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REGION OF INTEREST CONTRAST MEASURES

Václav Remeš and Michal Haindl

A survey of local image contrast measures is presented and a new contrast measure for
measuring the local contrast of regions of interest is proposed. The measures validation is
based on the gradual objective contrast decreasing on medical test images in both grayscale and
color. The performance of the eleven most frequented contrast measures is mutually compared
and their robustness to different types of image degradation is analyzed. Since the contrast
measures can be both global, regional and local pixelwise, a simple way of adapting the contrast
measures for regions of interest is proposed.
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1. INTRODUCTION

Image enhancement methods aim to improve human image interpretation accuracy by
increasing visual distinguishability of single objects recorded in a visual scene. This
requires an increase in image contrast which is the relative difference in luminance or
colour between multiple objects.

Typical important image enhancement applications are in selected medical areas
through computer aided diagnosis, remote sensing, and various security videos inter-
pretation. Among the most important are the medical applications. Not only because
they have the potential to save human lives, but also because medical doctors rarely rely
on fully automatic image analysis systems and generally prefer visual reading of data.

Numerous image enhancement methods have been published for preventive mammog-
raphy screening [3, 5, 6, 8, 12, 15, 18, 19, 22, 24, 26, 29]. Around 25% of radiologically
visible cancers are missed by the radiologists at screening [23] which means that mil-
lions of cancer cases are missed every year. This directly impacts the mortality rate for
women, because breast cancer is the most common type of cancer among middle-aged
women in most developed countries [17, 25] and almost one woman in ten grows a breast
cancer in her life. In such important image enhancement applications even a slightest
improvement in the detection methods could have a huge impact and save many lives.

A reliable quality contrast measure is then the prerequisite for any monitoring of an
image enhancement method development progress or for ranking existing methods.
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The paper is organized as follows: Section 2 presents an overview of existing con-
trast measures, in Section 3 we describe our proposed contrast measure and Section 4
covers the extensive comparison of previously published criteria with our own method.
The paper is summarized in Section 5.

2. CONTRAST MEASURES

The contrast measure is not uniquely defined [16, 20] and many measures, which are
usually categorized into local and global measures, are available. Another possible cat-
egorization is whether they use only monospectral information, e. g., the Weber con-
trast(WC), Michelson contrast (MC), root-mean-square contrast (RMS), measure of
enhancement (EME), enhancement by entropy (EMEE), Michelson law measure of en-
hancement (AME), Michelson law measure of enhancement by entropy (AMEE), second-
derivative-like enhancement measure (SDME), difference-of-Gaussians based contrast
measures (C1, C2, C3, (1) – (13)), local band-limited contrast (LBLC), region contrast
(RCC, (18)), or they use all three colour bands, e. g., the weighted-level framework with
retinal-like sub-sampling contrast (WlfRsc (15)), border contrast (BCC (19)). Typical
measures used are the Weber or Michelson contrast measures. The Weber contrast [27]
is

↑WC =
Yobj − Yback

Yback
≥ −1 , (1)

where ↑ is the required measure movement, Yobj , Yback are the object and background
luminance, respectively. The Michelson contrast [13] is defined as

↑MC =
Ymax − Ymin

Ymax + Ymin
≥ 0 , (2)

where Ymax, Ymin are the highest and lowest luminances. The Michelson contrast mea-
sure is not appropriate for images with extremal isolated bright or dark pixels which
will create a discrepancy between the measure value and the perceived contrast. If we
can set Yobj = Ymax and Yback = Ymin then both measures are related:

MC = WC
Yback

Yobj + Yback
.

Several modifications [4, 10, 28] of this measure which replace either Ymax or Ymin

with Ymean were also published.

2.1. Global contrast measures

A simple used global contrast crierion is the root-mean-square contrast

↑ RMS =

[
1

n1n2 − 1

n1∑
r1=1

n2∑
r2=1

(Ŷr1,r2 − µ)2

] 1
2

, (3)

where n1×n2 is image resolution, Ŷ is a normalized gray-level image such that Ŷr1,r2 ∈
[0; 1] ∀r1, r2, and µ is the mean normalized gray level. This measure does not depend
on the spatial distribution of contrast in the image.



980 V. REMEŠ AND M. HAINDL

The measure of enhancement (EME) based on a Weber-law-based contrast measure
was proposed by Agaian [1] and analogically the measure of enhancement by entropy
(EMEE). The Michelson law measure of enhancement (AME) and its entropy modifica-
tion, Michelson law measure of enhancement by entropy (AMEE), were later proposed
by the same authors [2]. Panetta et al. [15] used these global monospectral contrast
measures for mammogram enhancement assessment and introduced a second-derivative-
like enhancement measure (SDME). The SDME results were found to be consistent with
the mean opinion score (MOS) from seven human observers, while the AME, AMEE,
EME, EMEE measures were found to be inconsistent [15]. All these contrast measures
assume an evaluated image divided into k1 × k2 blocks.

↑ EMEk1,k2 =
1

k1 k2

k1∑
l=1

k2∑
k=1

20 ln

(
Ymax,k,l

Ymin,k,l

)
〈0;∞) , (4)

↑ EMEEk1,k2 =
1

k1 k2

k1∑
l=1

k2∑
k=1

[
α

(
Ymax,k,l

Ymin,k,l

)α
ln

(
Ymax,k,l

Ymin,k,l

)]
〈0;∞) , (5)

↓ AMEk1,k2 = − 1

k1 k2

k1∑
l=1

k2∑
k=1

20 ln

(
Ymax,k,l − Ymin,k,l

Ymax,k,l + Ymin,k,l

)
〈0;∞) , (6)

↓ AMEEk1,k2 =
−α
k1 k2

k1∑
l=1

k2∑
k=1

(
Ymax,k,l − Ymin,k,l

Ymax,k,l + Ymin,k,l

)α
ln

(
Ymax,k,l − Ymin,k,l

Ymax,k,l + Ymin,k,l

)
〈0;∞) , (7)

↓ SDMEk1,k2 = − 1

k1 k2

k1∑
l=1

k2∑
k=1

20 ln

(
Ymax,k,l − 2Ycenter,k,l + Ymin,k,l

Ymax,k,l + 2Ycenter,k,l + Ymin,k,l

)
〈0;∞) , (8)

where α is a constant, Ymax,k,l, Ymin,k,l, Ycenter,k,l are the corresponding maximum, min-
imum, and center values, respectively.

The main disadvantage of these global measures is their insufficient robustness. They
exhibit strong dependence on two single extreme brightness or darkness points (possibly
outliers), while the overall contrast perception might be completely different.

2.2. Local pixelwise contrast measures

2.2.1. Difference-of-Gaussians based contrast measures

Three different local contrast measures (C1, C2, C3) based on the difference of Gaussians
were introduced by Tadmor and Tolhurst [21]. These contrast measures (especially C3)
should model the response of the eye to the variations in contrast.

Cen(i, j) = exp

[
−
(
i

ρc

)2

−
(
j

ρc

)2
]
,

Sur(i, j) = 0.85

(
ρc
ρs

)2

exp

[
−
(
i

ρs

)2

−
(
j

ρs

)2
]
,
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Rc(x, y) =

x+3ρc∑
i=x−3ρc

y+3ρc∑
j=y−3ρc

Cen(i− x, j − y)Yi,j , (9)

Rs(x, y) =

x+3ρs∑
i=x−3ρs

y+3ρs∑
j=y−3ρs

Sur(i− x, j − y)Yi,j , (10)

↑ C1(x, y) =
Rc(x, y)−Rs(x, y)

Rc(x, y)
, (11)

↑ C2(x, y) =
Rc(x, y)−Rs(x, y)

Rs(x, y)
, (12)

↑ C3(x, y) =
Rc(x, y)−Rs(x, y)

Rc(x, y) +Rs(x, y)
, (13)

where ρc and ρs denote the radius for the centered and surrounding Gaussian respec-
tively, ρc < ρs, and x, y are spatial indices.

2.2.2. Weighted-level framework

The Weighted-Level Framework with Retinal-like sub-sampling contrast, WlfRsc method
[20], works in the CIELAB (or RGB) color space averaging the values of the actual bands.
It is based on the idea of the normalized difference of Gaussians used in the C3 criterion
13 combined with the Gaussian pyramid

WlfRsc,i =
1

Nl

Nl∑
l=1

λlEl{C3i} , (14)

↑WlfRsc =

d∑
k=1

ciWlfRsc,i > 0 , (15)

where Nl is the number of levels in the Gaussian pyramid, El{...} is the mean value of
the given contrast measure at the sub-sampled level l, d is the number of spectral bands,
λl is the weight of level l and C3i is from (13) computed on the ith spectral channel,
and ci are the weights of each color channel. For the RGB color space Simone et al.[20]
suggest ci to be the variance of pixel values for the corresponding channel, while in the
Lab color space they propose to use ci = 0.33 ∀i.

2.2.3. Local band-limited contrast

The Local band-limited contrast [9, 16] uses an approach based on the Fourier transform.
To define the local ith band-limited contrast, the frequency band-limited version of the
image is first obtained in the frequency domain Ai(u, v) by using a radially symmetric
band-pass filter Gi(r)

Ai(u, v) ≡ Ai(r, θ) = F (r, θ)Gi(r) ,
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where F (r, θ) is the Fourier transform of the original image in polar coordinates r, θ.
The ith band filter Gi can be expressed as

Gi(r) =

{
1
2 [1 + cos(π log2 r − πi)], if r ∈

〈
2i; 2i+1

)
0, otherwise.

The original image can be expressed as the sum of local band-filtered images (ai being
the inverse Fourier transforms of Ai) and a low pass and high pass residuum (l0 and hn
respectively, n is the selected number of frequency bands) in the following equation:

f(x, y) = l0(x, y) +

n−1∑
i=1

ai(x, y) + hn(x, y) .

For every pixel, the contrast in frequency band i can be computed as

ci(x, y) =
ai(x, y)

l0(x, y) +
∑i−1
j=1 aj(x, y)

.

For expressing the contrast in each pixel, we took the sum of absolute values of the
local contrasts

LBLC(x, y) =

n∑
i=1

|ci(x, y)| , (16)

because the authors have only specified the contrast up to the frequency bands, omitting
the final merging of the contrast information.

2.3. Region of interest based contrast measures

2.3.1. Region contrast

The contrast between two regions is computed on the basis of the average values of
features of adjacent regions [11]:

ci,j =
|µi − µj |
µi + µj

ki,j =
|border(i)

⋂
border(j)|

|border(i)|
ci =

∑
∀Rjadj Ri

ki,jci,j (17)

↑ RCC =

∑
∀Rj |Rj |cj∑
∀Rj |Rj |

> 0 (18)

where µi denotes the mean value of region i, border(i) are the pixels on the border of
region i, and adjRi are regions which are adjacent to region i. Equation (17) computes
the contrast of ith region and equation (18) sums the global contrast.
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Fig. 1. Experimental mammogram, its region of interest template,

and its corruption using the additive Gaussian noise σ = 30, σ = 100,

additive noise with uniform noise 30% blending (upper row left to

right). Additive noise with uniform noise 80%, range reduction 2 bits,

range reduction 4 bits, salt and pepper noise 10%, and 50%,

respectively (lower row).

2.3.2. Border contrast

The contrast measure [7] computes the mean difference of pixel values along the border of
a region of interest. For each region of interest Ri and all border pixels b(Ri) it computes
the mean pixel values µinj

and µoutj of small windows next to the border inside and
outside of the desired region of interest, normalized by the image’s maximum pixel value
Ymax. The value of ns is a normalization factor denoting the number of spectral bands
of the image so that gray-scale images can be compared with multispectral ones.

↑ BCC =
100

Ymax
√
ns

∑
i

|b(Ri)|
∑
i

∑
j∈b(Ri)

||µinj − µoutj || > 0 . (19)

3. PROPOSED REGION OF INTEREST CONTRAST MEASURES

3.1. Multispectral region of interest contrast measure

We propose a simple multispectral contrast measure (SRC) loosely based on the Region
contrast (18) [11]. The main idea is that the distinguishability of a region is mostly
influenced by its direct surroundings. Let’s define the surroundings Si,d of region i as
all pixels which do not belong to the region i and their distance from the region in both



984 V. REMEŠ AND M. HAINDL

x and y axes is at most d. The surrounding region contrast

SRC =

∣∣∣∣µi − µSi,d

∣∣∣∣∣∣∣∣µi + µSi,d

∣∣∣∣ , (20)

where µi is the mean spectral vector of the ith region and µSi,d
is the mean spectral

vector of its surroundings up to the distance d.
The distance d of the surroundings can be determined as either a constant value or

relative to the size of the region of interest.

3.2. Modifying contrast measures for regions of interest
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Fig. 2. The measures behaviour for the averaging image degradation.

Left: dermatological data (colour), right: mammography data

(grayscale).
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Fig. 3. The measures behaviour for the Gaussian noise image

degradation. Left: dermatological data (colour), right: mammography

data (grayscale).



Region of interest contrast measures 985

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Mammography data

AME
AMEE
BCC
C3

EME
EMEE
LBLC
RCC

SDME
SRC

WlfRsc

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Mammography data

AME
AMEE
BCC
C3

EME
EMEE
LBLC
RCC

SDME
SRC

WlfRsc

Fig. 4. The measures behaviour for the uniform noise image

degradation. Left: dermatological data (colour), right: mammography

data (grayscale).
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Fig. 5. The measures behaviour for the range reduction image

degradation. Left: dermatological data (colour), right: mammography

data (grayscale).

Measuring the contrast for local abnormality enhancement is somewhat dubious since
ideally we want to lower the contrast of normal texture as much as possible and only
raise the contrast of the abnormalities. Denoting an object O and B as background,
we propose the following modification to contrast measures to make them suitable for
measuring the contrast of regions of interest:

ContrastFactor =
Contrast(O)

Contrast(B \O)
, (21)

where Contrast(·) is an arbitrary global contrast measure.
This way we can compute the factor by which the contrast at the abnormality is
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Fig. 6. The measures behaviour for the salt and pepper noise image

degradation. Left: dermatological data (colour), right: mammography

data (grayscale).

greater (or lower) than the contrast in the rest of the breast image. The same equation
can be directly applied to all the global contrast measures such as the SDME (8). For
local contrast measures, which give local contrast values for each pixel (denoted L(x, y),
where x, y are spatial indices), such as the WlfRsc (15), we sum the values for each
pixel beforehand and take their mean value:

ContrastFactor =
|B \O|
|O|

∑
x,y∈O L(x, y)∑

x,y∈(B\O) L(x, y)
. (22)

3.3. Multispectral generalization of the grayscale contrast measures

The straightforward generalization of monospectral contrast measures C(. ) to any d
number of spectral bands is

CQ = [C1, . . . , Cd]Q [C1, . . . , Cd]
T , (23)

where Q is some appropriate positive definite weighting matrix. Q can be the unity
matrix Q = diag[1, . . . , 1] or for color images it can be their grayscale conversion, e. g.,
converted from the RGB color space:

Q =

 0.2989 0 0
0 0.587 0
0 0 0.114

 .

Other possibilities, e. g. those proposed by Simone et al. [20], include using the
variance of each channel’s values as the weight or 1

µ where µ is the mean value in the
colour channel.
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Dermatological data (colour) Mammography data (grayscale)
AVG GN U LC SP AVG GN U LC SP

AME x x x ↑ x ↓ ↑ ↑ x x
AMEE ↑ x x ↑ x x x x x x
BCC ↓ x x ↓ ↑ x ↓ x ↓ x
C3 x ↑ x ↑ x x ↑ x x x

EME x x x x x x ↑ ↑ ↑ x
EMEE x x x x x x ↑ x ↑ x
LBLC x x x x x x x x x x
RCC x ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

SDME x x ↑ ↑ x ↓ ↑ x x x
SRC ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
WlfRsc ↑ x ↑ ↑ x x ↓ x x x

Tab. 1. Summary of the behaviour of the different contrast measures

among different degradations. ↑ means monotonous increasing, ↓
means monotonous decreasing and x means non-monotonous

behaviour.

4. RESULTS

We have validated the contrast measures on the more than 100 grayscale images from
the INbreast database [14] which include an abnormal mass and on 20 color skin images
with cancer-like abnormalities using five different contrast degradation approaches (see
Figure 1):

1. Additive Gaussian noise (GN), varying standard deviations (σ ∈ {10, 20, . . . , 100}),

2. Salt and pepper noise (SP), varying ratio of presence (10%, 20%, . . . , 100%),

3. Linearly combined uniform noise (U) (0-255), ratio (10%, 20%, . . . , 100%),

4. Gray level range reduction (LC) ( 1
2 ,

1
4 , . . . ,

1
1024 ),

5. Averaging (AVG) of values within windows of sizes (1, 3, 5, . . . , 21).

We illustrate our results in this article on INbreast data and on dermatological data,
however, we obtained similar results using several other types of gray-scale or colour
images.

The experiments use the parameters k1 = width/5, k2 = height/5, α = 0.5 for AME,
AMEE, EME, EMEE, SDME, for C3 and WlfRsc (14) ρc = 1, ρs = 2, Nl = 5, λl is
the variance of pixel values in each channel at level l. For the BCC we have selected a
window of size 3 × 3, with the window’s center 5 pixels distant from the border. Since
the C1 (11) and C2 (12) measures give values similar to C3 (correlation > 0.99), they
are not included in the presented results.
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In our proposed method, we set the parameter d = 6 to match the similarly
parametrized compared contrast measures.

For a correctly functioning contrast measure, the corresponding degradation graph
should be monotonous and consistent among the different image degradations. The
results (plotted in the graphs in Figs. 2-6) demonstrate that the different contrast
measures are not consistently reliable. The sole two exceptions are the Region contrast
measure (18) which only fails in one case (averaging on the dermatological data), and
our proposed Surrounding region contrast (20), which shows consistent results in all the
experiments.

The presented graphs are normalized to the range < 0; 1 > to provide better visual
comparison. The horizontal axes start at 0 with the original images and the deterioration
then increase rightwards.

Tab. 1 shows a summary of the behaviour of the different contrast measures. We
can see that except for the SRC (20) measure, all the contrast measures exhibit non-
monotony and the AME, BCC, SDME and WlfRsc even show inconsistent monotonous
behaviour (for some degradations, they are monotonously increasing while for others
they are decreasing) with LBLC being inconsistent in all the cases. The second best
enhancement measure is the RCC which only exhibited one minor non-monotony in one
case but otherwise behaved consistently.

5. CONCLUSION

We have implemented a new contrast measure and compared it with ten different existing
contrast measures. The contrast measures were tested on five gradual image degradation
scenarios on both grayscale and colour medical images. It has been shown that for the
purposes of region of interest enhancement validation, very few contrast measures can
be trusted. The only contrast measures which are robust to different types of noise and
range deterioration tested are the proposed Surrounding region contrast and the Region
contrast measures. All the remaining measures failed in multiple tests and cannot be
used for trustworthy development of region of interest enhancement methods. Needless
to say, the results show only the usefulness of the contrast measures for automatic region
of interest contrast validation. The measures themselves can be useful for alternative
applications.

(Received February 2, 2018)
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mammograms based on local texture models. IEEE Trans. Image Process. 18 (2009), 4,
765–773. DOI:10.1109/tip.2008.2011168

[9] A. Haun and E. Peli: Perceived contrast in complex images. J. Vision 13 (2013), 3, 2013.
DOI:10.1167/13.13.3

[10] P. E. King-Smith and J. Kulikowski: Pattern and flicker detection analysed by subthreshold
summation. J. Physiology 249 (1975), 3, 519. DOI:10.1113/jphysiol.1975.sp011028

[11] M. D. Levine and A. M. Nazif: Dynamic measurement of computer generated im-
age segmentations. IEEE Trans. Pattern Analysis Machine Intell. 7 (1985), 155–164.
DOI:10.1109/tpami.1985.4767640

[12] A. Mencattini, M. Salmeri, R. Lojacono, M. Frigerio, and F. Caselli: Mammo-
graphic images enhancement and denoising for breast cancer detection using dyadic
wavelet processing. IEEE Trans Instrument. Measurement 57 (2008), 7, 1422–1430.
DOI:10.1109/tim.2007.915470

[13] A. A. Michelson: Studies in Optics. University of Chicago Press, Chicago 1927.

[14] I. C. Moreira, I. Amaral, I. Domingues, A. Cardoso, M. J. Cardoso, and J. S. Cardoso:
Inbreast: toward a full-field digital mammographic database. Academic Radiology 19
(2012), 2, 236–248. DOI:10.1016/j.acra.2011.09.014

[15] K. Panetta, Y. Zhou, S. Agaian, and H. Jia: Nonlinear unsharp masking for mammo-
gram enhancement. IEEE Trans. Inform. Technol. Biomedicine 15 (2011), 6, 918–928.
DOI:10.1109/titb.2011.2164259

[16] E. Peli: Contrast in complex images. JOSA A 7 (1990), 10, 2032–2040.
DOI:10.1364/josaa.7.002032

[17] H. Qi and N. A. Diakides: Thermal infrared imaging in early breast cancer detection
– a survey of recent research. In: Proc. 25th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, Vol. 2, IEEE 2003, pp. 1109–1112.
DOI:10.1109/iembs.2003.1279442

[18] P. Sakellaropoulos, L. Costaridou, and G. Panayiotakis: A wavelet-based spatially adaptive
method for mammographic contrast enhancement. Physics Medicine Biology 48 (2003), 6,
787. DOI:10.1088/0031-9155/48/6/307

[19] J. Salvado and B. Roque: Detection of calcifications in digital mammograms using wavelet
analysis and contrast enhancement. In: IEEE International Workshop on Intelligent Signal
Processing 2005, IEEE 2005, pp. 200–205. DOI:10.1109/wisp.2005.1531658

http://dx.doi.org/10.1364/josaa.1.000309
http://dx.doi.org/10.1109/4233.748974
http://dx.doi.org/10.1109/tmi.2002.1000258
http://dx.doi.org/10.1109/tip.2004.828427
http://dx.doi.org/10.1109/tip.2008.2011168
http://dx.doi.org/10.1167/13.13.3
http://dx.doi.org/10.1113/jphysiol.1975.sp011028
http://dx.doi.org/10.1109/tpami.1985.4767640
http://dx.doi.org/10.1109/tim.2007.915470
http://dx.doi.org/10.1016/j.acra.2011.09.014
http://dx.doi.org/10.1109/titb.2011.2164259
http://dx.doi.org/10.1364/josaa.7.002032
http://dx.doi.org/10.1109/iembs.2003.1279442
http://dx.doi.org/10.1088/0031-9155/48/6/307
http://dx.doi.org/10.1109/wisp.2005.1531658


990 V. REMEŠ AND M. HAINDL

[20] G. Simone, M. Pedersen, and J. Y. Hardeberg: Measuring perceptual contrast in
digital images. J. Visual Commun. Image Representation 23 (2012), 3, 491–506.
DOI:10.1016/j.jvcir.2012.01.008

[21] Y. Tadmor and D. Tolhurst: Calculating the contrasts that retinal ganglion cells and
{LGN} neurones encounter in natural scenes. Vision Research 40 (2000), 22, 3145–3157.
DOI:10.1016/s0042-6989(00)00166-8

[22] J. Tang, X. Liu, and Q. Sun: A direct image contrast enhancement algorithm in the
wavelet domain for screening mammograms. IEEE J. Selected Topics Signal Process. 3
(2009), 1, 74–80. DOI:10.1109/jstsp.2008.2011108

[23] P. Taylor, J. Champness, R. Given-Wilson, K. Johnston, and H. Potts: Impact of
computer-aided detection prompts on the sensitivity and specificity of screening mam-
mography. Health Technol. Assessment 9 (2005), 6. DOI:10.3310/hta9060

[24] K. Thangavel, M. Karnan, R. Sivakumar, and A. Mohideen: Cad system for preprocessing
and enhancement of digital mammograms. Graphics, Vision Image Process. xx (2007),
55–60.

[25] T. Tweed and S. Miguet: Automatic detection of regions of interest in mammographies
based on a combined analysis of texture and histogram. In: Proc. 16th International
Conference on Pattern Recognition 2002, Vol. 2, Los Alamitos 2002. IEEE Computer Soc.,
pp. 448–452. DOI:10.1109/icpr.2002.1048335

[26] H. Wang, J.-B. Li, L. Wu, and H. Gao: Mammography visual enhance-
ment in cad-based breast cancer diagnosis. Clinical Imaging 37 (2013), 273–282.
DOI:10.1016/j.clinimag.2012.04.018

[27] E. H. Weber: The Sense of Touch. Academic Press, 1978.

[28] P. Whittle: Increments and decrements: Luminance discrimination. Vision Res. 26 (1986),
10, 1677–1691. DOI:10.1016/0042-6989(86)90055-6

[29] Z. Yan, Y. Zhang, B. Liu, J. Zheng, L. Lu, Y. Xie, Z. Liang, and J. Li: Extracting hidden
visual information from mammography images using conjugate image enhancement soft-
ware. In: IEEE International Conference on Information Acquisition, IEEE Engineering
in Medicine and Biology Society, 2005, pp. 4775–4778. DOI:10.1109/icia.2005.1635092
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