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ON THE ACCURACY OF APPROXIMATION
OF THE DISTRIBUTION OF NEGATIVE-BINOMIAL
RANDOM SUMS BY THE GAMMA DISTRIBUTION

Tran Loc Hung and Tran Ngoc Hau

The main goal of this paper is to study the accuracy of approximation for the distributions
of negative-binomial random sums of independent, identically distributed random variables by
the gamma distribution.
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1. INTRODUCTION

Let X,X1, X2, . . . be a sequence of independent, identically distributed, positive random
variables with mean 0 < E(X) = m < +∞ and finite variance 0 < V ar(X) = σ2 < +∞.
Let νp be a geometric random variable with parameter p (for short, νp ∼ Geo(p), p ∈
(0, 1)), independent of all Xi, i ≥ 1 and its probability mass distribution is given by

P (νp = k) = p(1− p)k−1, k ≥ 1, p ∈ (0, 1).

Set Sνp = X1 +X2 + · · ·+Xνp . Then, the Sνp is said to be a geometric random sum or
a geometric convolution of X (see [2]). Geometric random sums arise naturally in many
applied probability models. The asymptotic behavior of the distribution of a geometric
random sum is an object of interest in applied areas like finance, insurance, reliability,
queue system and risk theory, etc. (see [2, 7, 12, 15, 16] and the references given there).
It should be noted that E(νp)→ +∞ as p→ 0+. Therefore, the following Rényi’s limit
theorem (see [12] and [15] for more details) is one of well-known results for geometric
random sums. Specifically,

Sνp
E(νp)

D−→ Z as p→ 0+, (1)

where Z is an exponential random variable with mean m (m > 0), that is

P (Z ≤ x) = 1− e−m
−1x, x ∈ (0,+∞),
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and
D−→ denotes the convergence in distribution.

The rate of convergence for limiting expression in (1) was estimated by Kalashnikov
(see [12] for more details) as follows:

sup
0<x<+∞

∣∣∣∣P ( Sνp
E(νp)

≤ x
)
− P (Z ≤ x)

∣∣∣∣ = o(1) as p→ 0+. (2)

In particular, when E(Xn) = 1, for n = 1, 2, . . . and E(Xs
n) < ∞ for s ∈ (1, 2), the

rate of approximation in (1) is given by

sup
0<x<+∞

∣∣∣∣P ( Sνp
E(νp)

≤ x
)
− 1 + e−x

∣∣∣∣ ≤ C ( 1

E(νp)

)s−1

E(Xs
n), (3)

where C > 0 is an absolute constant (see [15] for more details).

It is worth pointing out that the upper bound for d(Sνp , ZE(Sνp )), the sup norm
distance between geometric random sum Sνp and an exponential random variable with
mean E(Sνp), is given by Brown (see [2] for more details) as follows:

d(Sνp , ZE(Sνp )) ≤ cp, for 0 < p ≤ 1/2,

where c = EX2/(EX)2, and X,X1, X2, . . . are independent identically distributed posi-
tive random variables, and νp ∼ Geo(p), p ∈ (0, 1) is independent of all Xi, i ≥ 1.

The problem to be considered in this paper is that of extending of known results in
(1), (2) and (3). Specifically, the paper is concerned with the rates of weak convergence
in following limiting expression

SNr,p
E(Nr,p)

D−→ G, as p→ 0+, (4)

where SNr,p := X1 + · · ·+XNr,p is a negative-binomial random sum of independent and
identically distributed random variables, G is a gamma distributed random variable, Nr,p
is a negative-binomial distributed random variable with two parameters r ∈ N\{0}, and
p ∈ (0, 1), (written Nr,p ∼ NB(r, p)), with probability mass function (see for instance
[1])

P (Nr,p = k) =

(
k − 1

r − 1

)
pr(1− p)k−r, k ≥ r; r ∈ N \ {0}, p ∈ (0, 1). (5)

In particular, when r = 1 the relation (5) specifies the geometric distribution and the
limit expression in (1) will be deduced by (4).

In recent years, the rate of convergence in limit expression (4) was investigated by
Bevrani et al. in [1] and Gavrilenko et al. in [6]. It should be noticed that all estimates
are established via uniform metrics (see [6] and [1] for more details).

Throughout this paper, the symbol Gam(α, β) denotes the gamma distribution of two
parameters α > 0 and β > 0. A random variable G is said to be a gamma distributed
random variable with two parameters α and β, in short G ∼ Gam(α, β), if its probability
density function is defined in following form:

fG(x) =

{
βα

Γ(α)x
α−1e−βx, if x ∈ (0,+∞),

0, elsewhere,
(6)
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where Γ(α) =
∫∞

0
yα−1e−ydy is the gamma function (α > 0). According to (6) the

characteristic function of Gam(α, β) distribution is given by

ϕG(t) := E(eiGt) =

(
β

β − it

)α
, t ∈ (−∞,+∞). (7)

The gamma distribution is frequently a probability model for waiting times, for in-
stance, in life testing, the waiting time until “death” is a random variable which fre-
quently modeled with a gamma distribution (see [9] for more details). In particular,
when α = 1, and β = λ, then we have an exponential distributed random variable whose
the probability density function is defined by

g(x) =

{
λe−λx, if x ∈ (0,∞),

0, elsewhere,
(8)

and its characteristic function is calculated as follows:

ϕ(t) =
λ

λ− it
, t ∈ (−∞,+∞).

From on now, let Nr,p ∼ NB(r, p) be a negative-binomial distributed random variable
with two parameters r ∈ N \ {0} and p ∈ (0, 1). The random sum SNr,p := X1 + X2 +
· · · + XNr,p is said to be a negative-binomial random sum (see [21]). It can be verified
that E(Nr,p) = rp−1. Through this paper we assume that parameter p → 0+ while the
second parameter r ∈ N \ {0} is fixed. It is worth noticing that for a negative-binomial
random variable Nr,p ∼ NB(r, p), with two parameters r ∈ N \ {0} and p ∈ (0, 1),

Nr,p
D
= ν1 + ν2 + · · ·+ νr, (9)

where νi := νp,i ∼ Geo(p), i ∈ {1, 2, . . . , r}, are independent geometric random variables

with success probability p ∈ (0, 1). The symbol
D
= denotes the equality in distribution.

The main purpose of this paper is to investigate the asymptotic behavior of the

distributions of a desired negative-binomial random sum
SNr,p

E(Nr,p)
when p → 0+, and

establish the rate of convergence in limit theorems for negative-binomial random sums
of independent and identically distributed random variables. Theorem 3.2 states that
the gamma distribution is a weak limit of distribution of negative-binomial random

sum
SNr,p

E(Nr,p)
, when p→ 0+. It is clear that the Rényi’s limit theorem in (1) (see [12]) is

a direct consequent of Theorem 3.2 (see Remark 3.3). Moreover, the rates of convergence
in weak limit theorems for negative-binomial random sums of independent identically
distributed random variables are established via Theorem ??, Theorem ?? and Theorem
??. The estimates in limit theorems were established via Trotter distance, based on
Trotter-operator method originated by Trotter (see [22] for more details). Up to now
the Trotter-operator method had attracted much attention and it also had successfully
been used and modified such as Rényi ([19]), Butzer et al. ([3, 4] and [5]), Rychlick
([20]), Kirschfink ([13]), and Hung ([10] and [11]).
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Recently, using the Stein’s method, some results of gamma approximation have been
obtained by Peköz and Röllin ([17]), and Peköz et al. ([18]). Moreover, some estimates
for the rate of convergence of the negative binomial distribution with parameters (r, p) to
the gamma distribution with parameters (r, r) when p→ 0 are obtained by Gavrilenko
et al. in [6].

It is worth noticing that some results related to central limit theorems for standardized
negative-binomial random sums of independent identically distributed random variables
with the upper bounds of the Ls norms (1 ≤ s ≤ ∞) are investigated by Sunklodas (see
[21] for more details).

This paper is organized as follows. Section 2 is devoted to a brief recall of the Trotter–
operator method, Trotter distance and their properties. The definition of the modulus
of continuity of a function and Lipschitz classes are recalled in this section, too. The
Section 3 deals with the main results of this paper.

2. PRELIMINARIES

Before stating the main results we must review the definition of a probability metric
(e. g. [12, 13] and [10]). From now on, we denote by Ξ the set of random variables in
probability space (Ω,A, P ).

Definition 2.1. The mapping d : Ξ× Ξ −→ [0,+∞) is said to be a probability metric
for two random variables X and Y, denoted by d(X,Y ), if it possesses for the random
variables X,Y, Z ∈ Ξ the following properties

1. P (X = Y ) = 1 =⇒ d(X,Y ) = 0;

2. d(X,Y ) = d(Y,X);

3. d(X,Y ) ≤ d(X,Z) + d(Z, Y ).

Let CB(R) be a set of all real–valued, bounded, uniformly continuous functions f on
the set of reals R = (−∞,+∞) with norm ‖ f ‖= sup

x∈R
| f(x) |, and write

CkB(R) =
{
f ∈ CB(R)|f (i) ∈ CB(R), i = 1, 2, . . . , k; k ≥ 1

}
.

Let us consider the Zolotarev metrics as an example of well known probability metrics
which will be compared with desired Trotter distance in next part. The Zolotarev metric
(see [13] for more details) for random variables X and Y is defined by

dZ(X,Y ) = sup
{∣∣E[f(X)− f(Y )]

∣∣; f ∈ D1(k; r + 1;CB(R))
}
,

where

D1(k; r + 1;CB(R)) =

{
f ∈ CrB(R);

∣∣∣∣f (r)(x)− f (r)(y)

∣∣∣∣ ≤ |x− y|k} .
It should be note that D1(k; r+1;CB(R)) ⊆ CrB(R) ⊆ CB(R). For a deeper discussion

of probability metrics we refer the reader to [10, 12, 13] and the references given there.
We need to recall the definition of Trotter operator which was mainly originated by

Trotter in 1959 (see [22] for more details).
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Definition 2.2. For every f ∈ CB (R) , the Trotter operator of random variable X is
defined by the mapping TX : CB(R) −→ CB(R), such that

TXf(y) := E
[
f(X + y)

]
=

∫ +∞

−∞
f(x+ y) dFX(x),

where y ∈ R and FX(x) is cumulative distribution function of a real-valued random
variable X.

The definition, properties and applications of the Trotter operator TX can be found
in [3, 4, 5, 19, 20, 22] and [13]. It is necessary to recall the definition of Trotter distance
recommended by Kirschfink (see [13] and [10] for more details).

Definition 2.3. The Trotter distance dT (X,Y ; f) of two random variables X and Y
associated to a function f ∈ CkB(R), k ≥ 1, is defined by the mapping dT : Ξ × Ξ −→
[0,+∞), such that

dT (X,Y ; f) = sup
y∈R

∣∣∣∣E[f(X + y)]− E[f(Y + y)]

∣∣∣∣.
We need in the sequel the following properties of the Trotter distance dT (X,Y ; f). The
proofs are easy to get from the properties of the Trotter operator (see [13] and [10] for
more details).

1. Trotter distance dT (X,Y ; f) is a probability metric.

2. Let X and Y be two random variables defined in space Ξ. For all f ∈ CkB(R), k ≥ 1,
if

dT (X,Y ; f) = 0,

then X
D
= Y.

3. Let X1, X2, . . . be a sequence of random variables and let X be a random variable
defined on Ξ. If, for f ∈ CkB(R), k ≥ 1,

dT (Xn, X; f) −→ 0 as n→∞,

then Xn
D−→ X as n→∞.

4. Assume that X1, X2, . . . and Y1, Y2, . . . are two sequences of independent random
variables (in each sequence). Then, for f ∈ CB(R),

dT

(
n∑
i=1

Xi,

n∑
i=1

Yi; f

)
≤

n∑
i=1

dT (Xi, Yi; f).

5. Suppose that X1, X2, . . . and Y1, Y2, . . . are two sequences of independent random
variables (in each sequence). Let N be a positive integer-valued random variable,
independent of all X1, X2, . . . and Y1, Y2, . . . . Then, for f ∈ CB(R),

dT

(
N∑
i=1

Xi,

N∑
i=1

Yi; f

)
≤
∞∑
n=1

P (N = n)

n∑
i=1

dT (Xi, Yi; f).
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6. Assume that X,X1, X2, . . . and Y, Y1, Y2, . . . are two sequences of independent and
identically distributed random variables (in each sequence). Let N be a posi-
tive integer-valued random variable, independent of all X1, X2, . . . and Y1, Y2, . . . .
Moreover, assume that E(N) <∞. Then, for f ∈ CB (R) ,

(a) dT

(
n∑
i=1

Xi,

n∑
i=1

Yi; f

)
≤ ndT (X,Y ; f),

(b) dT

(
N∑
i=1

Xi,

N∑
i=1

Yi; f

)
≤ E(N)dT (X,Y ; f).

Based on discussion in [13] and [10], the following fact is connection between the
Trotter distance and the Zolotarev metric.

Proposition 2.4.

sup {dT (X,Y ; f); f ∈ D1(k; r + 1;CB(R))} = dZ(X,Y ).

It is to be noticed that the connections between the Trotter distance and other prob-
ability metrics as Kolmogorov metric, Lëvy metric, Prokhorov metric are discussed in
[10, 13] and the references given there.

The concept of the modulus of continuity of a function f ∈ CB(R) plays a noticeable
role in this paper. Firstly, we need to recall the definition of the modulus of continuity
of a function f ∈ CB(R) (see [3] for more details)

Definition 2.5. For every function f ∈ CB(R) and ∀δ > 0, the function

ω(f ; δ) = sup
|h|≤δ

sup
x∈R

∣∣∣∣f(x+ h)− f(x)

∣∣∣∣,
is called a modulus of continuity of a function f.

Some properties of modulus of continuity of a function f are defined as follows:

1. ω(f ; δ) is a monotonically increasing function of δ, i. e. if 0 < δ1 < δ2, then

ω(f ; δ1) ≤ ω(f ; δ2).

2. ω(f ; δ) −→ 0 as δ → 0+.

3. ω(f ;λδ) ≤ (1 + λ)ω(f ; δ) for all λ > 0.

(See [3] for more details).

Definition 2.6. The function f ∈ CB(R) is said to satisfy the Lipschitz condition of
order α, (0 < α ≤ 1) , if there exists a positive constant M, such that

ω(f ; δ) ≤Mδα.

The smallest constant M in above inequality is called the Lipschitz constant of f. We
denote by Lip(α,M) the Lipschitz class of functions of order α, (0 < α ≤ 1), with
Lipschitz constant M, that is

Lip(α,M) = {f ∈ CB(R) : ω(f ; δ) ≤Mδα} .
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Remark 2.7. Let X be a random variable with E
(
|X|k

)
< +∞. Then E

(
|X|j

)
< +∞

for any 1 ≤ j ≤ k, and

E
(
|X|j

)
≤ 1 + E

(
|X|k

)
,

(see [3] for more details).

3. MAIN RESULTS

Before stating the main results we first need the following lemma.

Lemma 3.1. Let Z,Z1, Z2, . . . be a sequence of independent, exponential distributed
random variables with mean m > 0. Let Nr,p be a negative-binomial random variable
with parameters r ∈ N and p ∈ (0, 1), independent of all Zn, n ≥ 1. Set SNr,p =
Z1 + Z2 + · · ·+ ZNr,p . Then, for r ∈ N, p ∈ (0, 1),

SNr,p ∼ Gam(r,m−1p),

where Gam(r,m−1p) is a gamma distribution of parameters r ∈ R and m−1p, with

characteristic function is given in form
(

p
p−imt

)r
.

P r o o f . It is easy to check that the probability generating function of geometric random
variable νp is defined as follows:

ψνp(t) := E(tνp) =
pt

1− (1− p)t
, | t |< 1

1− p
, p ∈ (0, 1).

We denote by ψNr,p(t) the probability generating function of a negative-binomial random
variable Nr,p ∼ NB(r, p). According to (8) and (9), the probability generating function
of negative-binomial random variable Nr,p with parameters r ∈ N \ {0} and p ∈ (0, 1)
will be given by

ψNr,p(t) =
[
ψνp(t)

]r
=

[
pt

1− (1− p)t

]r
, | t |< 1

1− p
, p ∈ (0, 1).

Let ϕZ(t) be a characteristic function of the exponential random variable with mean
m > 0. It is easily seen that

ϕZ(t) =

(
1

1− imt

)
, for t ∈ (−∞,+∞).

On account of Theorem 9.3 ([8], page 193), the characteristic function of the negative-
binomial random sum is given by

ϕSNr,p (t) = ψNr,p [ϕZ(t)] =

[
p. 1

1−imt

1− (1− p) . 1
1−imt

]r
=

(
p

p− imt

)r
.

Therefore, SNr,p ∼ Gam(r,m−1p). The proof is complete. �

The following theorem confirms that the gamma distribution is a weak limiting dis-
tribution of a negative-binomial random sum of independent and identically distributed
random variables.
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Theorem 3.2. Let X,X1, X2, . . . be a sequence of independent and identically dis-
tributed positive–valued random variables with finite mean 0 < E(X) = m < +∞.
Let Nr,p be a negative-binomial random variable with two parameters r ∈ N \ {0} and
p ∈ (0, 1). Assume that Nr,p is independent of all Xn, n ≥ 1. Then,

SNr,p
E(Nr,p)

D−→ G as p→ 0+, (10)

where SNr,p =
Nr,p∑
i=1

Xi and G is a gamma distributed random variable with parameters

r and m−1r (for short, G ∼ Gam
(
r,m−1r

)
).

P r o o f . Let us denote by ψX(s) := E[sX ] and ϕX(t) := E[eitX ] the generating func-
tion and the characteristic function of a random variable X, respectively. Then, direct
computation shows that, for r ∈ N \ {0} and for p ∈ (0, 1),

ψNr,p(s) =

[
ps

1− (1− p)s

]r
, for | s |< 1

1− p
and p ∈ (0, 1).

In view of [8] (Theorem 9.1 and 9.2, pages 193–194), the characteristic function of
SNr,p
E(Nr,p)

is given by

ϕ SNr,p
E(Nr,p)

(t) = ϕSNr,p (r−1pt) = ψNr,p
(
ϕX(r−1pt)

)
=

[
p
(
1 + r−1ptϕ′(η)

)
1− (1− p) (1 + r−1ptϕ′(η))

]r
=

[
1 + r−1ptϕ′(η)

1− (1− p)r−1tϕ′(η)

]r
,

where the Maclaurin series of the differentiable function ϕX(t) used as follows

ϕX(r−1pt) = ϕX(0) + r−1ptϕ′X(η) = 1 + r−1ptϕ′X(η),

for θ ∈ (0, 1) and η = θr−1pt→ 0 as p→ 0. Letting p→ 0+, with η → 0 and E(X) = m,
using the fact that the function ϕ′X(t) is continuous at zero, we can assert that

ϕ′X(η) −→ ϕ′X(0) = im as p→ 0+.

Consequently,

lim
p→0+

ϕ Nr,p
E(Nr,p)

(t) =

[
1

1− ir−1mt

]r
=

[
r

r − imt

]r
= ϕG(t) for t ∈ (−∞,+∞).

The proof is completed. �

Remark 3.3. It is worth pointing out that should be received as a trivial corollary of
Theorem 18 due to Korolev (see [14] for more details).

The following theorems will be extends the results of [11].
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Theorem 3.4. Let X,X1, X2, . . . be a sequence of independent, identically distributed
positive-valued random variables with expectation 0 < E(X) = m and variance 0 <
V ar(X) = σ2 < +∞. Let Nr,p be a negative-binomial distributed random variable with
two parameters r ∈ N\{0} and p ∈ (0, 1), independent of all random variables Xn, n ≥ 1.
Then, for all f ∈ C1

B(R),

dT

(
SNr,p

E(Nr,p)
,G; f

)
≤ (2m+ 3m2 + σ2)ω(f ′; pr−1). (11)

If, in addition f ′ ∈ Lip(α,M), (0 < α ≤ 1), then

dT

(
SNr,p

E(Nr,p)
,G; f

)
≤M(2m+ 3m2 + σ2)(pr−1)α, (12)

where SNr,p =
∑Nr,p
i=1 Xi and G is a gamma distributed random variable with parameters

r ∈ N \ {0} and rm−1, M is a positive constant.

P r o o f . According to Lemma 3.1, we have

G D
=

S∗Nr,p
E(Nr,p)

,

where S∗Nr,p =
∑Nr,p
i=1 Zi and Z1, Z2, . . . is a sequence of independent, exponential random

variables with mean m, i. e. Z1 ∼ Exp(m−1).
For all f ∈ C1

B(R), it is easy to check that

dT

(
SNr,p

E(Nr,p)
,G; f

)
≤
(
r

p

)
dT

(p
r
X1,

p

r
Z1; f

)
.

Using the Taylor series expansion, we obtain

Ef
(p
r
X1 + y

)
= f(y) +

p

r
mf ′(y) +

p

r

∫ +∞

0

x[f ′(η)− f ′(y)] dFX1
(x),

where |η − y| < p

r
x. By an analogous argument to the previous one, we get

Ef
(p
r
Z1 + y

)
= f(y) +

p

r
mf ′(y) +

p

r

∫ +∞

0

x[f ′(ξ)− f ′(y)] dFZ1(x),

with |ξ − y| < p

r
x.
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Consider

∣∣∣∣Ef (prX1 + y
)
− Ef

(
p
rZ1 + y

) ∣∣∣∣
≤ p

r

∫ +∞

0

x|f ′(η)− f ′(y)|dFX1
(x) +

p

r

∫ +∞

0

x|f ′(ξ)− f ′(y)|dFZ1
(x)

≤ p

r

∫ +∞

0

xω
(
f ′;

p

r
x
)

dFX1
(x) +

p

r

∫ +∞

0

xω
(
f ′;

p

r
x
)

dFZ1
(x)

≤ p

r
ω
(
f ′;

p

r

)∫ +∞

0

x(1 + x) dFX1(x) +
p

r
ω
(
f ′;

p

r

)∫ +∞

0

x(1 + x) dFZ1(x)

=
p

r
ω
(
f ′;

p

r

)[∫ +∞

0

(x+ x2) dFX1
(x) +

∫ +∞

0

(x+ x2) dFZ1
(x)

]
=

p

r
ω
(
f ′;

p

r

){
E(X1) + E

[
(X1)2

]
+ E(Z1) + E

[
(Z1)2

]}
=

p

r
ω
(
f ′;

p

r

) (
2m+ 3m2 + σ2

)
.

Hence

dT

(
SNr,p

E(Nr,p)
,G; f

)
≤
(
2m+ 3m2 + σ2

)
ω
(
f ′;

p

r

)
.

It is easy to prove that if f ′ ∈ Lip(α,M), then

dT

(
SNr,p

E(Nr,p)
,G; f

)
≤
(
2m+ 3m2 + σ2

)
M
(p
r

)α
.

The proof is complete. �

Theorem 3.5. Let X1, X2, . . . be a sequence of independent, standard normal dis-
tributed random variables, in short Xi ∼ N (0, 1), i ≥ 1. Let Nr,p be a negative-binomial
random variable with two parameters r ∈ N \ {0} and p ∈ (0, 1). Additionally, assume
that Nr,p is independent of all Xi, i = 1, 2, . . . . Then, for all f ∈ C2

B(R),

dT

(
S2
Nr,p

E(Nr,p)
,G∗; f

)
≤
( p

2r

) [
‖f ′′‖+ 26ω(f ′′;

p

r
)
]
, (13)

where, S2
Nr,p

=
∑Nr,p
i=1 X2

i and G∗ is a gamma distributed random variables with equal

parameters (written, G∗ ∼ Gam(r, r)).

P r o o f . Since Xi ∼ N (0, 1), i ≥ 1 , we have X2
i ∼ χ2(1), where χ2(1) is χ2-distribution

with 1 degrees of freedom. The density function function of χ2(1) is given by (see [9] for
more details)

fχ2(1)(x) =


1√

2Γ
(

1
2

)x− 1
2 e−

x
2 if x > 0;

0 if x ≤ 0,
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where Γ
(

1
2

)
=
∫ +∞

0
x−

1
2 e−x dx.

It can easily seen that

E
{

(X2
i )k
}

=

∫ +∞

0

xk.
1√

2Γ
(

1
2

)x− 1
2 e−

x
2 dx =

∫ +∞

0

1√
2Γ
(

1
2

)xk− 1
2 e−

x
2 dx.

Putting y =
x

2
, we obtain

E
{

(X2
i )k
}

=
2k

Γ
(

1
2

) ∫ +∞

0

yk−
1
2 e−ydy =

2k

Γ
(

1
2

) .Γ(k +
1

2

)
. (14)

Using integration by parts, we have

Γ

(
k +

1

2

)
=

(
k − 1

2

)
.

(
k − 3

2

)
. . .

3

2
.
1

2
.Γ

(
1

2

)
. (15)

Combining (14) and (15), it follows that

E
{

(X2
i )k
}

= (2k − 1).(2k − 3) . . . 3.1 = (2k − 1)!!. (16)

According to equation (16) it is obvious that

E
(
X2
i

)
= 1, E

[(
X2

1

)2]
= 3, E

[(
X2

1

)3]
= 15.

Let Z1, Z2, . . . be a sequence of independent, exponential distributed random variables
with mean 1. Then, according to Lemma 3.1, it follows that

G∗ D= p

r

Nr,p∑
i=1

Zi.

Therefore, using the Trotter distance, we have

dT

(
S2
Nr,p

E(Nr,p)
,G∗; f

)
= dT

 S2
Nr,p

E(Nr,p)
,
p

r

Nr,p∑
i=1

Zi; f

 ≤ E(Nr,p)dT

(p
r
X2

1 ,
p

r
Z1; f

)
.

Hence,

dT

(
S2
Nr,p

E(Nr,p)
,G∗; f

)
≤ r

p
dT

(p
r
X2

1 ,
p

r
Z1; f

)
.

For every f ∈ C2
B(R), using Taylor expansion

f(x+ y) = f(y) + xf ′(y) +
x2

2
f ′′(y) +

x2

2
[f ′′(η)− f ′′(y)] ,

where |η − y| < |x|.
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Consider

Ef
(p
r
X2

1 + y
)

=

∫ +∞

0

f
(p
r
x+ y

)
dFX2

1
(x)

= f(y) +
p

r
f ′(y) +

3
(p
r

)2

2
f ′′(y) +

(p
r

)2

2

∫ +∞

0

x2 [f ′′(η)− f ′′(y)] dFX2
1
(x),

with |η − y| < p

r
|x|.

By an analogous argument to the previous one, we get

Ef
(p
r
Z1 + y

)
=

∫ +∞

0

f
(p
r
x+ y

)
dFZ1

(x)

= f(y) +
p

r
f ′(y) +

(p
r

)2

f ′′(y) +
(
p

r
)2

2

∫ +∞

0

x2 [f ′′(ξ)− f ′′(y)] dFZ1(x),

where |ξ − y| < p

r
|x|. Then,

∣∣∣∣Ef (prX2
1 + y

)
− Ef

(
p
rZ1 + y

) ∣∣∣∣
≤

(p
r

)2

2
|f ′′(y)|+

(p
r

)2

2

∫ +∞

0

x2 |f ′′(η)− f ′′(y)|dFX2
1
(x)

+
p2

2

∫ +∞

0

x2 |f ′′(ξ)− f ′′(y)|dFZ1(x)

≤

(p
r

)2

2
‖f ′′‖+

(p
r

)2

2

∫ +∞

0

x2ω
(
f ′′;

p

r
x
)

dFX2
1
(x)

+

(p
r

)2

2

∫ +∞

0

x2ω
(
f ′′;

p

r
x
)

dFZ1
(x)

≤

(p
r

)2

2

[
‖f ′′‖+ ω

(
f ′′;

p

r

)∫ +∞

0

(x2 + x3)dFX2
1
(x)

+ω
(
f ′′;

p

r

) ∫ +∞
0

(x2 + x3) dFZ1
(x)
]
.

Hence,

dT

(
S2
Nr,p

E (Nr,p)
,G∗; f

)
≤
( p

2r

) [
||f ′′||+ 26ω

(
f ′′;

p

r

)]
.

The proof is complete. �
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Theorem 3.6. Let X1, X2, . . . be a sequence of independent, identically distributed,
positive-valued random variables with E(| X1 |k) < +∞, k ≥ 2. Let Z1, Z2, . . . be a
sequence of independent, exponential distributed random variables with E(| Z1 |k) <
+∞, k ≥ 2. Moreover, assume that∫

R

xjdFX1 (x) =

∫
R

xjdFZ1 (x), 0 ≤ j < k; 2 ≤ k, k ∈ N. (17)

Let Nr,p be a negative-binomial distribution random variable with two parameters
r ∈ N\{0} and p ∈ (0, 1). Assume that Nr,p is independent of all Xi, i ≥ 1 and Zi, i ≥ 1.
Then, for all f ∈ Ck−1

B (R)

dT

(
SNr,p

E(Nr,p)
,G; f

)
≤

2
(
p
r

)k−2

(k − 1)!
ω
(
f (k−1);

p

r

) [
1 + E

(
Xk

1

)
+ E

(
Zk1
)]
.

If f (k−1) ∈ Lip(α,M), (0 < α ≤ 1), then

dT

(
SNr,p

E(Nr,p)
,G; f

)
≤

2M
(
p
r

)k+α−2

(k − 1)!

[
1 + E

(
Xk

1

)
+ E

(
Zk1
)]
,

where SNr,p =
∑Nr,p
i=1 Xi and G is a gamma distributed random variable with parameters

r and r
m .

P r o o f . On account of Lemma 3.1 we observe that

G D
=
p

r
S∗Nr,p ,

where S∗Nr,p =
∑Nr,p
i=1 Zi. For every f ∈ Ck−1

B (R), using the Trotter distance, it follows
that

dT

(
SNr,p

E(Nr,p)
,G; f

)
= dT

(
SNr,p

E(Nr,p)
,
S∗Nr,p

E(Nr,p)
; f

)
≤ E(Nr,p)dT

(p
r
X1,

p

r
Z1; f

)
.

Let f ∈ Ck−1
B (R), using the Taylor series expansion, we have

f(x+ y) = f(y) +

k−1∑
i=1

xi

i!
f (i)(y) +

xk−1

(k − 1)!

[
f (k−1)(η)− f (k−1)(y)

]
,

with η ∈ (y, x+ y).
Consider

Ef
(p
r
X1 + y

)
= f(y) +

k−1∑
i=1

(p
r

)i
f (i)(y)

i!

∫ +∞

0

xidFX1
(x)

+

(p
r

)k−1

(k − 1)!

∫ +∞

0

xk−1
[
f (k−1)(η)− f (k−1)(y)

]
dFX1(x),
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where |η − y| < p

r
x. In the same way, we have

Ef
(p
r
Z1 + y

)
= f(y) +

k−1∑
i=1

(p
r

)i
f (i)(y)

i!

∫ +∞

0

xidFZ1(x)

+

(p
r

)k−1

(k − 1)!

∫ +∞

0

xk−1
[
f (k−1)(ξ)− f (k−1)(y)

]
dFZ1

(x),

where |ξ − y| < p

r
x. Therefore,∣∣∣∣Ef (prX1 + y
)
− Ef

(
p
rZ1 + y

) ∣∣∣∣
≤

(p
r

)k−1

(k − 1)!

∫ +∞

0

xk−1
∣∣∣f (k−1)(η)− f (k−1)(y)

∣∣∣ dFX1
(x)

+

(p
r

)k−1

(k − 1)!

∫ +∞

0

xk−1
∣∣∣f (k−1)(ξ)− f (k−1)(y)

∣∣∣dFZ1(x)

≤

(p
r

)k−1

(k − 1)!

∫ +∞

0

xk−1ω
(
f (k−1);

p

r
x
)

dFX1
(x)

+

(p
r

)k−1

(k − 1)!

∫ +∞

0

xk−1ω
(
f (k−1);

p

r
x
)

dFZ1
(x)

≤

(p
r

)k−1

(k − 1)!
ω
(
f (k−1);

p

r

)[∫ +∞

0

(
xk−1 + xk

)
dFX1(x) +

∫ +∞

0

(
xk−1 + xk

)
dFZ1(x)

]

≤
2
(p
r

)k−1

(k − 1)!
w
(
f (k−1);

p

r

) [
1 + E

(
Xk

1

)
+ E

(
Zk1
)]
.

Consequently,

dT

(
SNr,p

E(Nr,p)
,G; f

)
≤

2
(p
r

)k−2

(k − 1)!
ω
(
f (k−1);

p

r

) [
1 + E

(
Xk

1

)
+ E

(
Zk1
)]
.

If f (k−1) ∈ Lip(α,M), then we have

dT

(
SNr,p

E(Nr,p)
,G; f

)
≤

2M
(p
r

)k+α−2

(k − 1)!

[
1 + E

(
Xk

1

)
+ E

(
Zk1
)]
.

The proof is complete. �

We conclude this paper with the following comment:
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Remark 3.7. It is worth pointing out that all received results in theorems in this paper
are valid in the Geometric distribution case by setting r = 1.
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