ [0,K]} (34)

where {W I(τ)} is a multivariate Gaussian process such that EW I(s)W
′
I(t) = min(s, t)I

and =⇒ means the convergence in the Skorokhod space Dd[0,K].

P r o o f . Under assumptions A1–A5, the result follows from the functional central limit
theorem for multivariate martingale differences (see, e. g., Davidson [6], Theorem 27.17),
and under B1–B5 from the functional central limit theorem for strong mixing sequences
of stationary random vectors, see Kuelbs and Philipp [13], Theorem 4. �

It follows from the previous lemma that

1√
m

m∑
t=1

Gt(θ0) = Op(1). (35)
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P r o o f o f T h e o r e m 2.3.
From Lemma 3.2 it follows that

max
1≤k<∞

∣∣∣∣∣ J−1/2(θ0)√
mq(m/k)

m+k∑
t=m+1

Gt(θ̂m)

∣∣∣∣∣
= max

1≤k<∞

∣∣∣∣∣ J−1/2(θ0)√
mq(m/k)

(
m+k∑
t=m+1

Gt(θ0)− k

m

m∑
t=1

Gt(θ0)

)∣∣∣∣∣+ op(1). (36)

From (34) we have for any K > 0 and τ ∈ [0,K], as m→∞,

1√
m
J(θ0)−1/2

m+bmτc∑
t=m+1

Gt(θ0)− τ
m∑
t=1

Gt(θ0)

 =⇒W I(1+ τ)− (1+τ)W I(1). (37)

By using the Hájek–Rényi inequality for vector mixingales (cf. Bai and Perron [1]) and
proceeding as in Lemma 6.6 in Berkes et al. [2], we get

max
1≤k<∞

∣∣∣∣∣ J−1/2(θ0)√
mq(m/k)

m+k∑
t=m+1

Gt(θ̂m)

∣∣∣∣∣ D−→ sup
0<t<∞

∣∣∣∣W I(1 + t)− (1 + t)W I(1)

q(t)

∣∣∣∣
with q(t) defined by (11). It follows from the properties of the Wiener process that

W I(1+t)−(1+t)W I(1)
D
= (1+t)W (t/1 + t) with {W (t), t > 0} denoting the standard

multivariate Brownian motion. Replacing J(θ0) by Ĵm(θ̂m) we conclude the proof of the
first assertion after careful computations. The proof of the second assertion is similar.

�

Concerning the estimator of the matrix J(θ0), we can use the ergodic properties of
the sequence {Gt(θ)Gt(θ)′} and define

Ĵm(θ̂m) =
1

m

m∑
t=1

Gt(θ̂m)Gt(θ̂m)′.

The block-diagonal property of the matrix J(θ) enables to test a change either in all
parameters or in µ,Φ,Ω separately.

Another estimator of J(θ0) can be found in Boubacar Mainassara and Francq [3].

P r o o f o f T h e o r e m 2.4.
First, notice that for k∗ < k,

m+k∑
t=m+1

Gt(θ̂m) =

m+k∗∑
t=m+1

Gt(θ̂m) +

m+k∑
t=m+k∗+1

Gt(θ̂m) (38)

and the first sum satisfies the null hypothesis, thus, it suffices to study the second sum.
Repeating the recursion in (17), we get for j = 1, . . . , k − k∗

ym+k∗+j − µ1 =

j−1∑
ν=0

Φν
1εm+k∗+j−ν + Φj

1(ym+k∗ − µ1)
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where (ym+k∗ − µ1) = Op(1) since ym+k∗ satisfies (12) under H0 and we suppose
finite means. From here we can conclude that ym+k∗+j − µ1 can be approximated by

ỹm+k∗+j − µ1 which is a stationary solution of (17), with the remainder Op(Φ
j
1). The

gradient Gt(θ) for t = m + k∗ + j, j = 1, . . . , k − k∗, can be approximated by the

respective gradient G̃t(θ) in the same way. Combining this with (24) we get

m+k∑
t=m+k∗+1

Gt(θ) =

m+k∑
t=m+k∗+1

G̃t(θ) +Op(1).

Since G̃t(θ) satisfies the conditions of Lemma 3.1, we can apply the mean-value theorem

(component-wise) to G̃t(θ̂m) in a neighbourhood of θ0. For the j−th component of G̃t(θ)
we get

G̃tj(θ̂m)− G̃tj(θ0) = H̃tj(θtj)(θ̂m − θ0) (39)

where H̃tj(θ) means the jth row of the matrix H̃t(θ) defined as in Lemma 3.1 and θtj
lies between θ0 and θ̂m, |θtj − θ0| ≤ |θ̂m − θ0|. Next, utilizing the ergodicity and (18)
we have, as m→∞,

m+k∑
t=m+k∗+1

Gt(θ̂m) = (k − k∗)(E G̃t(θ0) +Op(m
−1/2)) +Op(1). (40)

Then, assuming that k∗ = O(m), as m→∞

sup
1≤k<∞

∣∣∣∣∣ J−1/2(θ0)√
mq(m/k)

m+k∑
t=m+k∗+1

Gt(θ̂m)

∣∣∣∣∣ ≥ sup
k:k=m+k∗

∣∣∣∣∣ J−1/2(θ0)√
mq(m/k)

(k − k∗)[E G̃t(θ0) + op(1)]

∣∣∣∣∣
= sup
k:k=m+k∗

(m
k

)γ (
1 +

m

k

)γ−1√
m
∣∣∣J−1/2(θ0)[E G̃t(θ0) + op(1)]

∣∣∣ P−→∞

which proves (19). The proof of (20) is analogous. �

4. SHORT SIMULATION STUDY

In this short simulation study we demonstrate the performance of the method. First,
let us recall that we reject the null hypothesis at the first time k for which |Q(m, k)| >
q(k/m)cα where cα is the critical value of sup0≤t≤1 |W r(t)|/tγ andW r is the standard r-
dimensional Wiener process. The distribution of the limiting process can be computed
by using Monte Carlo method or by bootstrap. In Horváth et al. [10], approximate
critical values of the limiting process are presented for r = 1 and various values of γ.

Since for the standard r-dimensional Wiener process with components Wj(t)

sup
0≤t≤1

|W r(t)|
tγ

= sup
0≤t≤1

max
1≤j≤r

|Wj(t)|
tγ

D
= max

1≤j≤r
sup

0≤t≤1

|Wj(t)|
tγ

,

we can determine the critical value cα of sup0≤t≤1 |W r(t)|/tγ to be the critical value

c
(r)
α of sup0≤t≤1

|Wj(t)|
tγ where α(r) = 1− (1−α)1/r. In case of the closed-end procedure,

we need to multiply this value by (T/T + 1)1/2−γ .
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We have simulated a 2-dimensional VAR(1) process (1) with µ0 = (0.5 0.5)′, and

Φ0 =

(
0.5 0.2
0.2 0.1

)
(41)

where the random errors were generated from the 2-dimensional normal distribution
with zero mean and variance matrix

Ω0 =

(
1 0.2

0.2 1

)
. (42)

We used historical data of size m = 100, 200, and 500, respectively, and monitoring
horizon mT for various choices of T . We considered a change in the mean only, here we
present the results with µ1 = (2.5, 0.5)′ based on 500 simulation runs. In Table 1, the
empirical sizes of the test are given. In general, they are quite conservative, especially
for the values of γ close to 0.5 which should be used when an early change is expected.
Here NR means that the null hypothesis was not rejected during the monitoring period.
It may be caused by the fact that the used asymptotic critical value is very strict and
the monitoring period is short with respect to computational complexity. In Tables 2–3,
basic summary statistics for the stopping time (minimum and maximum value, mean,
and 25% and 75% percentiles) are displayed for different values of k∗. It is seen that the
best results are obtained by using γ = 0.49 which is recommended in case we expect that
a break appears early after the beginning of the monitoring, while γ = 0 is designed for
late changes. Estimated densities of the stopping time in dependence on the historical
period are displayed in Figures 1–2.

m T γ = 0 γ = 0.25 γ = 0.49
200 2 0.02 0.01 NR

3 0.07 0.03 0.02
4 0.06 0.02 0.01
5 0.02 0.02 0.01

m T γ = 0 γ = 0.25 γ = 0.49
500 2 0.02 0.01 0.01

3 0.02 0.02 0.01
4 0.03 0.02 0.01
5 0.03 0.03 0.02

Tab. 1. Empirical level of test statistic, change in the mean,

nominal level α = 5%.
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Fig. 1. Densities of stopping times, k∗ = 5, γ = 0.49, T = 5,

m = 500 (solid), m = 200 (dash), m = 100 (dash-dot).
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Fig. 2. Densities of stopping times, k∗ = 50, γ = 0.49, T = 5,

m = 500 (solid), m = 200 (dash), m = 100 (dash-dot).
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γ T min 25% med 75% max mean
0 2 53.00 70.50 77.50 89.00 118.00 79.85

3 51.00 72.50 82.00 96.50 122.00 84.14
4 59.00 78.50 88.00 96.50 140.00 87.92
5 61.00 77.00 90.00 103.50 131.00 91.19

0.25 2 22.00 43.00 52.00 61.00 78.00 51.92
3 23.00 43.00 49.00 60.50 110.00 51.65
4 25.00 45.00 53.00 61.00 90.00 53.71
5 27.00 46.00 54.00 59.50 109.00 52.74

0.49 2 11.00 22.50 31.50 38.00 67.00 32.27
3 6.00 22.50 30.50 39.00 68.00 31.61
4 10.00 21.00 29.00 39.50 77.00 32.40
5 10.00 22.00 30.50 39.50 114.00 32.52

Tab. 2. distribution of stopping time, change in the mean,

m = 500, k∗ = 5.

γ T min 25% med 75% max mean
0 2 90.00 114.00 126.50 140.50 169.00 127.76

3 90.00 121.00 131.50 142.50 185.00 132.54
4 99.00 127.50 136.00 151.00 189.00 139.04
5 90.00 124.00 137.00 156.50 195.00 139.27

0.25 2 72.00 94.50 105.00 121.50 177.00 107.65
3 71.00 99.50 108.50 119.00 157.00 109.46
4 71.00 95.50 107.00 125.50 161.00 110.02
5 76.00 94.50 108.50 121.00 169.00 109.41

0.49 2 54.00 83.00 92.00 109.50 189.00 96.25
3 57.00 81.00 94.00 109.00 151.00 96.75
4 60.00 86.50 99.50 118.50 152.00 103.00
5 57.00 85.00 95.50 110.00 165.00 98.26

Tab. 3. distribution of stopping time, change in the mean,

m = 500, k∗ = 50.
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