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STRUCTURAL BREAKS IN DEPENDENT,
HETEROSCEDASTIC, AND EXTREMAL PANEL DATA
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New statistical procedures for a change in means problem within a very general panel data
structure are proposed. Unlike classical inference tools used for the changepoint problem in
the panel data framework, we allow for mutually dependent panels, unequal variances across
the panels, and possibly an extremely short follow up period. Two competitive ratio type
test statistics are introduced and their asymptotic properties are derived for a large number of
available panels. The proposed tests are proved to be consistent and their empirical properties
are investigated in an extensive simulation study. The suggested testing approaches are also
applied to a real data problem.
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1. INTRODUCTION

Panel data typically occurs in situations where some covariate of interest is repeatedly
measured over time simultaneously on multiple subjects—panels (for instance, a finan-
cial development of a set of companies, economic growth of some specific countries, or
some qualitative performance of various industrial businesses). For such data generat-
ing mechanisms, it is also common that sudden changes can occur in the panels and
especially the common breaks in means are wide spread phenomena. These changes are
caused by some known or unknown causes and the statistical models used for the panel
data estimation should have the ability to detect and estimate these structural breaks.
Another crucial task is to decide whether the changepoints are indeed present in the
underlying panels, or not.

From the statistical point of view, the panel data with changepoints are represented
as some multivariate data points across different subjects and they are usually assessed
using an ordinary least squares approach. Hypothetical changepoints are firstly detected,
they are tested for their significance, and then the overall model structure is estimated
using the knowledge about the existing changepoints. The available literature falls into
two main categories: in the first one, the authors consider the changepoint detection
problem within homogeneous panel data (see, for instance, [18, 19]) and, in the second
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category, they deal with the changepoint detection and estimation in heterogeneous
panel data [2, 9, 14]. In all these situations, however, the authors firstly need to detect
existing changepoints and, later, they can adopt some tests to decide whether these
structural breaks in the panels are statistically significant or not. Moreover, the panels
are considered to be independent in the aforementioned literature.

On the other hand, the changepoint detection problem is mostly considered for situ-
ations where the number of panels N P N and the number of observations in each panel
T P N are both sufficiently large—they are both supposed to tend to infinity (see [8, 4]).
For practical applications, however, it may not be possible to have a long follow up
period. Therefore, the changepoint estimation is also studied for the panel data, where
the number of observations in the panel is fixed and does not depend on N (for instance,
[1]) or it is even extremely small [16].

In this paper, we propose a statistical test where no changepoint estimation is needed
apriori and the panel data are assumed to form a very general structure: the pan-
els are allowed to be dependent with some common dependence factor; the panels are
heteroscedastic; the follow-up period is extremely short ; and different jump magnitudes
are possible across the panels accounting also for a situation that only some panels con-
tain the jump and the remaining ones do not. Finally, the observations within each
panel may preserve some form of dependence (for instance, an autoregresive process or
even GARCH sequence). We are specifically interested in testing the null hypothesis
that there is no common change in the means of such general panels: the no change-
point situation can be expressed as τ “ T and the corresponding alternative hypothesis
is that there is at least one panel i P t1, . . . , Nu with the jump in its mean, located at
τ ă T , with a nonzero magnitude δi ‰ 0.

The remainder of the paper is organized as follows: in the next section, the panel
data model is introduced and the main technical assumptions are provided. Statistical
tests based on two competitive ratio type test statistics, which may be used to decide
whether there is some common changepoint in the panel data structure or not, are
introduced in Section 3 and the asymptotic properties of the tests are derived. Finite
sample performance is investigated via a simulation study in Section 4 and a real data
application on insurance business data is conducted in Section 5. Concluding remarks
with some discussion are given in Section 6. Proofs are postponed to the Appendix.

2. CHANGEPOINT MODEL FOR PANEL DATA

The motivation for the model presented in this paper can be taken, for instance, from
a non-life insurance business, where multiple insurance companies in various countries
collect claim amounts paid by every insurance company each year. The data are rep-
resented by cumulative claim payments, which can be seen in terms of the panel data
structure, where the given insurance company i P t1, . . . , Nu provides the overall claim
amount Yi,t paid at the given time t P t1, . . . , T u (i. e., annual payments). The follow-up
period may be relatively very short (only 10–15 years) and it is not reasonable to assume
that T tends to infinity as it can be assumed for the number of available companies N .

The model which we assume for the scenario described above can be expressed as

Yi,t “ µi ` δiItt ą τu ` ζiξt ` σiεi,t, i “ 1, . . . , N, t “ 1, . . . , T ; (1)
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where µi P R are the panel specific mean parameters, τ P t1, . . . , T u is some common
changepoint time (same for all considered panels) with the corresponding jump magni-
tudes δi P R. Thus, if there is some common changepoint in model (1) present at time
τ ă T , then the corresponding panel specific means change from µi before the change
to µi ` δi after the change. This formulation also allows for a specific case where δi “ 0
meaning no jump is present for some given panel i. The panel specific variance scaling
parameters σi ą 0 mimic heteroscedasticity of the panels. The random factors ξt’s are
used to introduce a mutual dependence between individual panels where the level of
dependence is modeled by the magnitude of unknown loadings ζi P R.

Assumption A1. The vectors rεi,1, . . . , εi,T s
J and rξ1, . . . , ξT s

J exist on a probability
space pΩ,F ,Pq and are independent for i “ 1, . . . , N . Moreover, rεi,1, . . . , εi,T s

J are iid
for i “ 1, . . . , N with Eεi,t “ 0 and Var εi,t “ 1, having the autocorrelation function

ρt “ Corr pεi,s, εi,s`tq “ Cov pεi,s, εi,s`tq , @s P t1, . . . , T ´ tu,

which is independent of the time s, the cumulative autocorrelation function

rptq “ Var
t
ÿ

s“1

εi,s “
ÿ

|s|ăt

pt´ |s|qρs,

and the shifted cumulative correlation function

Rpt, vq “ Cov

˜

t
ÿ

s“1

εi,s,
v
ÿ

u“t`1

εi,u

¸

“

t
ÿ

s“1

v
ÿ

u“t`1

ρu´s, t ă v;

for all i “ 1, . . . , N and t, v “ 1, . . . , T .

The sequence tεi,tu
T
t“1 can be viewed as a part of a weakly stationary process. Note

that the dependent errors within each panel do not necessarily need to be linear pro-
cesses. For example, GARCH processes as error sequences are allowed as well. The
heteroscedastic random noise is modeled via the nuisance variance parameters σi’s. For
instance, they reflect the situation in actuarial practice, where bigger insurance com-
panies are expected to have higher variability in the total claim amounts paid. The
common factors ξt’s introduce dependence among the panels. They can be though of
outer drivers influencing the stochastic panel behavior in the common way. E.g., the
common factors can represent impact of the economic/political/social situation on the
market. On one hand, there are no moment conditions on ξt’s whatsoever. On the other
hand, if the common factors have finite variance, then the correlation between panel
observations at the same time t, for i ‰ j, becomes

Corr pYi,t, Yj,tq “
Cov pζiξt, ζjξtq

b

pσ2
i ` ζ

2
i Var ξtqpσ

2
j ` ζ

2
jVar ξtq

“
ζiζj

b

pσ2
i {Var ξt ` ζ

2
i qpσ

2
j {Var ξt ` ζ

2
j q

.

Hence, the sign and the magnitude of the panel factor loadings ζi and ζj affect the
correlation between panels i ‰ j. If there is ζi “ 0 for some panel i, then the panel is
independent of the remaining ones due to Assumption A1.
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3. TEST STATISTICS

Let us consider the model described in (1). For the practical utilization of the model,
we would like to construct a statistical test to decide whether there is some common
changepoint (with the corresponding jumps in the means located at the changepoint
time τ ă T ) across the given panels i “ 1, . . . , N , or not. The null hypothesis can be
formulated as

H0 : τ “ T (2)

against a general alternative

HA : τ ă T and Di P t1, . . . , Nu such that δi ‰ 0. (3)

There are various types of test statistics which can be employed to perform the test
given by the set of hypothesis in (2) and (3) (cumulative sum statistics, maximum type
statistics, Cramér-von Mises statistics, etc.). For some practical reasons, we propose
a ratio type statistic to test H0 against HA, because this type of statistic does not
require estimation of the nuisance parameters for the common variance (only mutual
ratios of σi’s are sufficient to be known or estimated). We aim to construct a valid
and completely data driven testing procedure without interfering any estimation and
plugging-in estimates instead of the nuisance parameters. For a more detailed surveys
on the ratio type test statistics, we refer to [5, 6, 7, 11], and [12]. Our particular panel
changepoint test statistics are defined as

RN pT q “ max
t“2,...,T´2

maxs“1,...,t

ˇ

ˇ

ˇ

řN
i“1

“
řs
r“1

`

Yi,r ´ sYi,t
˘‰

ˇ

ˇ

ˇ

maxs“t,...,T´1

ˇ

ˇ

ˇ

řN
i“1

”

řT
r“s`1

´

Yi,r ´ rYi,t

¯ı
ˇ

ˇ

ˇ

and

SN pT q “ max
t“2,...,T´2

řt
s“1

!

řN
i“1

“
řs
r“1

`

Yi,r ´ sYi,t
˘‰

)2

řT´1
s“t

!

řN
i“1

”

řT
r“s`1

´

Yi,r ´ rYi,t

¯ı)2 ,

where sYi,t is the average of the first t observations in panel i and rYi,t is the average of
the last T ´ t observations in panel i, i. e.,

sYi,t “
1

t

t
ÿ

s“1

Yi,s and rYi,t “
1

T ´ t

T
ÿ

s“t`1

Yi,s.

An alternative way for testing the change in panel means could be a usage of CUSUM
type statistics. For example, a maximum or minimum of a sum (not a ratio) of properly
standardized or modified sums from our test statistics RN pT q or SN pT q. The theory,
which follows, can be appropriately rewritten for such cases.

3.1. Asymptotic results

Prior to deriving asymptotic properties of the test statistics, we provide assumptions on
the relationship between the heterogeneous volatility and the mutual dependence of the
panels.
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Assumption A2. For some χ ą 0,

lim
NÑ8

´

řN
i“1 σ

2`χ
i

¯2

´

řN
i“1 σ

2
i

¯2`χ “ 0

and E|ε1,t|
2`χ ă 8, for t P t1, . . . , T u.

Assumption A3.

lim
NÑ8

´

řN
i“1 ζi

¯2

řN
i“1 σ

2
i

“ 0.

If there exist constants σ, σ ą 0, not depending on N , such that

σ ď σi ď σ, i “ 1 . . . N ;

then the first part of Assumption A2 is satisfied. Additionally, suppose that, e. g.,
|ζi| ď CN´1{2´κ for all i’s and some C, κ ą 0, then Assumption A3 holds as well.

Now, we derive the behavior of the test statistics under the null hypothesis.

Theorem 3.1. (Under null) Under Assumptions A1 –A3 and hypothesis H0,

RN pT q
D

ÝÝÝÝÑ
NÑ8

max
t“2,...,T´2

maxs“1,...,t

ˇ

ˇXs ´
s
tXt

ˇ

ˇ

maxs“t,...,T´1

ˇ

ˇ

ˇ
Zs ´

T´s
T´tZt

ˇ

ˇ

ˇ

and

SN pT q
D

ÝÝÝÝÑ
NÑ8

max
t“2,...,T´2

řt
s“1

`

Xs ´
s
tXt

˘2

řT´1
s“t

´

Zs ´
T´s
T´tZt

¯2 ,

where Zt :“ XT ´Xt and rX1, . . . , XT s
J is a multivariate normal random vector with

zero mean and covariance matrix Λ “ tλt,vu
T,T
t,v“1 such that

λt,t “ rptq and λt,v “ rptq `Rpt, vq, t ă v.

The limiting distribution depends on the unknown correlation structure of the panel
changepoint model, which has to be estimated for testing purposes. The way of its
estimation is shown in Subsection 3.2. Theorem 3.1 could be extended for the boot-
strap version of the test, where the correlation structure need not to be known neither
estimated. Thus, Theorem 3.1 can also be viewed as a theoretical mid-step for justifica-
tion of the bootstrap add-on. Note, that in case of independent observations within the
panel, the correlation structure and, hence, the covariance matrix Λ, are both simplified
such that rptq “ t and Rpt, vq “ 0.

We proceed to the assumption that is needed for deriving the asymptotic behavior of
the proposed test statistics under the alternative.
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Assumption A4.

lim
NÑ8

´

řN
i“1 δi

¯2

řN
i“1 σ

2
i

“ 8.

Next, we show how the test statistics behave under the alternative.

Theorem 3.2. (Under alternative) If τ ď T ´ 3, then under Assumptions A1 –A4,
and alternative HA,

RN pT q
P

ÝÝÝÝÑ
NÑ8

8
P

ÐÝÝÝÝ
NÑ8

SN pT q. (4)

Assumption A4 controls the trade-off between the size of breaks and the variability
of errors. It may be considered as a detectability assumption, because it specifies the
value of signal-to-noise ratio. Assumption A4 is satisfied, for instance, if 0 ă δ ď δi, @i
(a common lower changepoint threshold) and σi ď σ, @i (a common upper variance
threshold). Another suitable example of δi’s, for the condition in Assumption A4, can be

0 ă δi “ KN´1{2`η for some K ą 0 and η ą 0 together with limNÑ8
1
N

řN
i“1 σ

2
i ă 8.

Or, a sequence t
řN
i“1 σ

2
i {NuN equibounded away from infinity with δi “ Ciα´1

?
N may

be used as well, where α ě 0 and C ą 0. The assumption τ ď T ´ 3 means that there
are at least three observations in the panel after the changepoint. It is also possible
to redefine the test statistic by interchanging the numerator and the denominator of
RN pT q or SN pT q. Afterwards, Theorem 3.2 for the modified test statistic would require
three observations before the changepoint, i. e., τ ě 3.

Theorem 3.2 says that in presence of a structural change in the panel means, the
test statistics explode above all bounds. Hence, the procedures are consistent and the
asymptotic distributions from Theorem 3.1 can be used to construct the tests.

3.2. Estimation of the correlation structure

Despite the fact that the aim of the paper is to establish the testing procedures for
the detection of a panel mean change, it is necessary to construct a consistent estimate
for a possible changepoint. The reason is that estimation of the covariance matrix from
Theorem 3.1 requires panels as vectors with elements having common mean (i. e., without
a jump). A consistent estimate of the changepoint in the panel data is proposed in [1],
but under circumstances that the change occurred for sure. In our situation, we do not
know whether a change occurs or not. Therefore, the estimate proposed by [1] has to be
modified. If the panel means change somewhere inside t2, . . . , T ´ 1u, let the estimate
consistently select this change. If there is no change in panel means, the estimate points
out at the very last time point T with probability going to one. In other words, the
value of the changepoint estimate can be equal to T , which means there is no change.
This is in contrast with [1], where T is not reachable. To overcome such deficiency, we
utilize the changepoint estimator

pτN :“ arg min
t“1,...,T

N
ÿ

i“1

#

1

t2

t
ÿ

s“1

pYi,s ´ sYi,tq
2 `

1

pT ´ tq2

T
ÿ

s“t`1

pYi,s ´ rYi,tq
2

+

(5)
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of the time of change τ , which was proposed by [17]. Since the number of panels may be
sufficiently large, one can estimate the correlation structure of the errors rε1,1, . . . , ε1,T s

J

empirically. We base the errors’ estimates on residuals

pei,t :“

"

Yi,t ´ sYi,pτN , t ď pτN ,

Yi,t ´ rYi,pτN , t ą pτN .
(6)

One may notice that the estimators which cannot result in the last time point are less
suitable in the calculation of residuals.

Then, the empirical version of the autocorrelation function is

pρt :“
1

NpT ´ tq

N
ÿ

i“1

1

pσ2
i

T´t
ÿ

s“1

pei,spei,s`t,

where pσ2
i :“ 1

T

řT
s“1 pe

2
i,s is the estimate of the variance parameter σ2

i . Consequently,
the cumulative autocorrelation function and shifted cumulative correlation function are
estimated by

prptq “
ÿ

|s|ăt

pt´ |s|qpρs and pRpt, vq “
t
ÿ

s“1

v
ÿ

u“t`1

pρu´s, t ă v.

4. SIMULATION STUDY

A simulation experiment was performed to study the finite sample properties of both
proposed test statistics for a common change in panel means. In particular, the interest
lies in the empirical sizes of the proposed tests under the null hypothesis and in the
empirical rejection rate (power) under the alternative. Random samples of panel data
(5000 each time) are generated from the panel changepoint model (1). The panel size
is set to T “ 10 and T “ 25 in order to demonstrate the performance of the testing
approaches in case of extremely short panels. The number of panels is considered to be
N “ 50 and N “ 200.

The correlation structure within each panel is modeled via random vectors generated
from iid, AR(1), and GARCH(1,1) sequences. The considered AR(1) process has coef-
ficient φ “ 0.3. In case of GARCH(1,1) process, we use coefficients α0 “ 1, α1 “ 0.1,
and β1 “ 0.2, which, according to [10, Example 1], gives a strictly stationary process.
In all three sequences, the innovations are obtained as iid random variables from the
standard normal Np0, 1q or the Student t5 distribution. The common loadings ξt’s are
independent having the standard Laplace distribution (the location parameter is set to
0 and the scale parameter equals 1) or the standard Cauchy distribution (the location
parameter is equal 0 and the scale parameter is 1). The panel-specific factor loadings
ζi’s are chosen randomly such that they are independently and uniformly distributed
on r´0.5, 0.5s. Simulation scenarios are produced as all possible combinations of the
above mentioned settings. The covariance matrix for the asymptotic distribution from
Theorem 3.1 is estimated as proposed in Subsection 3.2. To simulate the asymptotic
distribution of the test statistics, 2000 multivariate random vectors are generated using
the pre-estimated covariance matrix.
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To access the theoretical results under H0 numerically, Table 1 provides the empirical
specificity (one minus size) of the tests for both test statistics, RN pT q as well as SN pT q,
with the significance level α “ 5%.

T N innovations factors IID AR(1) GARCH(1,1)

10 50 Np0, 1q Laplace .955 .956 .934 .932 .962 .968
Cauchy .859 .849 .902 .901 .839 .837

t5 Laplace .959 .967 .933 .930 .945 .966
Cauchy .851 .847 .908 .901 .847 .836

200 Np0, 1q Laplace .953 .954 .937 .967 .960 .939
Cauchy .867 .860 .926 .912 .840 .838

t5 Laplace .961 .964 .934 .968 .941 .963
Cauchy .879 .858 .913 .905 .851 .843

25 50 Np0, 1q Laplace .957 .959 .933 .965 .944 .966
Cauchy .868 .863 .903 .899 .842 .843

t5 Laplace .949 .961 .939 .967 .947 .963
Cauchy .867 .859 .909 .904 .856 .953

200 Np0, 1q Laplace .950 .950 .938 .964 .953 .948
Cauchy .880 .875 .928 .914 .866 .858

t5 Laplace .951 .952 .961 .966 .943 .947
Cauchy .889 .865 .917 .913 .863 .857

Tab. 1. Empirical specificity (1´size) of the RT pNq and ST pNq tests

under H0, considering the significance level of 5%.

It may be seen that both approaches are close to the theoretical value of speci-
ficity 0.95. However, slightly better performance of RT pNq is noticeable—it keeps the
theoretical size more firmly. As expected, the best results are achieved in case of in-
dependence within the panels, because there is no information overlap between two
consecutive observations. The precision of not rejecting the null is increasing as the
number of panels is getting higher and the panel is getting longer as well. The heavy
tailed common factors (Cauchy-distributed) result in generally smaller specificity.

The performance of both testing procedures under HA in terms of the empirical
rejection rates is shown in Table 2, where the changepoint is set to τ “ tT {2u and the
change magnitudes δi’s are drawn independently from the uniform distribution on r1, 3s
for either one half of the panels (with no change for the second half) or all of them.

One can conclude that the power of both tests increases as the panel size and the
number of panels increase. Moreover, higher power is obtained when a larger portion
of panels is subject to have a change in their means. The test power slightly drops
when switching from independent observations within the panel to dependent ones:
innovations with heavier tails (i. e., t5) yield smaller power than innovations with lighter
tails. Generally, the ST pNq procedure outperforms the RT pNq approach in all scenarios
with respect to the power of the test. The common factors with lighter tails represented
by the Laplace distribution lead to higher powers.
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HA T N innovations factors IID AR(1) GARCH(1,1)

50% 10 50 Np0, 1q Laplace .31 .34 .30 .32 .29 .30
Cauchy .29 .32 .26 .29 .23 .26

t5 Laplace .30 .32 .29 .31 .24 .27
Cauchy .28 .30 .25 .28 .20 .25

200 Np0, 1q Laplace .52 .56 .49 .52 .41 .44
Cauchy .48 .50 .45 .48 .37 .40

t5 Laplace .50 .53 .49 .51 .39 .42
Cauchy .46 .48 .44 .47 .35 .39

25 50 Np0, 1q Laplace .69 .74 .63 .65 .60 .66
Cauchy .60 .61 .58 .59 .54 .56

t5 Laplace .66 .69 .60 .62 .58 .59
Cauchy .59 .61 .56 .58 .55 .54

200 Np0, 1q Laplace .79 .82 .79 .81 .75 .76
Cauchy .60 .61 .58 .59 .54 .56

t5 Laplace .78 .80 .77 .78 .73 .75
Cauchy .59 .61 .56 .63 .55 .54

100% 10 50 Np0, 1q Laplace .79 .80 .77 .77 .70 .72
Cauchy .74 .75 .73 .74 .72 .73

t5 Laplace .76 .77 .75 .76 .69 .68
Cauchy .71 .71 .70 .69 .65 .67

200 Np0, 1q Laplace .95 .96 .93 .93 .89 .90
Cauchy .82 .83 .81 .82 .77 .78

t5 Laplace .95 .96 .91 .92 .86 .88
Cauchy .80 .81 .79 .79 .76 .78

25 50 Np0, 1q Laplace .88 .89 .87 .87 .79 .80
Cauchy .82 .83 .81 .80 .76 .78

t5 Laplace .86 .86 .83 .85 .74 .76
Cauchy .79 .80 .77 .78 .73 .74

200 Np0, 1q Laplace .97 .99 .96 .97 .93 .95
Cauchy .86 .88 .85 .87 .83 .84

t5 Laplace .96 .98 .94 .95 .91 .92
Cauchy .83 .83 .81 .82 .79 .81

Tab. 2. Empirical sensitivity (power) of the RT pNq and ST pNq tests

under HA, considering the significance level of 5%.

Finally, an early changepoint is discussed very briefly. We stay with the standard
normal innovations, iid observations within the panel, the common factors having the
standard Laplace distribution, the factor loadings uniformly distributed on r´0.5, 0.5s,
the size of changes δi being independently uniform on r1, 3s in all panels, and the change-
point time to be τ “ 3 in case of T “ 10 and τ “ 5 for T “ 25. The empirical sensitivities
of both tests for small values of τ are shown in Table 3.
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T τ N iid, Np0, 1q, Laplace T τ N iid, Np0, 1q, Laplace

10 3 50 .51 .57 25 5 50 .59 .62
200 .84 .86 200 .91 .92

Tab. 3. Empirical sensitivity of the RT pNq and ST pNq tests for

small values of τ under HA, considering the significance level of 5%.

When the changepoint is not in the middle of the panel, the power of the test generally
falls down. The reason for such decrease is that the left or right part of the panel
possesses less observations with constant mean, which leads to a decrease of precision in
the correlation estimation. Nevertheless, the ST pNq test again outperforms the RT pNq
version and, moreover, provides solid results even for early changepoints.

5. APPLICATION IN INSURANCE INDUSTRY

As mentioned in the introduction, our primary motivation for testing the panel mean
change comes from the insurance business. The data set is provided by the National
Association of Insurance Commissioners (NAIC) database, see [13]. We concentrate
on the ‘Commercial auto/truck liability/medical’ insurance line of business. The data
collect records from N “ 157 insurance companies (one extreme insurance company was
omitted from the analysis). Each insurance company provides T “ 10 yearly total claim
amounts starting from year 1988 up to year 1997. One can consider normalizing the
claim amounts by the premium received by company i in year t. That is thinking of
panel data Yi,t{pi,t, where pi,t is the mentioned premium. This may yield a stabilization
of series’ variability, which corresponds to the first part of Assumption A2. Figure 1

graphically shows series of normalized claim amounts and their logarithmic versions.

The data are considered as panel data in the way that each insurance company cor-
responds to one panel, which is formed by the company’s yearly total claim amounts
normalized by the earned premium. The length of the panel is quite short. This is very
typical in insurance business, because considering longer panels may invoke incompa-
rability between the early claim amounts and the late ones due to changing market or
policies’ conditions over time.

We want to test whether or not a change in the normalized claim amounts occurred
in a common year, assuming that the normalized claim amounts are approximately
constant in the years before and after the possible change for every insurance com-
pany. A significance level of 5% is considered. Our second ratio type test statistic gives
S157p10q “ 10,544. The asymptotic critical value is 8,698. These values mean that we do
reject the null hypothesis of no change in the panel means. However, the null hypothesis
is not rejected using the asymptotic test based on R157p10q, which can be explained by
lower power of this test compared to the one based on SN pT q, see Table 4. We also
try to take the decadic logarithms of claim amounts normalized by the earned premium
and to consider log normalized amounts as the panel data observations. However, we
reject the hypothesis of no change in the panel means (i. e., means of log10 normalized
amounts) again, now, based on SN pT q as well as on RN pT q.
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Fig. 1. Development of yearly total claim amounts normalized by the

earned premium (left) together with log normalized amounts (right).

T N RN pT q SN pT q critical values

10 157 39.9 10,544 52.4 8,698

Tab. 4. Ratio type test statistics with critical values for the

‘Commercial auto/truck liability/medical’ insurance.

6. CONCLUSIONS

The changepoint location problem for a very general panel data structure is consid-
ered in this paper: the observations within each panel are dependent, the given panels
are allowed to be heteroscedastic, and even dependent among each other. The mutual
dependence is modeled using some common random factors and some unknown panel
specific loadings. The follow up period is allowed to be extremely short and the change-
point magnitudes may differ across the panels accounting also for a specific situation
that some magnitudes are equal to zero (thus, no jump is present in such case). Another
advantage of the proposed approach is that it does not require an apriori estimation of
the changepoint location. We considered two competitive ratio type test statistics and
their asymptotic properties are derived. Under the null hypothesis of no change, the
test statistics weakly converge to a functional of the multivariate normal random vector
with the zero mean vector and the covariance structure depending on the intra-panel
covariances. Under the alternative hypothesis, both test statistics are shown to converge
to infinity with the increasing number of panels and, thus, both procedures are proved
to be consistent.

From the practical point of view, the general structure with heteroscedastic and
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possibly dependent panels with extremely short follow up periods is a lot more realistic
scenario for practical utilization of the proposed changepoint tests than a situation with
independent or even homoscedastic panels.

A simulation study illustrates that even for an extremely small panel size (10 observa-
tions only), both competitive test statistics perform quite well: the empirical specificity
of both tests is very close to the theoretical value of one minus the significance level,
but a slightly better performance is observed for the test statistic RN pT q when con-
sidering some heavy tailed common factors for the mutual panel dependence. On the
other hand, SN pT q slightly outperforms the previous one in terms of the power, which
is still comparable among various error dependence and panel dependence structures.
The power increases as the number of panels gets higher. Furthermore, the sensitivity
is also affected by the length of the follow up period, the proportion of panels for which
a non-zero jump magnitude is observed, and the changepoint location. Longer follow
up periods and higher proportions of the panels with jumps in their means imply bet-
ter powers for both tests. When considering the changepoint location, then the highest
power is observed for the changepoint located close to the middle of the follow up period.

The theory can be further extended to propose a consistent changepoint estimate,
which is otherwise not needed for the tests based on the ratio type statistics. Such esti-
mate can be used to obtain a bootstrapped counterpart for the asymptotic distribution of
both test statistics. The ratio type test statistic allows us to omit the variance estima-
tion and the bootstrap technique overcomes the estimation of the correlation structure.
Hence, neither nuisance nor smoothing parameters are present in the whole testing pro-
cess, which makes it very simple for practical use. Moreover, the whole stochastic theory
behind requires relatively simple assumptions, which are not too restrictive. The whole
setup can be also modified by considering a large panel size accounting also for situations
with T tending to infinity. Consequently, the whole theory would lead to convergences
to functionals of Gaussian processes with a covariance structure derived in a similar
fashion as for fixed and small T .

A. PROOFS

P r o o f . [Theorem 3.1] Firstly, we show that a multivariate CLT holds for a sequence of the
T -dimensional independent random vectors tσir

ř1
s“1 εi,s, . . . ,

řT
s“1 εi,ss

J
uiPN. Assumption A1

allows us to denote Var r
ř1
s“1 εi,s, . . . ,

řT
s“1 εi,ss

J
“ Λ for all i “ 1, . . . , N . The tth diagonal

element of the covariance matrix Λ is Var
řt
s“1 ε1,s “ rptq and the upper off-diagonal element

on position pt, vq is

Cov

˜

t
ÿ

s“1

ε1,s,
v
ÿ

u“1

ε1,u

¸

“ Var
t
ÿ

s“1

ε1,s ` Cov

˜

t
ÿ

s“1

ε1,s,
v
ÿ

u“t`1

ε1,u

¸

“ rptq `Rpt, vq,

for t ă v. Thus,

1
?
ςN

N
ÿ

i“1

σi

«

1
ÿ

s“1

εi,s, . . . ,
T
ÿ

s“1

εi,s

ffJ

D
ÝÝÝÝÑ
NÑ8

rX1, . . . , XT s
J
„ NT p0,Λq , (A.1)

where ςN “
řN
i“1 σ

2
i . Indeed according to the Cramér–Wold theorem, it is sufficient to ensure

that all assumptions of the one-dimensional Lyapunov CLT [3, p. 371] for triangular arrays are
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valid for any linear combination of the elements of the random vector σi?
ςN
r
ř1
s“1 εi,s, . . . ,

řT
s“1 εi,ss

J,

i P N. For arbitrary fixed b “ rb1, . . . , bT s
J
P RT , we get

N
ÿ

i“1

Var

¨

˝

σi
?
ςN

bJ
«

1
ÿ

s“1

εi,s, . . . ,
T
ÿ

s“1

εi,s

ffJ
˛

‚“ bJΛb.

Moreover for some χ ą 0, the Lyapunov’s condition is satisfied, because the Jensen inequality
together with Assumption A2 give

´

bJΛb
¯´

2`χ
2

N
ÿ

i“1

E

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

σi
?
ςN

bJ
«

1
ÿ

s“1

εi,s, . . . ,
T
ÿ

s“1

εi,s

ffJ
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2`χ

ď

´

bJΛb
¯´

2`χ
2
ς
´

2`χ
2

N T 1`χ
N
ÿ

i“1

σ2`χ
i

T
ÿ

t“1

|bt|
2`χE

ˇ

ˇ

ˇ

ˇ

ˇ

t
ÿ

s“1

εi,s

ˇ

ˇ

ˇ

ˇ

ˇ

2`χ

ď

´

bJΛb
¯´

2`χ
2
ς
´

2`χ
2

N T 1`χ
N
ÿ

i“1

σ2`χ
i

T
ÿ

t“1

|bt|
2`χt1`χ

t
ÿ

s“1

E |εi,s|
2`χ

Ñ 0, N Ñ8.

Let us define

UN ptq :“
1
?
ςN

N
ÿ

i“1

t
ÿ

s“1

pYi,s ´ µiq and rUN ptq :“
1
?
ςN

N
ÿ

i“1

t
ÿ

s“1

σiεi,s.

Under H0 and according to (A.1), we have

rrUN p1q, . . . , rUN pT qs
J D
ÝÝÝÝÑ
NÑ8

rX1, . . . , XT s
J.

Assumption A3 yields

UN ptq ´ rUN ptq “
1
?
ςN

N
ÿ

i“1

t
ÿ

s“1

ζiξt “

˜

t
ÿ

s“1

ξt

¸˜

1
?
ςN

N
ÿ

i“1

ζi

¸

P
ÝÝÝÝÑ
NÑ8

0

and the Slutsky’s theorem provides

rUN p1q, . . . , UN pT qs
J D
ÝÝÝÝÑ
NÑ8

rX1, . . . , XT s
J.

Moreover, let us define the reverse analogue to UN ptq, i. e.,

VN ptq :“
1
?
ςN

N
ÿ

i“1

T
ÿ

s“t`1

pYi,s ´ µiq “ UN pT q ´ UN ptq.

Hence,

UN psq ´
s

t
UN ptq “

1
?
ςN

N
ÿ

i“1

#

s
ÿ

r“1

«

pYi,r ´ µiq ´
1

t

t
ÿ

v“1

pYi,v ´ µiq

ff+

“
1
?
ςN

N
ÿ

i“1

s
ÿ

r“1

`

Yi,r ´ sYi,t
˘
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and, consequently,

VN psq ´
T ´ s

T ´ t
VN ptq “

1
?
ςN

N
ÿ

i“1

#

T
ÿ

r“s`1

«

pYi,r ´ µiq ´
1

T ´ t

T
ÿ

v“t`1

pYi,v ´ µiq

ff+

“
1
?
ςN

N
ÿ

i“1

T
ÿ

r“s`1

´

Yi,r ´ rYi,t
¯

.

Using the Cramér–Wold device, we end up with

max
t“2,...,T´2

maxs“1,...,t

ˇ

ˇUN psq ´
s
t
UN ptq

ˇ

ˇ

maxs“t,...,T´1

ˇ

ˇ

ˇ
VN psq ´

T´s
T´t

VN ptq
ˇ

ˇ

ˇ

D
ÝÝÝÝÑ
NÑ8

max
t“2,...,T´2

maxs“1,...,t

ˇ

ˇXs ´
s
t
Xt

ˇ

ˇ

maxs“t,...,T´1

ˇ

ˇ

ˇ
pXT ´Xsq ´

T´s
T´t

pXT ´Xtq
ˇ

ˇ

ˇ

,

max
t“2,...,T´2

řt
s“1

“

UN psq ´
s
t
UN ptq

‰2

řT´1
s“t

”

VN psq ´
T´s
T´t

VN ptq
ı2

D
ÝÝÝÝÑ
NÑ8

max
t“2,...,T´2

řt
s“1

“

Xs ´
s
t
Xt

‰2

řT´1
s“t

”

pXT ´Xsq ´
T´s
T´t

pXT ´Xtq
ı2 .

˝

P r o o f . [Theorem 3.2] Let t “ τ ` 1. Firstly, we are going to focus on the numerator RN pT q.
Due to (A.1) and Assumptions A1 –A4, we obtain under alternative HA

1
?
ςN

max
s“1,...,τ`1

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“1

«

s
ÿ

r“1

`

Yi,r ´ sYi,τ`1

˘

ff
ˇ

ˇ

ˇ

ˇ

ˇ

ě
1
?
ςN

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“1

τ
ÿ

r“1

`

Yi,r ´ sYi,τ`1

˘

ˇ

ˇ

ˇ

ˇ

ˇ

“
1
?
ςN

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“1

τ
ÿ

r“1

˜

µi ` ζiξr ` σiεi,r ´
1

τ ` 1

τ`1
ÿ

v“1

pµi ` ζiξv ` σiεi,vq ´
1

τ ` 1
δi

¸
ˇ

ˇ

ˇ

ˇ

ˇ

“
1
?
ςN

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“1

σi

τ
ÿ

r“1

pεi,r ´ sεi,τ`1q `

N
ÿ

i“1

τ
ÿ

r“1

ζiξr ´
τ

τ ` 1

N
ÿ

i“1

τ`1
ÿ

v“1

ζiξv ´
τ

τ ` 1

N
ÿ

i“1

δi

ˇ

ˇ

ˇ

ˇ

ˇ

“ OPp1q ` oPp1q `
τ

pτ ` 1q
?
ςN

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“1

δi

ˇ

ˇ

ˇ

ˇ

ˇ

P
ÝÑ 8, N Ñ8,

where sεi,τ`1 “
1
τ

řτ`1
v“1 εi,v and ςN “

řN
i“1 σ

2
i .

Secondly, for the numerator of SN pT q it holds

τ`1
ÿ

s“1

#

1
?
ςN

N
ÿ

i“1

«

s
ÿ

r“1

`

Yi,r ´ sYi,τ`1

˘

ff+2

ě

#

1
?
ςN

N
ÿ

i“1

«

τ`1
ÿ

r“1

`

Yi,r ´ sYi,τ`1

˘

ff+2

“

«

1
?
ςN

N
ÿ

i“1

τ
ÿ

r“1

˜

µi ` ζiξr ` σiεi,r ´
1

τ ` 1

τ`1
ÿ

v“1

pµi ` ζiξv ` σiεi,vq ´
1

τ ` 1
δi

¸ff2

“
1

ςN

«

N
ÿ

i“1

σi

τ
ÿ

r“1

pεi,r ´ sεi,τ`1q `

N
ÿ

i“1

τ
ÿ

r“1

ζiξr ´
τ

τ ` 1

N
ÿ

i“1

τ`1
ÿ

v“1

ζiξv ´
τ

τ ` 1

N
ÿ

i“1

δi

ff2

P
ÝÑ 8,
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as N Ñ8, again because of Assumptions A1 –A4.
Finally, since there is no change after τ ` 1 and τ ď T ´ 3, then by Theorem 3.1 we have

for the denominators of RN pT q and SN pT q the following

1
?
ςN

max
s“τ`1,...,T´1

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“1

T
ÿ

r“s`1

´

Yi,r ´ rYi,τ`1

¯

ˇ

ˇ

ˇ

ˇ

ˇ

D
ÝÝÝÝÑ
NÑ8

max
s“τ`1,...,T´1

ˇ

ˇ

ˇ

ˇ

Zs ´
T ´ s

T ´ τ
Zτ`1

ˇ

ˇ

ˇ

ˇ

,

1
?
ςN

T´1
ÿ

s“τ`1

«

N
ÿ

i“1

T
ÿ

r“s`1

´

Yi,r ´ rYi,τ`1

¯

ff2

D
ÝÝÝÝÑ
NÑ8

T´1
ÿ

s“τ`1

ˆ

Zs ´
T ´ s

T ´ τ
Zτ`1

˙2

.

˝

ACKNOWLEDGEMENT

Financial support through the Czech Science Foundation project GAČR No. 18-00522Y is
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vided by RVO:67985807. The research of Michal Pešta was supported by the Czech Science
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